355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Эдмунд Цихош » Сверхзвуковые самолеты » Текст книги (страница 3)
Сверхзвуковые самолеты
  • Текст добавлен: 21 сентября 2016, 15:18

Текст книги "Сверхзвуковые самолеты"


Автор книги: Эдмунд Цихош



сообщить о нарушении

Текущая страница: 3 (всего у книги 42 страниц)

Звуковой барьер

Аэродинамическое сопротивление самолета в области дозвуковых скоростей полета (М ‹ 0,7-0,8) примерно пропорционально квадрату скорости 1*

[Закрыть]
. Зато, когда скорость самолета приближается к скорости звука, сопротивление становится пропорциональным уже не квадрату скорости, а скорости в более высокой степени, например в третьей или даже в пятой. Из практических соображений в аэродинамике условно принято, что во всем диапазоне скоростей сопротивление пропорционально квадрату скорости, действительное же влияние скорости в околозвуковом диапазоне (0,8 ‹ М ‹ 1,4) и при сверхзвуковых скоростях учитывается путем соответствующего изменения безразмерного коэффициента сопротивления Сх в функции числа Маха. Полное аэродинамическое сопротивление самолета в полете с дозвуковыми скоростями состоит из сопротивления трения, сопротивления формы, а также из индуктивного и интерференционного сопротивлений.

1* При полете на постоянной высоте.– Прим. ред.


Таблица 3. Данные экспериментальных самолетов


Рис. 1.10. Скачки уплотнения при сверхзвуковом обтекании модели самолета.

Сопротивление трения возникает в результате непосредственного контакта потока воздуха с обтекаемой поверхностью самолета (ввиду этого оно называется также поверхностным сопротивлением) и связано с торможением частиц воздуха в пограничном слое. Сопротивление формы зависит от характера обтекания частей планера и существенно возрастает при возникновении явления отрыва потока воздуха от поверхности, особенно при больших углах атаки.

Сумма сопротивлений трения и формы называется профильным сопротивлением (поскольку ее значение характеризует любой аэродинамический профиль) и определяется коэффициентом Схр . Возникновение индуктивного сопротивления Cxi вызвано завихрениями потока на концах крыла вследствие тенденции к выравниванию давлений на верхних и нижних поверхностях и изменениями вектора подъемной силы. Причиной же появления интерференционного сопротивления является взаимное нарушение условий обтекания соседних частей планера, особенно влияние фюзеляжа на условия обтекания крыла.

Сопротивление трения составляет около 70% общего сопротивления дозвукового самолета, поэтому его снижению всегда уделялось большое внимание. Однако это положение принципиально изменилось для скоростей полета выше критического числа Маха Мкр , при котором на каком-либо участке самолета местная скорость обтекания достигает значения местной скорости звука. При сверхкритических скоростях полета имеет место стремительный рост аэродинамического сопротивления, главным слагаемым которого становится новый вид сопротивления Схволн , называемый волновым.

Механизм появления волнового сопротивления заключается в следующем. Во время обтекания аэродинамического профиля с выпуклыми поверхностями происходит местное сжатие внешнего потока до слоя максимальной плотности, а затем его расширение. При малых числах Маха набегающего потока в сжимаемой струе скорость возрастает, а давление снижается. Максимальной скорости поток достигает в сечении наименьшей площади, где давление минимально. По мере расширения потока скорость падает, а давление растет. Чем больше скорость потока, тем больше местная скорость на профиле. В итоге если общая скорость обтекания (скорость самолета) достаточно велика, то местная скорость на профиле в месте максимального разрежения достигает местной скорости звука. Такое явление возникает при скорости, соответствующей Мкр . В этом случае в расширяющейся струе скорость уже не уменьшается, а продолжает расти, так что обтекание становится сверхзвуковым. Однако, пока набегающий поток является дозвуковым, область сверхзвукового обтекающего потока не может быть неограниченной, и сверхзвуковой обтекающий поток переходит в дозвуковой.

Увеличение скорости в сверхзвуковой части обтекающего потока приводит к тому, что статическое давление в струе падает, уменьшаясь в конечном счете ниже значения, соответствующего наименьшему сечению. В то же время за профилем преобладает более высокое давление, равное давлению окружающей среды, а поток имеет дозвуковую скорость, равную скорости набегающего потока. Значит, частицы воздуха в струе, обтекающей заднюю часть профиля, перед подходом к его задней кромке должны двигаться с замедлением, а давление должно иметь значение, соответствующее существующим там условиям. Плавное торможение сверхзвукового потока невозможно, поэтому изменение значений скорости и давления происходит резко. Торможение и сжатие движущегося потока воздуха происходит в некоторой плоскости, перпендикулярной поверхности профиля. Эта плоскость образует фронт плоской волны уплотненного воздуха, которая называется ударной волной или прямым скачком уплотнения. На прямом скачке давление резко возрастает, а скорость уменьшается до дозвукового значения. Поскольку за скачком поток уже дозвуковой, то его дальнейшему расширению сопутствуют уменьшение скорости и увеличение давления.


Рис. 1.11. Зависимости коэффициента лобового сопротивления Сх

a – от числа Маха (показано также влияние С х на максимальную скорость полета с данной двигательной установкой);

б – от вида скачков уплотнения; 1 -самолет сверхзвуковой конструкции; 2-самолет дозвуковой конструкции.

Таким образом, наличие сверхзвуковой области обтекания приводит к тому, что в соответствующей части профиля давление оказывается меньше, чем на других его частях (особенно передней), где обтекание остается дозвуковым. Чем меньше давление в сверхзвуковой области, тем больше сила, увлекающая профиль назад, а следовательно, тем больше его волновое сопротивление. С дальнейшим увеличением скорости самолета область сверхзвуковых скоростей на профиле становится более обширной, интенсивность скачка уплотнения увеличивается, возрастают его размеры и происходит дальнейший рост волнового сопротивления. Вскоре после возникновения скачка на верхней поверхности профиля он появляется также и на нижней поверхности, увеличивая и без того уже большое сопротивление. Есть еще одна причина возрастания сопротивления. За скачком вследствие резкого изменения скорости и давления происходит уплотнение и отрыв пограничного слоя воздуха, и возникающая вследствие этого турбулентность увеличивает сопротивление формы. Указанный быстрый рост аэродинамического сопротивления, образующего препятствие в виде своего рода «стенки» уплотненного воздуха, уже в 1936 г. был назван звуковым барьером.

Когда набегающий поток воздуха является сверхзвуковым, скачок уплотнения возникает перед передней кромкой крыла. Форма этого скачка зависит от формы профиля. Если профиль имеет закругленную переднюю кромку, то перед ним возникает криволинейный прямой скачок уплотнения максимальной интенсивности, которому соответствует наибольшее волновое сопротивление. Наименьшее волновое сопротивление создает профиль с острой передней кромкой, на которой возникают косые скачки уплотнения. Их характеризует меньшее изменение параметров течения, а это значит, что при косых скачках уплотнения волновое сопротивление меньше.

На первой стадии развития сверхзвуковой авиации был достаточно хорошо изучен механизм возникновения волнового сопротивления. Понимание происходящих явлений позволило разработать множество средств, а также подобрать соответствующую форму различных частей планера в зависимости от скорости полета. Этим проблемам посвящены последующие разделы книги.

Звуковой удар

В первый период эксплуатации сверхзвуковых самолетов значительное внимание привлекала проблема так называемого звукового удара-явления, необычного для предыдущего развития авиации. Выяснение физического смысла, широкая распространенность явления, а позднее и введение ограничений в полетах военных самолетов над крупными населенными пунктами привели к тому, что в дальнейшем к этому явлению привыкли. Лишь в 70-х годах – после ввода в эксплуатацию сверхзвуковых пассажирских самолетов – оно снова приобрело актуальность в связи с требованиями ограничения шума, которые были выдвинуты вследствие повышения внимания к охране среды обитания человека.

Правда, звуковой удар кратковременен, но в некоторых случаях он может быть и продолжительным, а его неблагоприятное воздействие связано с большой интенсивностью и внезапностью возникновения звукового удара. Явление это поразительно похоже на артиллерийский залп, и ясно, что оно вредно воздействует на органы слуха и при соответствующей интенсивности может даже быть причиной их повреждения. Кроме того, звуковой удар может вызывать также изменение частоты пульса, нарушает душевное равновесие человека, влияет на самочувствие водителей транспорта и т.п. Интенсивные звуковые удары могут возбудить панику среди больших стад животных, растрескивание и осыпание штукатурки стен и даже разрушение стен и кровли зданий. Среди этих аргументов встречаются также утверждения о возможности нарушения биологического равновесия среды, загрязнения атмосферы и т.п. Многие из них сходны с аргументами противников первых транспортных средств с паровым двигателем и обусловлены либо консерватизмом части людей, либо соображениями торговой конкуренции. Тем не менее стало необходимым проведение специальных исследований вредных последствий звукового удара для определения допустимых уровней шума, а особенно допустимой нижней границы высоты полета сверхзвуковых самолетов над заселенными территориями. Безусловно, само по себе изучение явления не разрешает еще экологических проблем звукового удара, а дает лишь ориентиры того, как можно избежать его негативных последствий. Итак, в чем заключается явление звукового удара?

Выше указывалось, что во время полета самолета со скоростью звука перед ним возникает ударная волна, в которой скорость потока резко снижается, а давление (и, следовательно, плотность и температура) возрастает. Таким образом, происходит высвобождение значительного количества энергии в окружающую самолет среду, что приводит к интенсивным колебаниям частиц воздуха, проявляющимся в виде громового звука, подобного раскату пушечного залпа. В период первых полетов с кратковременным превышением скорости звука (при пикировании, поскольку раньше всего скорость звука была достигнута на этом режиме) звуковой удар воспринимался наблюдателем на земле два раза. Первый хлопок происходит в момент превышения самолетом скорости звука, а второй-в момент обратного перехода через нее. Промежуток времени, разделяющий эти два удара, определяется продолжительностью полета со сверхзвуковой скоростью; с учетом неоптимальных аэродинамических форм самолета того времени с ростом плотности воздуха происходило быстрое торможение самолета. Как видно из рис. 1.12, при пикировании самолета с относительно небольшой высоты оба удара могут быть услышаны одновременно. Звуковая волна перемещается (очевидно, со скоростью звука) в направлении, перпендикулярном ее плоскости, поэтому интенсивность удара в рассматриваемом случае бывает тем больше, чем круче пикирование и чем меньше расстояние от самолета до наблюдателя.


Рис. 1.12. Возникновение первого и второго звуковых ударов.


Рис. 1.13. Изменение давления в звуковой волне N в вертикальной плоскости под самолетом (а) и зона слышимости звукового удара на земле во время полета англо-французского пассажирского самолета «Конкорд» со сверхзвуковой скоростью (б).

При полете со сверхзвуковой скоростью на поверхностях планера создается сложная система скачков уплотнения и областей низкого давления. Наиболее интенсивные скачки создают носовая часть самолета, которая в полете первой встречает частицы невозмущенного потока воздуха, и элементы хвостовой части, где практически заканчиваются возмущения, вносимые самолетом в окружающую среду. Эти два скачка уплотнения называются соответственно головным и хвостовым. Промежуточные возмущения либо догоняют головной скачок, либо из-за меньшей скорости настигаются хвостовым скачком. Таким образом, уже на небольшом расстоянии от самолета система скачков уплотнения превращается в двухскачковую систему. За головным скачком давление воздуха скачкообразно возрастает выше атмосферного на значение Ар, а затем плавно уменьшается ниже атмосферного на то же самое значение. В хвостовом скачке происходит скачкообразный рост давления до атмосферного значения.

Описанная плоская модель возникновения системы скачков уплотнения в действительности является пространственной системой, которую можно привести к двум конусам Маха. Таким образом, при горизонтальном полете с постоянной сверхзвуковой скоростью звуковой удар слышен одновременно в различных точках поверхности Земли (этот вид звукового удара называется сверхзвуковым; в зависимости от длины самолета и высоты полета промежуток времени, разделяющий обе волны, может быть так мал, что хлопки сливаются в один отзвук). Геометрическим местом этих точек является гипербола, образуемая пересечением конуса Маха с поверхностью Земли. Поскольку самолет движется с определенной скоростью, вслед за ним распространяются ударные волны, которые в виде громовых раскатов слышатся на определенной территории. Практически это означает, что звуковой удар сопровождает сверхзвуковые самолеты на протяжении всей трассы полета, начиная с момента достижения скорости звука вплоть до момента обратного перехода через скорость звука при торможении перед посадкой.

Размеры зоны слышимости звукового удара (ширина «коридора», над которым самолет пролетает со сверхзвуковой скоростью) и его интенсивность зависят от многих параметров. С увеличением массы самолета и его скорости, а также с уменьшением высоты полета интенсивность звукового удара возрастает, а зона слышимости уменьшается. Так как до сих пор не разработано активных средств, снижающих интенсивность звукового удара, пока единственно возможными средствами являются пассивные. Так, для конкретного типа самолета допустимый уровень акустического давления определяется путем установления минимально допустимой высоты полета над населенными территориями.

Летные исследования самолета «Конкорд» показали, что при полете на высоте 18000 м с М = 2,2 угол конуса Маха составляет около 30°, акустическое давление Ар х 0,1 кПа, а зона слышимости звукового удара имеет ширину ~ 100 км. Установлено также, что на расстоянии около 200 км от аэродрома самолет должен уже лететь над малонаселенной территорией. Действительное влияние звукового удара, производимого эксплуатируемыми в настоящее время пассажирскими самолетами, до конца еще не изучено. Однако установлено, что водные животные и рыбы не подвергаются его отрицательным последствиям, а дикие и домашние животные на открытой местности реагируют на него, как на грозовой гром средней интенсивности. Не обнаружено также отрицательных воздействий полетов сверхзвуковых самолетов над горами, скалами, береговыми кручами и т.п. Итак, результаты проведенных до настоящего времени исследований говорят о том, что сейчас нет необходимости во введении каких-либо новых жестких ограничений для трасс пассажирских сверхзвуковых самолетов.

Тепловой барьер

Исследования, проведенные на рубеже 1940-1950-х годов, позволили разработать ряд аэродинамических и технологических решений, обеспечивающих безопасное преодоление звукового барьера даже серийными самолетами. Тогда казалось, что покорение звукового барьера создает неограниченные возможности дальнейшего увеличения скорости полета. Буквально за несколько лет было облетано около 30 типов сверхзвуковых самолетов, из которых значительное число было запущено в серийное производство.

Многообразие использованных решений привело к тому, что многие проблемы, связанные с полетами на больших сверхзвуковых скоростях, были всесторонне изучены и решены. Однако встретились новые проблемы, значительно более сложные, нежели звуковой барьер. Они вызваны нагревом конструкции летательного аппарата при полете с большой скоростью в плотных слоях атмосферы. Это новое препятствие в свое время назвали тепловым барьером. В отличие от звукового новый барьер нельзя охарактеризовать постоянной, подобной скорости звука, поскольку он зависит как от параметров полета (скорости и высоты) и конструкции планера (конструктивных решений и использованных материалов), так и от оборудования самолета (системы кондиционирования, охлаждения и т.п.). Таким образом, в понятие «тепловой барьер» входит не только проблема опасного нагрева конструкции, но также такие вопросы, как теплообмен, прочностные свойства материалов, принципы конструирования, кондиционирование воздуха и т.п.

Нагрев самолета в полете происходит главным образом по двум причинам: от аэродинамического торможения воздушного потока и от тепловыделения двигательной установки. Оба эти явления составляют процесс взаимодействия между средой (воздухом, выхлопными газами) и обтекаемым твердым телом (самолетом, двигателем). Второе явление типично для всех самолетов, и связано оно с повышением температуры элементов конструкции двигателя, воспринимающих тепло от воздуха, сжатого в компрессоре, а также от продуктов сгорания в камере и выхлопной трубе. При полете с большими скоростями внутренний нагрев самолета происходит также и от воздуха, тормозящегося в воздушном канале перед компрессором. При полете на малых скоростях воздух, проходящий через двигатель, имеет относительно низкую температуру, вследствие чего опасный нагрев элементов конструкции планера не происходит. При больших скоростях полета ограничение нагрева конструкции планера от горячих элементов двигателя обеспечивается посредством дополнительного охлаждения воздухом низкой температуры. Обычно используется воздух, отводимый от воздухозаборника с помощью направляющей, отделяющей пограничный слой, а также воздух, захватываемый из атмосферы с помощью дополнительных заборников, размещенных на поверхности гондолы двигателя. В двух– контурных двигателях для охлаждения используется также воздух внешнего (холодного) контура.

Таким образом, уровень теплового барьера для сверхзвуковых самолетов определяется внешним аэродинамическим нагревом. Интенсивность нагрева поверхности, обтекаемой потоком воздуха, зависит от скорости полета. При малых скоростях этот нагрев так незначителен, что повышение температуры может не приниматься во внимание. При большой скорости воздушный поток обладает высокой кинетической энергией, в связи с чем повышение температуры может быть значительным. Касается это равным образом и температуры внутри самолета, поскольку высокоскоростной поток, заторможенный в воздухозаборнике и сжатый в компрессоре двигателя, приобретает настолько высокую температуру, что оказывается не в состоянии отводить тепло от горячих частей двигателя.

Рост температуры обшивки самолета в результате аэродинамического нагрева вызывается вязкостью воздуха, обтекающего самолет, а также его сжатием на лобовых поверхностях. Вследствие потери скорости частицами воздуха в пограничном слое в результате вязкостного трения происходит повышение температуры всей обтекаемой поверхности самолета. В результате сжатия воздуха температура растет, правда, лишь локально (этому подвержены главным образом носовая часть фюзеляжа, лобовое стекло кабины экипажа, а особенно передние кромки крыла и оперения), но зато чаще достигает значений, небезопасных для конструкции. В этом случае в некоторых местах происходит почти прямое соударение потока воздуха с поверхностью и полное динамическое торможение. В соответствии с принципом сохранения энергии вся кинетическая энергия потока при этом преобразуется в тепловую и в энергию давления. Соответствующее повышение температуры прямо пропорционально квадрату скорости потока до торможения (или, без учета ветра – квадрату скорости самолета) и обратно пропорционально высоте полета.

Теоретически, если обтекание имеет установившийся характер, погода безветренна и безоблачна и не происходит переноса тепла посредством излучения, то тепло не проникает внутрь конструкции, а температура обшивки близка к так называемой температуре адиабатического торможения. Зависимость ее от числа Маха (скорости и высоты полета) приведена в табл. 4.

В действительных условиях повышение температуры обшивки самолета от аэродинамического нагрева, т. е. разница между температурой торможения и температурой окружения, получается несколько меньшей ввиду теплообмена со средой (посредством излучения), соседними элементами конструкции и т. п. Кроме того, полное торможение потока происходит лишь в так называемых критических точках, расположенных на выступающих частях самолета, а приток тепла к обшивке зависит также от характера пограничного слоя воздуха (он более интенсивен для турбулентного пограничного слоя). Значительное снижение температуры происходит также при полетах сквозь облака, особенно когда они содержат переохлажденные капли воды и кристаллики льда. Для таких условий полета принимается, что снижение температуры обшивки в критической точке по сравнению с теоретической температурой торможения может достичь даже 20-40%.


Таблица 4. Зависимость температуры обшивки от числа Маха

Тем не менее общий нагрев самолета в полете со сверхзвуковыми скоростями (особенно на малой высоте) иногда так высок, что повышение температуры отдельных элементов планера и оборудования приводит либо к их разрушению, либо, как минимум, к необходимости изменения режима полета. Например, при исследованиях самолета ХВ-70А в полетах на высотах более 21 ООО м со скоростью М = 3 температура входных кромок воздухозаборника и передних кромок крыла составляла 580-605 К, а остальной части обшивки 470-500 К.Последствия повышения температуры элементов конструкции самолета до таких больших значений можно оценить в полной мере, если учесть тот факт, что уже при температурах около 370 К размягчается органическое стекло, повсеместно употребляемое для остекления кабин, кипит топливо, а обычный клей теряет прочность. При 400 К значительно снижается прочность дюралюминия, при 500 К происходит химическое разложение рабочей жидкости в гидросистеме и разрушение уплотнений, при 800 К теряют необходимые механические свойства титановые сплавы, при температуре выше 900 К плавятся алюминий и магний, а сталь размягчается. Повышение температуры приводит также к разрушению покрытий, из которых анодирование и хромирование могут использоваться до 570 К, никелирование-до 650 К, а серебрение-до 720 К.

После появления этого нового препятствия в увеличении скорости полета начались исследования с целью исключить либо смягчить его последствия. Способы защиты самолета от эффектов аэродинамического нагрева определяются факторами, препятствующими росту температуры. Кроме высоты полета и атмосферных условий, существенное влияние на степень нагрева самолета оказывают:

– коэффициент теплопроводности материала обшивки;

– величина поверхности (особенно лобовой) самолета; -время полета.

Отсюда следует, что простейшими способами уменьшения нагрева конструкции являются увеличение высоты полета и ограничение до минимума его продолжительности. Эти способы использовались в первых сверхзвуковых самолетах (особенно в экспериментальных). Благодаря довольно высокой теплопроводности и теплоемкости материалов, употребляемых для изготовления теплонапряженных элементов конструкции самолета, от момента достижения самолетом высокой скорости до момента разогрева отдельных элементов конструкции до расчетной температуры критической точки проходит обычно достаточно большое время. В полетах, продолжающихся несколько минут (даже на небольших высотах), разрушающие температуры не достигаются. Полет на больших высотах происходит в условиях низкой температуры (около 250 К) и малой плотности воздуха. Вследствие этого количество тепла, отдаваемого потоком поверхностям самолета, невелико, а теплообмен протекает дольше, что значительно смягчает остроту проблемы. Аналогичный результат дает ограничение скорости самолета на малых высотах. Например, во время полета над землей со скоростью 1600 км/ч прочность дюралюминия снижается только на 2%, а увеличение скорости до 2400 км/ч приводит к снижению его прочности на величину до 75% в сравнении с первоначальным значением.


Рис. 1.14. Распределение температуры в воздушном канале и в двигателе самолета «Конкорд» при полете с М = 2,2 (а) и температуры обшивки самолета ХВ-70А при полете с постоянной скоростью 3200 км/ч (б).

Однако необходимость обеспечения безопасных условий эксплуатации во всем диапазоне используемых скоростей и высот полета вынуждает конструкторов искать соответствующие технические средства. Поскольку нагрев элементов конструкции самолета вызывает снижение механических свойств материалов, возникновение термических напряжений конструкции, а также ухудшение условий работы экипажа и оборудования, такие технические средства, используемые в существующей практике, можно разделить на три группы. Они соответственно включают применение 1) теплостойких материалов, 2) конструктивных решений, обеспечивающих необходимую теплоизоляцию и допустимую деформацию деталей, а также 3) систем охлаждения кабины экипажа и отсеков оборудования.

В самолетах с максимальной скоростью М = 2,0-1-2,2 широко применяются сплавы алюминия (дюрали), которые характеризуются относительно высокой прочностью, малой плотностью и сохранением прочностных свойств при небольшом повышении температуры. Дюрали обычно дополняются стальными либо титановыми сплавами, из которых выполняются части планера, подвергающиеся наибольшим механическим или тепловым нагрузкам. Сплавы титана нашли применение уже в первой половине 50-х годов сначала в очень небольших масштабах (сейчас детали из них могут составлять до 30% массы планера). В экспериментальных самолетах с М ~ 3 становится необходимым применение жаропрочных стальных сплавов как основного конструкционного материала. Такие стали сохраняют хорошие механические свойства при высоких температурах, характерных для полетов с гиперзвуковыми скоростями, но их недостатками являются высокая стоимость и большая плотность. Эти недостатки в определенном смысле ограничивают развитие высокоскоростных самолетов, поэтому ведутся исследования и других материалов.

В 70-х годах осуществлены первые опыты применения в конструкции самолетов бериллия, а также композиционных материалов на базе волокон бора или углерода. Эти материалы пока имеют высокую стоимость, но вместе с тем для них характерны малая плотность, высокие прочность и жесткость, а также значительная термостойкость. Примеры конкретных применений этих материалов при постройке планера приведены в описаниях отдельных самолетов.

Другим фактором, существенно влияющим на работоспособность нагреваемой конструкции самолета, является эффект так называемых термических напряжений. Возникают они в результате температурных перепадов между внешними и внутренними поверхностями элементов, а особенно между обшивкой и внутренними элементами конструкции самолета. Поверхностный нагрев планера приводит к деформации его элементов. Например, может произойти такое коробление обшивки крыла, которое приведет к изменению аэродинамических характеристик. Поэтому во многих самолетах используется паяная (иногда клееная) многослойная обшивка, которая отличается высокой жесткостью и хорошими изоляционными свойствами, либо применяются элементы внутренней конструкции с соответствующими компенсаторами (например, в самолете F-105 стенки лонжерона изготовляются из гофрированного листа). Известны также опыты охлаждения крыла с помощью топлива (например, у самолета Х-15), протекающего под обшивкой на пути от бака до форсунок камеры сгорания. Однако при высоких температурах топливо обычно подвергается коксованию, поэтому такие опыты можно считать неудачными.

Сейчас исследуются различные методы, среди которых нанесение изоляционного слоя из тугоплавких материалов путем плазменного напыления. Другие считавшиеся перспективными методы не нашли применения. Среди прочего предлагалось использовать «защитный слой», создаваемый путем вдува газа на обшивку, охлаждение «выпотеванием» посредством подачи на поверхность сквозь пористую обшивку жидкости с высокой температурой испарения, а также охлаждение, создаваемое плавлением и уносом части обшивки (абляционные материалы).

Довольно специфичной и вместе с тем очень важной задачей является поддержание соответствующей температуры в кабине экипажа и в отсеках оборудования (особенно электронного), а также температуры топливных и гидравлических систем. В настоящее время эта проблема решается путем использования высокопроизводительных систем кондиционирования, охлаждения и рефрижерации 1*

[Закрыть]
, эффективной теплоизоляции, применения рабочих жидкостей гидросистем с высокой температурой испарения и т.д.

Проблемы, связанные с тепловым барьером, должны решаться комплексно. Любой прогресс в этой области отодвигает барьер для данного типа самолетов в сторону большей скорости полета, не исключая его как такового. Однако стремление к еще большим скоростям приводит к созданию еще более сложных конструкций и оборудования, требующих применения более качественных материалов. Это заметным образом отражается на массе, закупочной стоимости и на затратах по эксплуатации и обслуживанию самолета.

Из приведенных в табл. 2 данных самолетов-истребителей видно, что в большинстве случаев рациональной считалась максимальная скорость 2200-2600 км/ч. Лишь в некоторых случаях считают, что скорость самолета должна превосходить М ~ 3. К самолетам, способным развивать такие скорости, относятся экспериментальные машины Х-2, ХВ-70А и Т. 188, разведывательный SR-71, а также самолет Е-266.

1* Рефрижерацией называется принудительный перенос тепла от холодного источника к среде с высокой температурой при искусственном противодействии естественному направлению движения тепла (от теплого тела к холодному, когда имеет место процесс охлаждения). Простейшим рефрижератором является бытовой холодильник.


    Ваша оценка произведения:

Популярные книги за неделю