355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Эдмунд Цихош » Сверхзвуковые самолеты » Текст книги (страница 14)
Сверхзвуковые самолеты
  • Текст добавлен: 21 сентября 2016, 15:18

Текст книги "Сверхзвуковые самолеты"


Автор книги: Эдмунд Цихош



сообщить о нарушении

Текущая страница: 14 (всего у книги 42 страниц)

В чем преимущество готических крыльев? Теоретически можно считать, что готическое крыло состоит из двух крыльев (поверхностей). При малых скоростях полета работает основная треугольная поверхность с закругленными концами. Дополнительная передняя часть (наплыв) очень малого удлинения и большой стреловидности в таких условиях практически не создает подъемной силы. Только при больших сверхзвуковых скоростях ее эффективность резко возрастает, так что возникающая на ней подъемная сила компенсирует смещение назад центра давления основной треугольной части крыла. Взаимодействие этих двух частей крыла во время полета позволяет существенно уменьшить перемещение центра давления при переходе от дозвуковой к сверхзвуковой скорости полета (рис. 1.62). Поэтому самолет с готическим крылом имеет более высокие аэродинамические характеристики по сравнению с самолетом, имеющим треугольное крыло, которое более чувствительно к перемещению центра давления и поэтому требует применения конструктивных и аэродинамических решений, приводящих к росту массы самолета и усложнению его конструкции. Это полезное свойство готических крыльев может быть увеличено с помощью изгиба средней линии поперечных сечений. Благодаря такому профилированию крыла на нем возникают силы, которые компенсируют при неотклоненных элевонах продольный момент, возникающий в некотором диапазоне скорости полета. Крылья с искривленной срединной поверхностью и переменной стреловидностью передней кромки значительно увеличивают аэродинамическое качество самолета по сравнению с крыльями, применявшимися до сих пор. Деформированное таким образом готическое крыло обеспечивает самолету на крейсерской скорости характеристики сверхзвукового самолета, а при взлете и посадке-характеристики дозвукового самолета.


Рис. 1.63. Опытный самолет ВАС 221 фирмы «Бритиш эркрафт корпорейшн».

Например, в самолете «Конкорд» на сверхзвуковой скорости аэродинамическое качество равно 7,5-8, на дозвуковой 13-14, т.е. приблизительно такое же, как у современных дозвуковых самолетов. Во время посадки качество уменьшается до 4. Хорошие характеристики в дозвуковом диапазоне имеет Ту-144, у которого в передней части фюзеляжа расположена дополнительная убираемая несущая поверхность. С целью изучения свойств готических крыльев были построены опытные самолеты ВАС 221 (рис. 1.63) и «Аналог» 144.

Дополнительное уменьшение сопротивления достигнуто благодаря применению фюзеляжа с большим удлинением пере– ¦ дней части и скрытым фонарем кабины. Для управления самолетом необходима хорошая видимость (особенно при взлете и посадке), поэтому в созданных и проектируемых сверхзвуковых пассажирских самолетах предусмотрено отклонение вниз передней части фюзеляжа. Во время полета эта часть фюзеляжа поднята, что обеспечивает малое сопротивление, но ограничивает видимость через небольшие иллюминаторы. При опущенной передней части во время взлета (у «Конкорда» на угол 5°) и посадки (17,5°) обеспечивается хорошая видимость взлетной полосы. Как в советском, так и в англо-французском проекте большое внимание уделяется качеству внешней поверхности самолета, которая выполняется обтекаемой (без каких-либо выступающих частей и узлов) благодаря применению в конструкции панелей, изготовляемых методами химической и механической обработки из металлических плит большого размера. Во-первых, это привело к уменьшению сопротивления трения, а во– вторых, повысило стойкость в отношении температурных напряжений, возникающих от циклического неравномерного повышения температуры поверхности до 130°С и последующего охлаждения до температуры окружающей среды.

С аналогичной целью было проведено исследование различных вариантов размещения двигательной установки и формы гондол двигателей; при этом дополнительное сопротивление от интерференции гондолы и крыла может быть использовано как фактор, благоприятно влияющий на подъемную силу самолета. Известно, что одиночная гондола двигателя, установленная непосредственно под крылом или на пилоне, создает собственное большое сопротивление из-за значительного увеличения поверхности (особенно для гондол двигателей с форсажными камерами) и площади поперечного сечения и, кроме того, из-за вредного взаимного влияния гондолы и крыла.


Рис. 1.64. Расположение баков и последовательность перекачивания топлива в зависимости от режима полета самолета «Конкорд».

а-переход от дозвуковой к сверхзвуковой скорости; б-торможение; в-последняя стадия торможения и переход к дозвуковой скорости; г-перекачивание топлива из балансировочных баков.

В самолетах «Конкорд» и Ту-144 (серийный вариант) двигатели помещаются парами в двух плоских гондолах, сдвинутых к задней кромке крыла, благодаря чему достигнуто уменьшение сопротивления, повышающее качество самолета примерно на 10%. Этот эффект объясняется двумя факторами. Один из них состоит в том, что перемещение двигателей назад, за максимальную толщину профиля крыла, значительно улучшает характер распределения площади поперечного сечения вдоль оси самолета. При этом максимальная площадь поперечного сечения уменьшается настолько, что ее отношение к площади несущей поверхности составляет ~ 4% (у околозвуковых самолетов она равна примерно 10%). Второй фактор связан с выбором формы воздухозаборников; исходящие от них косые скачки должны соответствовать форме крыла в плане. Благодаря этому на крейсерском режиме нижняя поверхность крыла находится под действием скачков уплотнения, повышающих давление, что увеличивает подъемную силу самолета. Поэтому для получения необходимой подъемной силы нужен меньший угол атаки, в результате чего уменьшается лобовое сопротивление самолета и возрастает его качество.

Характерной чертой советского и англо-французского сверхзвуковых пассажирских самолетов является также использование топлива (масса которого составляет ~ 50% взлетной массы самолета) для охлаждения самолета и для перемещения его центра тяжести при переходе от дозвуковых к сверхзвуковым скоростям полета. Эту особенность можно проиллюстрировать на примере самолета «Конкорд» (рис. 1.64), в крыльях и фюзеляже которого размещено 17 топливных баков объемом 117285 л. Они разделены на три группы: балансировочные баки (4 в околофюзеляжной части крыла, имеющей максимальную стреловидность, и 1 в задней части фюзеляжа), резервные баки (4 в крыле) и основные баки (6 в крыле и 2 в нижней средней части фюзеляжа).

Разделение внутреннего пространства каждого крыла на семь отдельных топливных емкостей-кессонов требуется для обеспечения по возможности минимальных перемещений центра тяжести самолета в результате расходования топлива и для управления его положением в зависимости от условий полета. На взлете, подъеме и околозвуковом полете передние балансировочные баки заполнены целиком, а задний бак пуст. При переходе от дозвуковых к сверхзвуковым скоростям полета топливо из передних баков перекачивается в задний бак. В результате центр тяжести самолета перемещается назад, т. е. движется вслед за центром давления. При переходе от сверхзвуковых к дозвуковым скоростям полета топливо перекачивается в обратном направлении. В зависимости от времени полета (количества израсходованного топлива) из балансировочных баков топливо может перекачиваться в основные баки. Количество перекачиваемого топлива контролируется бортинженером.

10. Аварийно-спасательные средства сверхзвуковых самолетов

Аварийные ситуации в современной авиации возникают достаточно редко, прежде всего благодаря высокой надежности летательных аппаратов, хорошей подготовке экипажей и тщательной работе наземных технических служб. Несмотря на это, иногда происходят аварии самолетов, например, вследствие отказа силовой установки, нехватки топлива, возникновения пожара на самолете, неисправности системы управления, потери пилотом ориентации в пространстве, из-за исключительно неблагоприятных метеорологических условий и т.п. Кроме того, военные самолеты постоянно подвергаются опасности оказаться в аварийной ситуации в результате действий противника.

К наиболее неблагоприятным относятся быстротечные аварии, когда время, которым располагает экипаж для того, чтобы покинуть самолет или произвести вынужденную посадку, невелико. Поэтому спасательные средства экипажей военных самолетов должны обеспечивать безопасность не только в любой ситуации, но и в любой момент времени.

В первом двадцатилетии развития авиации экипаж практически не располагал каким-либо спасательным средством, позволяющим покидать самолет в воздухе. Во втором двадцатилетии единственным средством такого рода был парашют. В случае аварии летчик покидал самолет таким образом: отстегивал ремни, удерживающие его в кресле, открывал фонарь, выходил из кабины и прыгал с крыла. После непродолжительного свободного падения летчик открывал парашют и приземлялся. С ростом скорости и высоты полета такой способ становился непригодным по многим причинам.

Во-первых, с увеличением скорости полета значительно возрастает сила аэродинамического сопротивления. Например, при скорости полета ~ 600 км/ч на тело летчика, высунувшегося только наполовину из кабины самолета, действует сила около 4,4 кН (450 кГ). Величина силы пропорциональна квадрату скорости, поэтому повышение скорости, например, до 1200 км/ч приводит к четырехкратному увеличению силы без учета дополнительного волнового сопротивления. В таких условиях выход из кабины самолета превышает физические возможности человека.

Вторым фактором, затрудняющим покидание самолета с парашютом, является большое различие между скоростью самолета и резко уменьшающейся скоростью парашютиста в результате торможения набегающим потоком. Поток подхватывает парашютиста и быстро уносит назад, что грозит столкновением с хвостовым оперением или другими частями самолета.

Третья опасность кроется в неблагоприятном действии воздушного потока большой скорости на незащищенные участки тела, вызывающем повреждение внешних и внутренних органов и т.п.

Другие опасности связаны с необходимостью покидать самолет на очень большой или очень малой высоте. В первом случае возникает неблагоприятное действие на человека очень низких атмосферного давления и температуры, вследствие чего возникает кислородное голодание и нарушается тепловое равновесие организма. На малой высоте, особенно при движении самолета по земле (или палубе корабля), не хватает промежутка времени и расстояния для раскрытия и наполнения купола парашюта, т. е. для уменьшения скорости падения до допустимой величины.

Практически установлено, что покидать с парашютом самолет, летящий со скоростью более 600 км/ч на высоте, меньшей 300 м, без специальных средств небезопасно или просто невозможно с учетом физических данных человека. По этой причине конструкторы разработали специальные технические средства, позволяющие покидать около– и сверхзвуковые самолеты в любых условиях и на любых этапах полета, т.е. во всем используемом диапазоне скоростей и высот.

Первым средством такого рода являлось выбрасываемое сиденье, позволяющее летчику покидать самолет с помощью катапультирования. Первые применявшиеся катапультируемые сиденья обеспечивали возможность безопасно покидать самолет только при ограниченной скорости и высоте, поэтому для сверхзвуковых самолетов было создано более сложное оборудование. К нему относятся спасательные капсулы и отделяемые кабины, в которых можно покидать самолет, сохраняя безопасность в любых условиях полета. Они нашли применение исключительно в сверхзвуковых самолетах.

Катапультируемое сиденье

Катапультируемое сиденье по сравнению с обычным, неподвижно закрепленным в самолете снабжено направляющими и приводом, позволяющим выбрасывать сидящего человека (вместе с сиденьем) на определенную высоту над траекторией полета самолета. В первых устройствах такого рода движение вдоль направляющих происходило под действием сжатых газов, подаваемых в цилиндр (скрепленный с самолетом), которые, действуя на поршень (скрепленный с сиденьем), придавали сиденью и летчику определенную скорость относительно самолета.

После катапультирования сиденье с летчиком движется по траектории, форма которой зависит от скорости полета самолета в момент катапультирования, скорости катапультирования сиденья, а также катапультируемой массы (сиденье с летчиком) и ее аэродинамических характеристик. Параметры конструкции кресла и его привода должны обеспечивать после катапультирования скорость движения, достаточную для того, чтобы миновать заднюю часть самолета на безопасном расстоянии. Высота катапультирования уменьшается с увеличением скорости полета и возрастает с увеличением начальной скорости катапультирования. Скорость катапультирования зависит от величины хода поршня в цилиндре, характеристик катапульты и допустимого значения перегрузки, действующей на человека.

Ограниченные габариты кабины экипажа и, следовательно, небольшой допустимый ход поршня повлияли на то, что первые катапульты снабжались приводом (обычно это был пороховой заряд, реже баллон сжатого воздуха), который на коротком промежутке пути сообщал человеку перегрузку 18-20, т.е. максимально допустимую с физиологической точки зрения. С помощью сидений такого типа можно было безопасно покидать самолет, летящий со скоростью, не превышающей 900-1100 км/ч. Авария на самолете, летящем с большей скоростью, требовала от экипажа уменьшения ее до такой, при которой можно безопасно покидать кабину. Случаи, в которых это было невозможно из-за повреждения самолета, могли закончиться трагически.

В 1955 г. произошли две аварии, которые снова обратили внимание на проблему покидания самолета, летящего со сверхзвуковой скоростью. В обоих случаях катапультирование произошло во время крутого пикирующего полета с возрастающей скоростью, причиной которого явилась потеря управляемости, вызванная аэродинамической блокировкой руля высоты. В первом из них пилот X. Молланд катапультировался на высоте около 7,5 км из околозвукового самолета «Хантер» фирмы «Хоукер», летевшего со скоростью 1140-1230 км/ч (что соответствует М = 1,0-1,1). Было установлено, что пилот правой рукой нажал рычаг сброса фонаря, левой же схватился за лицевой щиток, приводя в движение механизм катапультирования. После открытия фонаря пилоту не удалось правой рукой схватиться за лицевой щиток, и потоком воздуха щиток был сдвинут назад. От удара о спинку кресла щиток сломался. Уже после покидания кабины воздушный поток сорвал с пилота перчатки, шлемофон и кислородную маску, а первый удар потока в лицо вызвал появление синяков под глазами.

Второй случай катапультирования при полете со сверхзвуковой скоростью произошел в значительно более трудных условиях на самолете F-100A, который пилотировал профессиональный летчик-испытатель Г. Смит. Во время разгона до максимальной скорости на высоте 11 300 м с включенной форсажной камерой самолет вошел в пикирование, из которого пилот не мог его вывести. В момент аварии самолет находился в крутом пикировании со скоростью полета 1300 км/ч ц скоростью падения 350 м/с.



Рис. 1.65. Несколько этапов катапультирования из самолета F-8A с помощью сиденья, имеющего телескопический выталкивающий механизм. На фотоснимке вверху справа видна штанга механизма, выступающая из кабины.

Смит отдавал себе отчет в том, что катапультирование на такой скорости небезопасно, однако он решил воспользоваться этой последней возможностью спасения. Закрыв щиток своего шлема, он уменьшил обороты двигателя и выпустил тормозные щитки. Растерявшись, Смит не поставил ноги на подножку кресла и не занял позиции, соответствующей катапультированию; открыв фонарь, он мгновенно был оглушен шумом воздушного потока. Не владея собой, левой рукой Смит продолжал держать ручку газа, а правой также безотчетно нажал рычаг катапультирования (это происходило на высоте около 2000 м). В следующее мгновение он потерял' сознание и пришел в себя только через несколько дней. Позднее было установлено, что в момент катапультирования скорость полета составляла около 1250 км/ч; таким образом, на пилота, покинувшего кабину, действовала тормозящая сила сопротивления воздуха, создавая отрицательную перегрузку около 40 и динамическое давление порядка 600 кПа. Воздушный поток сорвал с пилота ботинки, носки, шлем, кислородную маску и перчатки, а также кольцо и наручные часы, разорвал нос, губы и веки. Все тело имело сильные ушибы, а внутренние органы, особенно сердце и печень, повреждены. Желудок и легкие до такой степени были наполнены воздухом, что находившийся без сознания Смит плавал по поверхности моря до тех пор, пока его не выловил экипаж моторной лодки, оказавшийся случайным свидетелем всего происшествия.

Вследствие проведенных исследований конструкция катапультируемого кресла претерпела существенные изменения, благодаря которым сначала была повышена безопасность покидания самолета, летящего с большой скоростью, а затем-безопасность при взлете и посадке. К наиболее важным конструктивным усовершенствованиям относятся:

– совмещение в одном рычаге откидывания фонаря и катапультирования с одновременным автоматическим фиксированием ног и рук в необходимом положении. В креслах первоначальной конструкции катапультирование наступало после натягивания на лицо обеими руками матерчатого предохранителя, а после введения шлемов со щитками из органического стекла-нажатием рычага, расположенного в подлокотнике кресла или между бедрами. В новых катапультируемых креслах пилот выполняет только одно действие-подает команду исполнительному механизму, который притягивает ноги к креслу и фиксирует их, прижимает локти к туловищу, выбирает зазоры в ремнях, удерживающих пилота в кресле, фиксирует голову и сбрасывает фонарь (или открывает аварийный люк), а через 1-2 с приводит в действие катапульту;


Рис. 1.66. Катапультирование с помощью кресла с ракетным двигателем «Эскапак» II фирмы «Дуглас».

– применение автоматического выпуска стабилизирующего парашюта, отделения пилота от кресла (расстегивание ремней и отбрасывание кресла), раскрытие спасательного парашюта и регулирование запаздывания исполнительных механизмов, которые обеспечивают как можно более быстрое прохождение больших высот (без превышения предельного перепада давления, безопасного для организма) и как можно более быстрое наполнение купола парашюта во время падения с малых высот; этими действиями управляет таймерно-анероидный автомат, а быстрое наполнение парашюта на малой высоте осуществляется системой небольших пирозарядов, выбрасывающих парашют из оболочки и раскрывающих его купол;

– применение телескопических и многозарядных выталкивающих механизмов, удлиняющих время действия ускорения и соответствующий путь катапультируемого кресла, благодаря чему начальная скорость кресла ограничивается величиной 20-24 м/с, а высота его подъема увеличивается до 25-28 м при перегрузке 18-20 (рис. 1.65).

Выталкивающий механизм такого типа позволяет покинуть самолет, летящий с большой скоростью на малой высоте, однако его невозможно использовать во время аварии на взлете или посадке. Эта проблема была решена с помощью дополнительного ракетного двигателя, который удлиняет активный участок траектории полета катапультируемого кресла при перегрузках, допустимых для организма человека. Катапультирование в таком кресле можно разделить на два этапа. На первом происходит обычный процесс катапультирования, а на втором включается ракетный двигатель тягой 20-30 кН, который, действуя уже вне кабины самолета, за несколько десятых долей секунды поднимает кресло на высоту 60-120 м. Такое кресло с ракетным двигателем позволяет покинуть самолет, находящийся на взлетной полосе, и поэтому относится к классу 0-0 (скорость и высота равны нулю).

Кроме средств, позволяющих вынужденно покидать самолет, летящий со сверхзвуковой скоростью, большое внимание уделяется проблеме защиты пилота от действия динамического давления. Из многих рассмотренных решений практическое применение нашел упомянутый выше метод натягивания на лицо полотняной предохранительной маски. Высотные скафандры и специальные шлемы для экипажей самолетов, эксплуатируемых на больших высотах, на сегодняшний день решают проблему защиты тела и лица человека при катапультировании. Не нашли широкого применения другие способы защиты от воздействия потока, которые, в частности, использовали:

– выдвигаемый щиток, выполняющий роль генератора косых скачков уплотнения, образующих конус Маха, внутри которого скорость потока и динамическое давление на 30% меньше, чем снаружи;

– быстрый поворот кресла после катапультирования в горизонтальное положение, с тем чтобы сиденье кресла воспринимало действие динамического давления;

– конструктивно связанную с креслом отъемную часть фонаря кабины, которая во время катапультирования поворачивается таким образом, чтобы закрыть от набегающего потока все кресло вместе с пилотом.

Эти способы могут оказаться эффективными в частных случаях, например при автоматическом катапультировании летчика, находящегося без сознания, из самолета, погружающегося в воду.


    Ваша оценка произведения:

Популярные книги за неделю