Текст книги "Полвека в авиации. Записки академика"
Автор книги: Евгений Федосов
Жанры:
Биографии и мемуары
,сообщить о нарушении
Текущая страница: 32 (всего у книги 34 страниц)
Если в 1990 году весь объем работ института покрывался только оборонным заказом, то в 1999-м оборонный заказ охватывал 25–30 процентов, экспортные заказы – 50 и заказы по информационным технологиям – 20–30 процентов объема работ. Деятельность института полностью соответствовала его названию – Государственный научный центр ГосНИИ авиационных систем.
Глава VI. НАЧАЛО НОВОГО ВЕКА
Роль высокоточного оружия и систем разведки на современном этапе
Начало нового столетия и одновременно тысячелетия принесло новые надежды. В стране сменился президент. После политически бурного конца века установилась некоторая стабильность и в политике, и в экономике. Вторая чеченская война проходила уже по другому сценарию. Уроки поражений в первой войне явно пошли на пользу. После разгрома крупных соединений боевиков федеральные войска установили контроль над всей территорией Чечни. Авиация применялась только для точечных ударов по разрозненным боевым группам. Боевикам ничего не оставалось, как перейти к полностью партизанской форме войны. Бороться с партизанами, когда они находятся в своей среде, когда их поддерживает население, задача почти безнадежная. Надо вспомнить опыт борьбы с басмачеством в Средней Азии, с махновскими бандами и бандами «зеленых» после гражданской войны, с бендеровцами и «лесными братьями» после Великой Отечественной.
Здесь на передний план выходят политические меры. Необходимо лишить бандитов их среды, убедить население в правоте борьбы с бандитами, в безнадежности их сопротивления. Для этого следует опираться на слои чеченцев, лояльных к федеральной власти, постепенно вводить самоуправление. В кратчайшие сроки нужно попытаться восстановить разрушенную войной экономику, создать рабочие места на предприятиях, организовать занятия в школах, воссоздать социальную инфраструктуру и т. д.
Борьба с партизанскими отрядами должна вестись мобильными боевыми группами, с опорой на хорошо налаженную разведывательную систему.
Политическое и военное руководство страны, хорошо понимая это, действовало именно по такому сценарию. В корне изменилось поведение средств массовой информации. Если в первую чеченскую войну Мовлади Удугов, руководитель информационных средств Дудаева, явно выиграл информационную войну у России (едва ли не все ведущие российские СМИ представляли действия чеченцев как героическое сопротивление «агрессии»), то теперь общественное мнение было достаточно информировано о методах боевиков. Захват заложников, террор против мирного населения, зверские расправы над заложниками и пленными, потоки наркотиков и фальшивой валюты из-за рубежа, арабские наемники – вот далеко не полный «джентльменский набор» методов и средств, которыми пользуются боевики. Вскоре стала вырисовываться неприглядная роль в оказании помощи чеченским боевикам ряда арабских стран, Турции, а также руководства Грузии, через которую был организован транзит оружия, наемников, валюты в Чечню. Панкисское ущелье Грузии превратилось в зону, где формировались новые отряды и зализывали раны боевики, прорвавшиеся через российско-грузинскую границу. Все это значительно усложняло противопартизанские действия.
Трагические события 11 сентября 2001 года в США всколыхнули весь мир. Президент США Джордж Буш объявил войну терроризму на всей территории земного шара. Его поддержали практически все страны. Гибель трех тысяч ни в чем не повинных американских граждан в беспрецедентной террористической акции показала, насколько уязвима современная цивилизация. Почти полстолетия в ходе «холодной войны» мир создавал современные системы вооружения – и вот они оказались беспомощными против кучки смертников. Всегда считалось, что враг находится за пределами страны. Все его действия отслеживались, его вооружения тщательно изучались, на основе этого строились оборонительные и наступательные доктрины. Теперь же враг оказался внутри. Встала проблема выявления «чужих среди своих». Раскрыть планы врага, упредить его действия – все это оказалось невероятно сложным делом, хотя системы контрразведки всегда были достаточно развиты. Но здесь проявились совершенно другие масштабы. На передний план стали выдвигаться методы и системы глобальной разведки и наблюдения. По существу, надо было создавать системы глобального мониторинга в реальном масштабе времени.
Американцы давно, еще с вьетнамской войны, придавали большое значение системам разведки. Особенно ярко это проявилось в ходе войн против Ирака, в балканских войнах, в Афганистане. Это была война нового типа. Воздушные удары наносились на всю глубину территории противника, тем самым стирались понятия фронта и тыла. Собственно, фронт практически отсутствовал, так как сухопутные войска применялись только после полного разгрома противника, либо вообще не применялись. В качестве основного оружия использовались высокоточные крылатые ракеты и управляемые бомбы. Удары наносились избирательно по обнаруженным и точно привязанным целям. Потери мирного населения были сведены к минимуму, а потерь среди военнослужащих объединенной группировки США и их союзников практически не было. Это так контрастировало с войной в Чечне!
Роль авиации в боевых конфликтах различной интенсивности всегда была достаточно весомой, но, пожалуй, впервые авиация самостоятельно, без участия сухопутных сил, решала исход войны. Так в наше время окончательно подтвердилась доктрина итальянского генерала Джулио Дуэ, провозглашенная еще на заре авиации. Действительно, после того, как разрушены точечными ударами крылатых ракет системы ПВО, аэродромы, пункты управления, практически вся экономическая инфраструктура, тяжелые вооружения, коммуникации и т. д., противнику ничего не остается, как принять навязываемые ему политические решения, ибо продолжать в сложившихся условиях вооруженную борьбу бессмысленно.
Но высокоточные удары могуг наноситься только при хорошо организованной разведывательной системе. Это очень наглядно проявилось в войне против Югославии. Вся территория Балканского полуострова просматривалась спутниками детальной разведки, патрульными самолетами с системой JSTAR, беспилотными разведчиками Predator. Вся информация обрабатывалась на воздушных командных пунктах и передавалась через спутники связи на пункты управления и планирования, расположенные в штабе объединенных сил и в национальных штабах. Все разведывательно-информационные средства работали в единой системе времени, имели единое навигационное обеспечение на базе космической системы NAVSTAR. Широко использовалась априорная разведывательная информация, сведенная в единую информационную базу.
Планирование боевых вылетов и полетных заданий крылатым ракетам обеспечивалось единой геоинформационной системой на базе высокоточных трехмерных цифровых карт зоны боевых действий. Использовались единые компьютерные базы данных и линии цифровой связи для передачи необходимой информации вплоть до телевизионных изображений разведанных целей, то есть обеспечена полная информатизация и компьютеризация процессов планирования и нанесения высокоточных ударов.
Когда говорят о высокоточном оружии, то все представляют какие-то совершенные системы управления и наведения ракет и бомб. По сути же высокоточное поражение базируется в первую очередь на обнаружении и высокоточной привязке координат целей.
Таким образом, высокоточное оружие, космические средства разведки, навигации и связи, линии передачи данных, воздушные и наземные командные пункты, оборудованные компьютерными системами подготовки полетных заданий оружию и самолетам, составляют основу единой воздушно-космической боевой операции. Мы увидели прообразы боевых конфликтов XXI столетия. И это только начало. Америка стала накапливать высокоточный потенциал. На наших глазах происходит смена парадигмы, самих основ вооруженной борьбы. Если всю вторую половину XX столетия господствовала концепция ракетно-ядерной войны, все лучшие умы ученых, колоссальные государственные ресурсы были брошены на совершенствование и наращивание ракетно-ядерного потенциала, вся внешняя политика великих держав крутилась вокруг процессов ядерного сдерживания, снижения ядерного порога, контроля над ядерными вооружениями, то в XXI веке мы становимся свидетелями заката ракетно-ядерной парадигмы. И дело тут не только и не столько в развитии информационных технологий, но в общей глобализации экономики, когда производственные цепочки, от добычи ископаемых до получения конечного наукоемкого продукта, вышли за пределы экономики отдельных стран и распространились в больших экономических зонах, охватывая группы стран и целые континенты. Эти процессы – логическое следствие развития современной цивилизации. В этом суть постиндустриального общества.
Применение ядерного оружия противоречит идее глобализации экономики, так как приводит к разрушению единого экономического пространства. Фактор ядерного сдерживания заменяется фактором сдерживания высокоточным оружием.
Действительно, современная цивилизация очень уязвима. Ядерные электростанции, гидросооружения, топливно-энергетические системы, химические производства, города-мегаполисы с высотной архитектурой – все это при высокоточном поражении неминуемо влечет самые разрушительные последствия, вплоть до техногенных катастроф – те самые «неприемлемые потери», которые раньше рассчитывали причинять с помощью ядерного оружия. Отныне все сколько-нибудь развитые страны стали заложниками своей инфраструктуры. Возможность нанесения избирательных высокоточных ударов по ней является мощным сдерживающим фактором, ничем не уступающим ядерному сдерживанию. В этих условиях наличие ядерного оружия становится анахронизмом.
Мы вскоре будем свидетелями того, как ядерное оружие будет поставлено вне закона наравне с химическим и бактериологическим. Угрозы применения оружия массового поражения, видимо, будут все чаще исходить от международного терроризма. Уже сейчас США больше всего обеспокоены именно возможностью ядерного, химического и бактериологического терроризма, а не применением этого оружия в военных межгосударственных конфликтах.
Смена парадигмы вооруженной борьбы влечет за собой пересмотр всей политики строительства вооружений. И, как показывает, опыт последних военных конфликтов, на первый план выходят авиация, космос и информационные технологии.
Естественно, встает вопрос – насколько готова Россия к подобной смене понятий в вооруженной борьбе?
У нас в институте еще в конце 80-х годов по мере отработки и принятия на вооружение стратегических крылатых ракет морского и авиационного базирования с ядерным снаряжением стала созревать идея – нельзя ли получить такую точность наведения, чтобы отказаться от ядерного заряда. Надо отдать должное американцам: они с самого начала создания крылатой ракеты морского базирования «Томагавк» и авиационной крылатой ракеты ALCM-B предусматривали для них как ядерное, так и обычное боевое снаряжение. Они сразу стали ориентироваться на коррекцию ошибок гироинерциальной системы от космической навигационной системы NAVSTAR. Расчеты показывают, что если использовать так называемые дифференциальные поправки к радиосигналу от навигационных спутников, учитывающие весь спектр возможных ошибок измерения, можно достичь точности наведения в единицы метров. В этом случае обычный заряд порядка 250–300 кг в тротиловом эквиваленте может разрушить наиболее критичные, ключевые элементы целой системы. Если взять в качестве примера какое-либо производство, то таким критичным элементом может быть энергоузел или какое-либо уникальное технологическое оборудование. Разрушение таких ключевых точек полностью парализует производство. В любой электростанции такой точкой будет машинный зал, в командных пунктах – узлы связи и т. д. А если поразить ядерный реактор или химическое производство токсичного продукта, или плотину гидроэлектростанции, – все это вызовет техногенную катастрофу.
Мы же этот путь – высокоточное наведение – отвергли с самого начала. Наши военные очень энергично выступали против использования спутниковой навигации для наведения крылатых ракет, мотивируя тем, что в случае войны, а война предполагалась только с НАТО, спутники будут выведены из строя или будут поставлены мощные помехи их радиосигналам. Да и сама наша космическая группировка ГЛОНАСС никак не может выйти на расчетное число спутников. В конце концов мы выбрали путь увеличения точности наведения крылатых ракет за счет включения режима точной оптической коррекции на конечном участке полета и самонаведения на образ цели. Это было сложное техническое решение, но оно было инвариантно к любым изменениям в космической группировке навигационных спутников.
Как известно, у нас и у американцев в качестве основного метода наведения крылатых ракет принята так называемая экстремальная коррекция навигационной системы по рельефу местности. Этот рельеф в любой точке земного шара индивидуален подобно отпечатку пальца, что и позволяет точно идентифицировать положение ракеты. В память БЦВМ закладывается местоположение зон коррекции с цифровым рельефом местности в этих зонах, которые должна проходить ракета согласно заданному ортодромическому маршруту полета. Когда ракета пролетает над зоной коррекции, ее высотомер непрерывно измеряет высоту полета. Эта последовательность высот подвергается корреляционной обработке вместе с высотами рельефа, заложенного в памяти машины. Вычисляется корреляционный функционал. Ракета, используя сигнал коррекции от вычислителя, управляется так, чтобы этот функционал максимизировался, то есть получить экстремум корреляционной функции, отсюда и название – экстремальная коррекция. В основе теории такого метода навигации у нас в России лежат работы академика Александра Аркадьевича Красовского и его учеников в Военно-воздушной академии им. Н. Е. Жуковского. Точность наведения ракеты здесь определяется процессом вычисления экстремума корреляционной функции. Фундаментальные работы по оценке точности наведения с учетом нелинейных факторов поля рельефа местности были проведены доктором физико-математических наук Юрием Сергеевичем Осиповым, впоследствии академиком и президентом Российской академии наук. Мы очень тесно сотрудничали с Ю. С. Осиповым. Он принадлежал к свердловской (ныне екатеринбургская) школе академика Николая Николаевича Красовского. Теоретические расчеты, наше полунатурное моделирование с реальной аппаратурой, а впоследствии и натурные пуски подтвердили точность выхода ракеты к цели с подобной системой коррекции в пределах 100–200 м. Чем более изрезан рельеф местности, тем точнее наведение, чем более плоский рельеф, тем больше возможность ошибки.
Если на конечном участке использовать оптическое поле контраста, ошибку можно свести к десяткам метров. Американцы в своих ракетах использовали оптическую систему коррекции. Она позволяет увидеть образ цели, опознать его, прицелиться в критичную точку и навести ракету на нее.
Эта задача теоретически нами была достаточно изучена, но найти аппаратное решение в конце 80-х годов было неимоверно трудно. Требовалось создавать, по сути, систему технического зрения. В качестве аналога самого глаза можно было использовать оптические головки самонаведения, которые были разработаны для наших ракет класса «воздух – земля» и корректируемых бомб. Но зрение – это не только глаз. Цель недостаточно просто увидеть. Надо распознать образ цели на фоне сложной в своих деталях местности. Для этого в памяти машины надо иметь эталон образа цели и, сравнивая его с текущим оптическим изображением, суметь распознать цель. Человеческий мозг эту операцию делает мгновенно. Но используемый им механизм распознавания до сих пор до конца не раскрыт и не формализован. Наиболее простые алгоритмы распознавания получаются, когда цель имеет простой геометрический контур в виде прямых граней. Мы вначале пошли именно этим путем.
Были созданы первые спецвычислители, которые реализовывали подобные алгоритмы. Но когда мы провели натурные эксперименты по распознаванию Каширской ГРЭС, то столкнулись с достаточно сложным профилем зданий. Простые алгоритмы не работали.
Но эту тему надо было «официализировать». В 1987 году было принято специальное постановление ЦК КПСС и СМ СССР по созданию системы высокоточного наведения крылатых ракет «Программа Р-2000».
В этой программе были заложены не только сами ракеты с высокоточным наведением, но и соответствующее информационное обеспечение для получения более точных цифровых карт местности и космофотоснимков – образов возможных стратегических целей. Индекс Р-2000 предполагал, что программа получит свое воплощение в 2000 году.
Если бы не трагичные 90-е годы, мы бы выполнили это постановление. Если бы да кабы… Программа Р-2000 так и не получила должного финансирования, и в результате Россия вошла в XXI век, не имея высокоточного стратегического оружия. Но понимание этой проблемы в России имеется, ясно и то, какие технологии нужно развивать, сохранились и коллективы конструкторов и ученых, способных решить эту задачу.
Не последнюю роль в торможении этой программы сыграли военные. Резкое сокращение оборонного заказа усилило позиции сторонников ядерного сдерживания. Министр обороны, Генеральный штаб, Главное командование ракетных войск стратегического назначения везде подчеркивали необходимость сохранения «ядерного щита», убеждая политическое руководство страны, что это самый дешевый способ сохранить обороноспособность страны. Они не уловили новых тенденций, которые привносит высокоточное оружие при проведении современных боевых операций.
Пока что в официальных документах, излагающих военную доктрину России, в программе вооружений все еще господствует парадигма ядерного сдерживания. Пожалуй, только начальник Генерального штаба генерал армии Анатолий Васильевич Квашнин почувствовал новые веяния. Проводя реформирование вооруженных сил, он сократил стратегическую ядерную составляющую и стал развивать силы общего назначения. При этом, естественно, на повестку дня встал вопрос и о высокоточном оружии.
Но факт остается фактом: США и ряд стран Запада вошли в XXI век с достаточно развитым высокоточным оружием, глобальной системой разведки, компьютеризированной системой управления единой воздушно-космической операцией и тем самым создали предпосылки отказа от ядерной парадигмы. Россия же, не имея развитой системы высокоточного вооружения, обречена пока держаться устаревших ядерных доктрин.
Как после эпохи Хрущева, перед нами вновь встала задача ликвидации отставания. Эту задачу нам, вероятно, придется решать, опираясь только на собственные силы. Вряд ли США передадут нам необходимые технологии. Эти технологии, в конечном счете, определят и рынок вооружений XXI века, на котором мы выступаем не партнером, а конкурентом США и других западных стран.
Как уже говорилось, само высокоточное оружие является, по существу, завершающим элементом поражения наземной цели в сложном комплексе систем разведки, планирования и командования боевой операцией, связи и управления оружием (в американской «модерновой» аббревиатуре – C4I (Computer, Command, Control Communication, Intelligent). Составляющими системы С4I являются:
– космические и воздушные средства разведки и ретрансляции разведывательной информации;
– морские, наземные и воздушные командные пункты;
– морские и авиационные боевые комплексы;
– управляемое высокоточное оружие для поражения наземных целей.
Все это базируется на наукоемких технологиях.
Наукоемкие технологии. Национальная технологическая база
Подобная системная увязка различных технических средств вокруг общей целевой задачи – высокоточного поражения наземной цели, стала возможной благодаря той научно-технической революции, которая происходила в последние десятилетия XX столетия. Шло бурное развитие высоких, или, правильнее сказать, наукоемких технологий в области микроэлектроники, компьютерной техники, оптоэлектроники, радиофизики, информационных технологий и технологий новых материалов. Это развитие было вызвано, с одной стороны, естественным научно-техническим прогрессом, а с другой – желанием создавать наукоемкие продукты, дающие значительно большие прибыли, чем продажа первичного продукта. Если продажа одной тонны сырой нефти приносит по международным ценам от 20 до 30 долларов прибыли, то всего лишь один килограмм авиационной продукции дает прибыль до 1000 долларов, а в информатике и электронике – до 5000 и более. Естественно, что и промышленно развитые страны, и ряд активно развивающихся стран основные инвестиции направили именно в сферу наукоемкой продукции.
В сущности, политический статус государства в XXI столетии стал больше зависеть от конкурентоспособности в первую очередь его наукоемкой промышленности на мировых рынках, чем от военной мощи, что было характерно для середины XX столетия. Но тогда основой научно-технической стратегии должен стать рост инвестиций прежде всего в технологическую сферу, а не в производство конечного продукта. Современное технологическое оснащение наукоемкого производства требует сверхбольших инвестиций. Так, чтобы создать современный завод с технологическими процессами для выпуска микроэлектронных кристаллов (чипов) с проектными нормами точности изготовления 0,16-0,25 микрон, нужно вложить от 2,5 до 5 миллиардов долларов. Может ли какая-нибудь современная фирма среднего размера вложить такие деньги? Конечно нет. Потому и начался процесс концентрации капитала путем создания сверхконцернов, выхода последних за рамки национальных экономик и порождения тем самым процессов глобализации.
Правительства США и Западной Европы активно способствовали реформированию промышленности в этом направлении, особенно заботясь о технологической оснащенности государства. На эти цели выделялись значительные государственные ресурсы в рамках специальных национальных технологических программ. США регулярно, раз в два года, на уровне президента и конгресса утверждали национальный перечень наиболее важных, «критических» технологий и выделяли необходимые средства из федерального бюджета на их создание. Более «бедная» объединенная Европа реализовала программу критических технологий «Эврика», которая финансировалась на 50 процентов государством и на 50 частным капиталом. И эта программа регулярно обновлялась и утверждалась первыми лицами государства. По тому же пути пошли Япония, Южная Корея и ряд быстроразвивающихся стран Юго-Восточной Азии.
Следует подчеркнуть, что государства идут на финансирование именно «критических» базовых технологий, то есть связанных с большим риском. Отдача в виде готового продукта после внедрения этих технологий связана с достаточно длинным циклом, или, как говорят теперь в России, с «длинным рублем». Не всякая фирма пойдет на риск разработки подобной технологии. Но при этом государственное финансирование технологических программ является своеобразной формой дотаций частному бизнесу. Ведь готовый наукоемкий продукт – это собственность частной фирмы, а не государства. Очень характерно (и печально), что у нас в России до сих пор не понимают этой азбучной истины. Чиновники Минэкономики и Миннауки при создании федеральных целевых программ, финансируемых из бюджета, все время требуют ориентации на выпуск конечного продукта, выхолащивая технологическую составляющую.
Сейчас уже совершенно ясно: государство никогда не получит плодов наукоемких технологий, не культивируя, не взращивая их у себя. Необходима определенная технологическая культура страны и ее руководства. При этом надо иметь в виду, что для создания наукоемкого продукта выстраивается определенная производственная цепочка взаимодействующих компонентов: фундаментальная наука, прикладная наука и поисковые исследования, разработка технологий, оснащение этими технологиями производства и само производство. Эта цепочка должна быть тщательно сбалансирована в части финансирования.
Всякое недофинансирование той или иной составляющей приведет к тому, что цепочка распадется и продукт не будет создан. Особо надо отметить важность развития фундаментальных наук при создании новых наукоемких технологий. Только понимание глубинных процессов на основе фундаментальных знаний о природе позволяет делать качественные прорывы при создании новых технологий.
Иногда приводят в пример Южную Корею или страны Юго-Восточной Азии, где практически нет фундаментальной науки, а технологии прекрасные, налажен выпуск наукоемкой продукции: электроники, компьютерной техники, автомобилей и т. д. Ну, так эти страны полностью и зависят от «мозгов» высокоразвитых стран. Они вкладывают значительные средства в создание технологий и производства, но качественные технологические скачки происходят там, где есть фундаментальная наука. Недаром высокоразвитые страны стремятся монополизировать именно фундаментальные исследования, прикладную науку и создание пилотных технологий, а само производство спокойно отдают «на сторону», как экологически грязное, да и менее прибыльное. Причем глобализация производственных цепочек в том и состоит, что в рамках транснациональных компаний сохраняется участие высокоразвитых стран в получении дивидендов и от выпуска конечного продукта. Что же касается разработки вооружений и выпуска военной продукции, здесь высокоразвитые страны всю производственную цепочку замыкают в национальных границах.
В России, да частично и в СССР, не всегда было сбалансированное развитие производственных цепочек. Со стороны чиновников разных ведомств, да и средств массовой информации все время идет критика в связи с недостаточной эффективностью внедрения результатов фундаментальных и прикладных исследований в практику, в создание конечного продукта, но не учитывается при этом, что причина лежит чаще всего в недостаточном финансировании создания технологий и необходимого производства. В современной же России сложилась просто недопустимая обстановка. Прекратились инвестиции не только в технологическую базу: финансирование практически всех прикладных исследований значительно уменьшилось по сравнению с фундаментальными.
Я вовсе не хочу сказать, что фундаментальные науки финансируются на должном уровне, а тем более с избытком, отнимая средства от прикладных исследований, – нет, конечно. Фундаментальная наука тоже находится в сложном положении, но благодаря Президиуму Российской академии наук, ее президенту, активной кампании в средствах массовой информации удается поддерживать научный уровень фундаментальных исследований. Что же касается прикладной науки, то после отказа от отраслевого управления она практически стала ничьей. Государство потеряло контроль над ней. В развитие прикладных исследований, в создание новых технологий, особенно базовых, лежащих в основе широкого спектра наукоемкой продукции, перестали вкладываться сколько-нибудь значительные средства. Это привело к разрушению технологической базы страны.
Результат не заставил себя долго ждать. Сегодня на мировом рынке наукоемкого продукта доля России составляет всего 0,3 процента! США имеют 39 процентов, Япония – 19, Германия – 16.
Сейчас, чтобы оправдать сложившееся положение, пытаются утверждать, что СССР держался на продаже нефти и угасание наукоемкого производства – наследие времен «застоя». Это неправда. Союз продавал нефть, но в значительно меньших объемах, чем сейчас. СССР лидировал в самолетостроении. Практически каждый второй самолет, летавший в мире, был сделан в СССР. Мы задавали тон в ракетно-космической области, в гидромашиностроении (вспомним наше участие в создании Асуанского гидрокомплекса), в металлургии (металлургические заводы в Бхилаи), тяжелом машиностроении (прессы, изготовленные на Уралмаше, до сих пор надежно работают во французском авиационном комплексе в Тулузе и в ряде других стран). Мы имели самое передовое в мире титановое производство, достаточно развитое энергомашиностроение, не говоря уже об атомном машиностроении, и т. д. Тот факт, что Россия до сих пор уверенно держится на рынке вооружений – это заслуга СССР, и отнюдь не его «нефтедолларов», а его умов. Вся военная продукция, которая сохраняет конкурентоспособность на рынке вооружений, была разработана в период до 1990 года.
Итак, чтобы подойти к созданию нового поколения вооружений и прежде всего высокоточного оружия, необходимо развернуть современные наукоемкие технологии, особенно в области радиоэлектроники, оптоэлектроники, компьютерной техники, информационных и телекоммуникационных систем, создания новых конструкционных материалов. Иными словами, на повестку дня встала задача создания новой национальной технологической базы.
Я входил в состав Совета по научно-технической политике при Президенте Российской Федерации. Совет был достаточно представительным. В него входили президент РАН, президенты Академии сельскохозяйственных наук, Академии медицинских наук, Академии архитектуры и градостроительства, ряд крупнейших ученых, работающих в области фундаментальных и прикладных исследований. Возглавлял Совет президент РФ Б. Н. Ельцин, а заместителями его были премьер-министр В. С. Черномырдин и президент РАН Ю. С. Осипов. Ученым секретарем Совета был член-корреспондент РАН Н. Г. Малышев. Кроме Ельцина и Черномырдина в составе Совета больше никого не было из представителей государственных структур. На первом заседании Совета Борис Николаевич, обращаясь к нам, высказал пожелание, чтобы предметом рассмотрения на Совете стали насущные вопросы экономики России, состояние науки и техники, образования и здравоохранения, положение в социальной сфере, и предложил высказаться в течение трех минут каждому члену Совета, чтобы обозначить наиболее ключевые проблемы, которые по мнению каждого выступающего, стоят перед страной. Академики, лауреаты Нобелевской премии А. М. Прохоров и Н. Г. Басов, академики Н. А. Анфимов и я, не сговариваясь, высказались о том, что страна практически перестала развивать высокие технологии. Нас поддержали президенты Сельскохозяйственной и Медицинской академий наук в части биотехнологий, генной инженерии и фармакологии. Академики Е. П. Велихов и В. М. Пашин высказали предложения об использовании в гражданском секторе экономики технологий по созданию вооружений – так называемые двойные технологии. В результате было принято решение создать две президентские программы: программу по высоким технологиям и программу разработки ряда проектов на базе двойных технологий.
Подготовку первой программы поручили мне, а второй – академику Е. П. Велихову. Это произошло осенью 1995 года. Я предложил назвать технологическую программу «Национальная технологическая база». Это название оказалось удачным и закрепилось за ней в дальнейшем. К созданию программы было привлечено более трехсот ведущих ученых и специалистов страны, в том числе двадцать пять действительных членов и членов-корреспондентов Российской академии наук. Было выбрано пятнадцать направлений. При их выборе принимались в расчет два главных момента.