355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Джозеф Киршвинк » Новая история происхождения жизни на Земле » Текст книги (страница 27)
Новая история происхождения жизни на Земле
  • Текст добавлен: 16 марта 2017, 09:00

Текст книги "Новая история происхождения жизни на Земле"


Автор книги: Джозеф Киршвинк


Соавторы: Питер Уорд

Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 27 (всего у книги 31 страниц)

Позднепалеоценовый термический максимум

К началу кайнозоя Земля пережила по меньшей мере девять известных на сегодня массовых вымираний: первое приходится на кислородную катастрофу и периоды «Земли-снежка», вызванные этой катастрофой; второе – более 1 млрд лет назад – произошло в криогении; затем в хронологическом порядке следуют эдиакарское, позднекембрийское, ордовикское, девонское, пермское, триасово-юрское, мел-палеогеновое массовые вымирания. Удивительно, что причины этих событий были самыми различными: внезапное появление кислорода, сильное уменьшение его концентрации, появление хищников, помноженное на недостаток кислорода и выбросы сероводорода, и падение астероида. Однако в конце палеоцена, всего лишь через 9 млн лет после гибели динозавров, возникла новая опасность: увеличение концентрации метана в атмосфере, что вызвало одно из самых значительных резких изменений климата в геологической истории. Это событие получило название «позднепалеоценовый термический максимум».

Впервые данное явление открыли океанографы[222]222
  J. P. Kennett and L. D. Stott, «Abrupt Deep-Sea Warming, Paleoceanographic Changes and Benthic Extinctions at the End of the Paleocene,» Nature 353 (1991): 225–29.


[Закрыть]
, которые работали совсем над другой проблемой и не собирались изучать температурные аномалии палеоцена. Они пытались собрать новые сведения о мел-палеогеновом вымирании, проделывая для этого скважины в земной коре в глубоководных областях океана в рамках американской Программы глубоководного бурения. Но чтобы достичь ярусов мелового периода, сначала нужно пройти отложения эоцена и палеоцена. Пока сверлили скважину, чтобы добраться до конечной цели, попутно извлекали образцы пород верхних ярусов.

Когда образцы более молодых пород наконец осмотрели и были исследованы изотопы кислорода и углерода в раковинах крошечных одноклеточных протист-фораминифер, выяснилось, что полученные данные о температурах, а также об изотопах углерода-12 и углерода-13 как будто бы ошибочны, поскольку породы, извлеченные из нижних слоев, показывали более высокую палеотемпературу, чем в верхних слоях. Во времена палеоцена, как и сегодня, даже в холодной Арктике вода была на глубине холоднее, чем у поверхности. Однако цифры говорили совершенно противоположное: теплые глубинные воды и холодные верхние. За относительно короткий промежуток времени глубоководные области океана стали аномально теплыми.

В отложениях на границе палеоцена и эоцена обнаружилось аномально большое количество вулканического пепла[223]223
  U. Rohl et al., «New Chronology for the Late Paleocene Thermal Maximum and Its Environmental Implications,» Geology 28, no. 10 (2000): 927–30; T. Westerhold et al., «New Chronology for the Late Paleocene Thermal Maximum and Its Environmental Implications,» Palaeogeography, Palaeoclimatology, Palaeoecology 257 (2008): 377–74.


[Закрыть]
. Как и пыль, относительно легкий вулканический пепел попадает на морское дно из атмосферы, однако появляется он в атмосфере в результате вулканической деятельности, а не из-за сильных ветров. Такое небывалое увеличение вулканического пепла в атмосфере и, соответственно, в отложениях могло произойти только благодаря резкому усилению вулканической деятельности, в данном случае около 58–56 млн лет назад. Дальнейшая проверка показала, что такое явление характерно для многих мест по всему земному шару, то есть это не аномалия какого-то одного месте на морском дне.

Поздний палеоцен характеризуется тем, что в тропиках температура была стабильно высокой, тогда как в арктических и антарктических широтах температурные показатели заметно выросли. Вообще, в палеоцене показатели температур в морях между экваториальными и полярными регионами отличались значительно – на 17 °C (сегодня эта разница еще больше – 22 °C). Однако к началу эоцена различие это уменьшилось до 6 °C. Высокие широты потеплели, и тепловой обмен между экваториальными и полярными широтами сильно замедлился, а вместе с этим уменьшилось число и сила ветров. Мир стал очень тихим и очень жарким, как это, впрочем, уже много раз происходило в истории. И так же, как раньше, произошло еще одно парниковое массовое вымирание.

Данные, полученные при исследовании изотопов углерода в отложениях на границе палеоцена и эоцена, также стали неожиданностью: они продемонстрировали непродолжительную отрицательную экскурсию, а такое возможно только при условии уменьшения объема растительности в биосфере, которое является признаком массового вымирания В том же регионе, где бурили скважины по Программе глубоководного бурения США, другие палеонтологи обнаружили свидетельства катастрофической гибели придонных организмов (исследования были сосредоточены в основном на фораминиферах – они являются типичными обитателями придонной экосистемы). Являлось ли быстрое вымирание видов, приспособленных к холодным условиям, следствием лишь внезапного потепления? Результаты всех исследований, описанных выше, были опубликованы в начале 1990-х, а вскоре после этого японский палеонтолог Кунио Кайхо выпустил еще одну публикацию, в которой сообщалось, что судьба придонной биоты была решена не повышением температуры на больших глубинах, а резким падением уровня кислорода в тех областях океана. Весьма логичное заявление, ведь теплая вода зачастую бедна кислородом и пищевыми ресурсами.

Итак, в глубинных областях морей возникло неожиданное потепление, снизилась концентрация кислорода в воде, у поверхности вода также потеплела – что послужило этому реальной причиной? Столкновение Земли с астероидом во времена мел-палеогенового вымирания привело к серьезным изменениям в верхних слоях океана, и из-за этого в них погиб почти весь планктон, но глубоководный мир остался почти не затронут, если не считать сокращения пищевых ресурсов, поступающих сверху. Потепление глубоководных областей могло произойти из-за быстрого нагрева значительной площади морского дна, но такое возможно только в случае возникновения совершенно нового типа подводного вулканизма. У дна океана действительно существуют течения с очень высокой температурой, но они находятся у относительно узких срединно-океанических хребтов, где происходит образование новой океанической коры. Даже быстрое тектоническое движение, вызванное повышенной вулканической активностью, может создать потепления такого масштаба. Более-менее корректное предположение заключается в том, что в целом потепление придонных слоев океана возникло в результате интенсивного испарения в тропических широтах – это привело к тому, что вода стала более соленой и плотной, и затем эти более соленые и плотные водные массы переместились вдоль морского дна, в том числе в холодные области высоких широт.

В океане времен палеоцена не действовал один обычный механизм перемещения холодных, насыщенных кислородом поверхностных слоев ко дну: глубоководная термохалинная циркуляция – основной способ перемешивания океанических вод – работала диаметрально противоположным современному потоку океанических течений образом. Первыми жертвами этого стали фораминиферы – крошечные глубоководные организмы, которым был жизненно необходим кислород. Погибли многие их виды, и произошло это относительно быстро – в течение примерно 4000 лет. Впрочем, чтобы считать это событие массовым вымиранием, необходимо убедиться, что оно затронуло не только океан, но и сухопутных животных. Исследования продолжились уже на суше.

Глобальные парниковые изменения, которые привели к гибели океанических организмов, происходили и на суше[224]224
  P. L. Koch et al., «Correlation Between Isotope Records in Marine and Continental Carbon Reservoirs Near the Paleocene-Eocene Boundary,» Nature 358 (1992); 319–22.


[Закрыть]
. Открытие вымирания глубоководных форм заставило палеонтологов по-новому посмотреть на известные (и специально собранные) образцы сухопутных ископаемых палеоценовой эпохи, и вскоре стало понятно, что млекопитающие также пережили значительное потрясение. В дальнейшем более точные вычисления показали, что вымирание на суше произошло в тот же период времени, что и в океане.

Геологическая летопись показывает, что данное событие привело, ни больше ни меньше, к новому этапу в развитии млекопитающих – современному. Во второй половине палеоцена уже существовали многочисленные (30 семейств по результатам изучения ископаемых) млекопитающие, но многие из них были небольшого размера, некоторые относились к несуществующим сегодня группам, включая переживших мел-палеогеновое вымирание, многих сумчатых, некоторые енотоподобные формы с копытами (странные это были звери – совершенно новые травоядные копытные животные, ставшие мясоедами в палеоцене). Существовали также настоящие насекомоядные и первые приматы – и те и другие очень малого размера. Однако к концу палеоцена возникли также и более крупные виды, некоторые – невероятно причудливые.

Питающиеся листьями пантодонты, размерами от собаки до быка, разделились на несколько эволюционных ветвей: полуводных существ типа бегемотов и животных, обитающих на деревьях или передвигающихся на четырех лапах по подлеску. Пантодонты были плотного телосложения, коротколапые, и следует признать, что по сравнению с современными травоядными они были крайне неуклюжими и передвигались очень медленно. Они являлись самыми крупными сухопутными животными палеоцена, но позже к ним присоединились другие травоядные – диноцераты, которые были еще больше, на голове у них было множество наростов и рога, выглядели они как огромные носороги.

В пограничных отложениях между палеоценом и эоценом наблюдается некоторое уменьшение количества видов, но затем, правда не сразу, появляются кости новых животных. Многие происходят от форм, более-менее привычных для нас. Сначала появились парнокопытные и непарнокопытные. Затем пришли те, кто ими питается – плотоядные формы, уже похожие на современных и относящиеся к современным таксономическим группам. И всем им пришлось адаптироваться к явлению, изменившему мировой климат. Урок прошлых массовых вымираний: новые морфологические формы появляются, только если им откроет дорогу значительная по масштабам гибель предыдущих организмов. В конце палеоцена так и случилось.

Наша коллега Франческа Макинерни предоставила замечательную обобщающую статью, написанную на основе ее исследований на северо-западе Америки, – это очень помогло нам описать позднепалеоценовый термический максимум. Во-первых, она отмечает, что такое явление чрезвычайно актуально для нас, людей, поскольку количество углерода, выброшенного в атмосферу (примерно 12–15 тыс. гигатонн), близко к тому, которое поступило в атмосферу в результате промышленных выбросов. Изменения, спровоцированные парниковыми газами, в период позднепалеоценового термического максимума привели к повышению общемировой температуры на 5–9 °C по сравнению с современным показателем. Само явление длилось приблизительно 10 000 лет. Растения того периода отличались и от более ранних, и от тех, что появились после него – во время позднепалеоценового термического максимума исчезли голосеменные. В регионе, который изучала Франческа Макинерни, по данным другого палеонтолога, Скотта Уинга из Смитсоновского института, растения того периода были в основном представлены формами, произраставшими в более низких широтах, а значит, при более высоких температурах. По окончании позднепалеоценового термического максимума ранние формы растений вернулись, вместе с ними вернулись и насекомые, существовавшие до температурного ада на Земле. Но не млекопитающие. Позднепалеоценовый термический максимум полностью изменил млекопитающих Северной Америки.

И еще одно: полярные шапки при таком значительном потеплении обязательно должны растаять, а это приведет к подъему уровня океана. В этом и заключается опасность современного потепления, вызванного деятельностью человека, – таяние антарктических и гренландских льдов рано или поздно приведет к затоплению больших территорий пахотной земли. По прогнозам, самый высокий подъем воды приходится на Южный Китай, а это один из самых густонаселенных регионов мира, в котором как раз на уровне моря располагаются рисовые поля.

Пастбища и млекопитающие постепенно холодающего кайнозойского мира

Начиная с эпохи эоцена и до начала миоцена (23,5 млн лет назад) мир постепенно охлаждался. В течение эоцена это похолодание почти не ощущалось, планета все еще оставалась большим тропическим лесом, а в том месте, где сегодня находится Северный полярный круг, жили крокодилы. Но в олигоцене процесс похолодания ускорился, началось становление нового климата, однотипный мировой климат постепенно сменялся на четкое разграничение времен года. В то же время в Антарктиде и, вероятно, в Гренландии стали формироваться гигантские пространства континентального льда. Нарастание ледяных пространств привело к быстрому и значительному понижению уровня моря. Во многих регионах высоких широт леса понемногу уступали место травяным лугам и саваннам. Происходили изменения и в атмосфере, что в дальнейшем имело серьезнейшие последствия для развития жизни на Земле.

Растениям нужен углекислый газ. Хотя за миллиарды лет существования нашей планеты количество углекислого газа то уменьшалось, то увеличивалось, но в общем все это были этапы одной общей истории с одной общей тенденцией – концентрация углекислого газа в атмосфере Земли постепенно уменьшалась, и планета постепенно охлаждалась (особенно за последние 40 млн лет). Впрочем, на эволюцию растений в кайнозое значительно серьезнее повлияло не изменение температуры. Возможно, намного более важным стало эволюционное образование более эффективного типа фотосинтеза – C4, который у многих растений заменил более древнюю форму – C3 (цифры 3 и 4 в этих наименованиях показывают различные химические преобразования, возникающие, когда солнечный свет и углекислый газ соединяются при формировании живых клеток и тканей растения). Фотосинтез-C4 необычайно быстро закрепился в растительном царстве, если судить по количеству растений, усвоивших этот тип преобразования. Растения, использующие фотосинтез-C3, оставляют изотопный показатель углерода, отличный от фотосинтеза-C4. Не только растения оставляют такие следы, но и животные, поедающие растения. Таким образом, мы можем узнать по останкам травоядных, каким типом растений они питались – с фотосинтезом-C3 или C4, а возможно, и тем и другим.

Существуют две возможности определить, когда впервые возник фотосинтез-C4. Первая – молекулярные часы. Сравнивая геномы растений с разными типами фотосинтеза, генетики установили, что различия довольно велики, и механизм C4 мог появиться не позднее чем 25 млн лет назад (мог и раньше – 32 млн лет назад). Однако палеонтологическая летопись показывает совершенно другие цифры – первые ископаемые растения с фотосинтезом-C4 относятся к периоду 12–13 млн лет назад.

Появление фотосинтеза-C4 не являлось единичным неожиданным экспериментом эволюции, который потом распространился на многие растения. На самом деле данный тип фотосинтеза возникал, скорее всего, около 40 раз у разных групп растений и в различные моменты истории их развития. Растения с фотосинтезом-C4 приобрели способность противостоять огню и обезвоживанию, адаптировавшись, таким образом, к жаркому и сухому климату.

Для экологии самыми важными растениями с фотосинтезом-C4 оказались травянистые растения, поскольку именно они являются основной пищей травоядных животных – больших существ, пасущихся на лугах, и имеют большое значение для многих птиц, включая гусей, которые встречаются повсюду, даже на газонах городских парков. Снижение уровня углекислого газа, особенно за последние 20 млн лет, произошло во многом благодаря травянистым растениям с фотосинтезом-C4[225]225
  M. D. Hatch, «C(4) Photosynthesis: Discovery and Resolution,» Photosynthesis Research 73, nos. 1–3 (2002): 251–56.


[Закрыть]
. Многие травы не могут существовать под лесными деревьями, где прохладные и тенистые условия мешают их росту и развитию.

Впрочем, отступление лесов открыло новые годные для трав пространства. Первоначально полагали, что быстрая эволюция травянистых растений с фотосинтезом-C4 стала возможной благодаря длительному снижению уровня углекислоты, однако существует и другая – новая – теория, согласно которой для бурного развития данного типа растений не менее важным, а возможно и более важным, является изменение лесного покрова планеты. Но что же вызвало уменьшение лесного покрова? Вероятно, лесные пожары.

Лесные пожары – незаслуженно игнорируемый фактор развития жизни на планете, покрытой растениями. Пожары, разумеется, зависят от уровня кислорода в атмосфере. В периоды с большими концентрациями атмосферного кислорода, например, в меловом периоде 320–300 млн лет назад, лесные пожары были, вероятно, постоянными. Если бы в тот период можно было посмотреть на Землю из космоса, то мы бы увидели, что атмосфера плотно задымлена, настолько плотно, что солнечный денек был редкостью. Такая дымовая завеса над большей частью материков серьезно влияла на глобальные температуры: большая часть дыма от лесных пожаров светлая с внешней, «космической», стороны и поэтому способна отражать больше солнечного света обратно в космос, чем при других обстоятельствах, а значит, менять альбедо – степень способности Земли отражать солнечные лучи.

Все эти явления создали цепь событий, кардинально повлиявших не только на мировой климат, но и на всю дальнейшую историю развития жизни. Увеличение содержания кислорода в атмосфере и его долговременный высокий уровень (более 30 %) в течение мелового периода спровоцировали большое количество лесных пожаров. Как сказано выше, это привело к снижению мировых температур, что в конечном итоге завершилось самым долгим за всю историю существования нашей планеты оледенением полярных областей. Хотя это оледенение не было общемировым, как в периоды «Земли-снежка», по времени оно было таким же долгим, как некоторые из них. Возможно, этот период полярного оледенения длился более 50 млн лет. За такие длительные периоды на Земле могли происходить самые важные события, например, освоение суши животными, эволюция новых, более развитых сухопутных растений, которые смогли приспособиться к жизни в высокогорных районах, до того не освоенных растениями. За такие интервалы возникали новые формы позвоночных, включая ранних рептилий, а за ними – и предков млекопитающих. Существует, однако, еще один аспект пожаров, который также мог повлиять на развитие растений, а следовательно, и на развитие жизни на планете в целом.

Новые исследования лесных пожаров в бассейне Амазонки доказывают, что пожары на не освоенных человеком территориях могут серьезно менять климатические условия, и это касается не только тропиков. Дэвид Бирлинг в книге The Emerald Planet («Изумрудная планета», см. главу 10) отмечает, что в течение апреля 1988 года дым от пожаров мешал формированию облаков над Северной Америкой, и это изменило режим выпадения осадков. Данный временной интервал стал для того региона одним из периодов суровой засухи и одним из самых сухих месяцев за весь XX век. В том же году произошло несколько крупных лесных пожаров, например, в июле 1988 года выгорели огромные территории вокруг Йеллоустоунского национального парка. Бирлинг предлагает по-новому оценить факт распространения травянистых растений с фотосинтезом-C4 – с точки зрения возникновения положительной обратной связи[226]226
  E. J. Edwards and S. A. Smith, «Phylogenetic Analyses Reveal the Shady History of G Grasses,» Proceedings of the National Academy of Sciences 107, nos. 6 (2010): 2532–37; C. P. Osborne and R. P. Freckleton, «Ecological Selection Pressures for C4 Photosynthesis in the Grasses,» Proceedings of the Royal Society B-Biological Sciences 276, no. 1663 (2009): 1753–60.


[Закрыть]
.

Положительная обратная связь демонстрирует усиление экологического эффекта в одном определенном направлении. В современном мире потепление атмосферы вызывает усиленное таяние арктического льда, в связи с чем уменьшается площадь белой поверхности с высокой отражательной способностью. Покрытые белым льдом и снегом арктические моря отражают солнечные лучи обратно в космос, но таяние белого покрова приводит к увеличению площади темной морской воды, которая в таком случае начинает поглощать намного больше тепла, и моря теплеют. С потеплением морей лед начинает таять еще интенсивнее, и цикл продолжается. Положительная обратная связь заключается в том, что потепление ведет к еще большему потеплению.

Дэвид Бирлинг полагает, что положительная обратная связь в случае с лесными пожарами заключается в том, что пожары вызывают еще больше пожаров. Пожары меняют климат и провоцируют засухи, которые приводят к увеличению территорий, где возможно возгорание, и возникают новые пожары, – так замыкается круг.

Мы живем в эпоху, когда мировые температуры стремительно растут. Все возможные последствия для планеты пока не ясны, и еще менее предсказуем тот эффект, который может оказать новый, более теплый мир с более высоким уровнем моря на промышленность, население и развитие цивилизаций в целом.

Глава 18
Эра птиц: 50–2,5 миллиона лет назад

История развития жизни в школьных программах часто выглядит так: рыбы появились в эру рыб; некоторые рыбы выползли на сушу, и началась эра амфибий; амфибии затем дали жизнь рептилиям, и началась эра рептилий, которую еще называют эрой динозавров; заканчивается этот ряд эрой млекопитающих. Нетрудно догадаться, почему такой способ изложения истории стал обычным делом: люди любят все классифицировать, а последовательность «эр» выглядит очень удобной классификацией. Однако, как вы можете видеть, эры птиц-то нет! Ее никогда не выделяют в ряду прочих. Давайте же восполним этот пробел и попробуем описать исторический период, который определим как эру птиц[227]227
  Наше личное примечание к данной главе: один из нас (Питер Уорд) держал двух попугаев в качестве домашних животных (хотя в отношениях между человеком и птицей непонятно, кто кого содержит). При этом был очевиден уровень интеллекта попугаев. И подобное утверждение касается не только попугаев. Если понаблюдать за воронами или другими птицами, которые держатся стаями, можно заметить их удивительный и, более того, прогрессирующий интеллект. Забавно, что от птиц пошло уничижительное выражение «куриные мозги». Сравните размер нашего мозга с размером мозга жако и задумайтесь, что эти птицы могут строить предложения, заниматься простой арифметикой, и их поведение в целом очень сложно структурировано. Мы все надеемся на то, что курица, которую мы едим каждый день, крайне глупа. А вот, может, и нет!


[Закрыть]
.

Эволюция птиц является одной из центральных научных проблем[228]228
  K. Padian and L. M. Chiappe, «Bird Origins,» in P. J. Currie and K. Padian, eds., Encyclopedia of Dinosaurs (San Diego: Academic Press, 1997), 41–96; J. Gauthier, «Saurischian Monophyly and the Origin of Birds,» in K. Padian, Memoirs of the California Academy of Sciences 8 (1986): 1–55; L. M. Chiappe, «Downsized Dinosaurs: The Evolutionary Transition to Modern Birds,» Evolution: Education and Outreach 2, no. 2 (2009): 248–56.


[Закрыть]
. Эта область исследований содержит ряд весьма спорных гипотез и противоречивых теорий. Всего можно выделить два основных направления: первая – птицы произошли от группы нединозавровых диапсид, но родственных той группе, от которой произошли динозавры; вторая – птицы являются непосредственными потомками динозавров. Представители второго «вероисповедания» даже прибегают к кладистике, чтобы подтвердить свою мысль: птицы это сильно изменившиеся динозавры[229]229
  J. H. Ostrom, «The Ancestry of Birds,» Nature 242, no. 5393 (1973): 136; J. Gauthier, «Saurischian Monophyly and the Origin of Birds,» in K. Padian, Memoirs of the California Academy of Sciences 8 (1986): 1–55; J. Cracraft, «The Major Clades of Birds,» in M. J. Benton, ed., The Phylogeny and Classification of the Tetrapods, Volume I: Amphibians, Reptiles, Birds (Oxford: Clarendon Press, 1988), 339–61.


[Закрыть]
.

Целый ряд окаменелостей доказывает, что не только многие двуногие плотоядные динозавры похожи на птиц, поскольку они откладывали яйца, но и сами их яйца очень похожи на птичьи. Некоторые новые находки предоставляют еще более потрясающие свидетельства: у многих динозавров, живших и до и после появления археоптерикса, были конечности с перьями, подобные крыльям, то есть динозавры предпринимали не одну, а несколько эволюционных попыток научиться летать. Вопрос в том, были ли данные известные фоссилии когда-то настоящими динозаврами[230]230
  A. Feduccia, «On Why the Dinosaur Lacked Feathers,» in M. K. Hecht et al., eds. The Beginnings of Birds: Proceedings of the International Archaeopteryx Conference Eichstatt 1984 (Eichstatt: Freunde des Jura-Museums Eichstatt, 1985), 75–79; A. Feduccia et al., «Do Feathered Dinosaurs Exist? Testing the Hypothesis on Neontological and Paleontological Evidence,» Journal of Morphology 266, no. 2 (2005): 125–66.


[Закрыть]
.

Этот вопрос возник в 1996 году, когда палеонтолог Алан Федуччиа занимался исследованием впервые обнаруженной окаменелости существа, которое он принял за загадочную птицу возрастом 135 млн лет, то есть появившуюся сразу после археоптерикса. Эта птица, ляонинорнис (Liaoninornis – «птица из Ляонина»), была совершенно не похожа на динозавра[231]231
  J. O’Connor, «A Revised Look at Liaoningornis Longidigitris (Aves).» Vertebrate PalAsiatica 50 (2012): 25–37.


[Закрыть]
. У нее имелись развитая летательная мускулатура и грудная кость, сходная с аналогичной у современных птиц. Тем не менее ее нашли среди окаменелостей древних птиц, похожих на археоптерикса. Как эволюция могла так быстро проскочить столько этапов? Федуччиа, таким образом, заключил, что птицы могли быть широко распространены и освоили разнообразные места обитания уже ко времени появления археоптерикса, а это временной интервал приблизительно 140–135 млн лет назад. Хотя такие птицы и были более развиты по сравнению с археоптериксом, все же они значительно уступали современным формам. Так где же они? Федуччиа считает, что большинство из них вымерли вместе с динозаврами около 65 млн лет назад, а все предки современных птиц появились позднее, в интервале 60–53 млн лет назад, независимо от динозавров. Это так называемая теория большого взрыва относительно происхождения птиц[232]232
  A. Feduccia, «Explosive Evolution in Tertiary Birds and Mammals,» Science 267, no. 5198 (1995): 637–38; A. Feduccia, «Big Bang for Tertiary’ Birds?» Trends in Ecology and Evolution 18, no. 4 (2003): 172–76.


[Закрыть]
. Федуччиа и его коллеги рассматривают все сходства между птицами и динозаврами просто как проявление конвергентной эволюции – иными словами, естественный отбор параллельно создал схожие морфологические типы животных.

Данная теория относит возникновение современных птиц либо ко времени мел-палеогенового вымирания (65 млн лет назад), либо к периоду на несколько десятков миллионов лет позднее. Разумеется, такая трактовка событий не является общепринятой на данный момент[233]233
  M. Norell and M. Ellison, Unearthing the Dragon: The Great Feathered Dinosaur Discovery (New York: Pi Press, 2005); R. Prum, «Are Current Critiques of the Theropod Origin of Birds Science? Rebuttal to Feduccia 2002,» Auk 120, no. 2(2003): 550–61; S. Hope, «The Mesozoic Radiation of Neomithes,» in L. M. Chiappe et al., Mesozoic Birds: Above the Heads of Dinosaurs (Oakland: University of California Press, 2002), 339–88; P. Ericson et al., «Diversification of Neoaves: Integration of Molecular Sequence Data and Fossils,» Biology Letters 2, no. 4 (2006): 543–47; K. Padian, «The Origin and Evolution of Birds by Alan Feduccia (Yale University Press, 1996),» American Scientist 85: 178–81; M. A. Norell et al., «Flight from Reason. Review of: The Origin and Evolution of Birds by Alan Feduccia (Yale University Press, 1996),» Nature 384, no. 6606 (1997): 230; L. M. Witmer, «The Debate on Avian Ancestry: Phylogeny, Function, and Fossils,» in L. M. Chiappe and L. M. Witmer, eds., Mesozoic Birds: Above the Heads of Dinosaurs (Berkeley: University of California Press, 2002), 3–30.


[Закрыть]
. За последнее десятилетие было найдено большое количество и разнообразие ископаемых птиц в породах мелового периода возрастом 130–115 млн лет, в основном в Китае. Некоторые из этих находок показывают, что развитию птиц с привычным для нас коротким хвостовым отделом позвоночника предшествовала эволюция форм с длинным хвостовым отделом[234]234
  C. Peiji et al., «An Exceptionally Preserved Theropod Dinosaur from the Yixian Formation of China,» Nature 391, no. 6663 (1998): 147–52; G. S. Paul. Dinosaurs of the Air: The Evolution and Loss of Flight in Dinosaurs and Birds (Baltimore: Johns Hopkins University Press, 2002), 472: X. Xu et al., «An Archaeopteryx like Theropod from China and the Origin of Avialae,» Nature 475 (2011): 465–70.


[Закрыть]
. Кроме того, теория происхождения птиц от динозавров была подтверждена также открытием в Китае двух видов оперенных динозавров возрастом 145 млн и 125 млн лет, за которыми следуют более молодые ископаемые раннего мелового периода.

Большое внимание ученых сосредоточено на вопросах оперения. Почему вообще появились перья (функциональный аспект)? Как изначально развивались перья крыла, обеспечивающие полет? Во многом эти вопросы пытаются решить, применяя понятие экзаптации – каким образом определенная морфологическая характеристика приобретает дополнительную функцию или функции. Всем нам хорошо известны функции, которые выполняют перья в подкладках одежды и в спальных мешках. Очевидно, что перья хорошо защищают от переохлаждения, но перья, которые сохраняют тепло, сильно отличаются от тех, что используются птицами для полета. Перья редко сохраняются в геологических отложениях, и поэтому, как это часто бывает в палеонтологии, окаменелости слабо влияют на решение вопросов о происхождении перьев, их первого появления и назначения. Хотя в последнее время палеонтологам очень часто помогают образцы из Китая. В данном случае это уникальные ископаемые останки динозавров с сохранившимися перьями[235]235
  D. Hu et al., «A Pre-Archaeopteryx Troodontid Theropod from China with Long Feathers on the Metatarsus,» Nature 461, no. 7264 (2009): 640–43; A. H. Turner et al., «A Basal Dromaeosaurid and Size Evolution Preceding Avian Flight,» Science 317, no. 5843 (2007): 1378–81; X. Xu et al., «Basal Tyrannosauroids from China and Evidence for Protofeathers in Tyrannosauroids,» Nature 431, 7009 (2004): 680–84: C. Foth. «On the Identification of Feather Structures in Stem-Line Representatives of Birds: Evidence from Fossils and Actuopalaeontology,» Palaontologische Zeitschrift 86, no. 1 (2012): 91–102; R. Prum and A. H. Brush, «The Evolutionary Origin and Diversification of Feathers,» Quarterly Review of Biology 77, no. 3 (2002): 261–95.


[Закрыть]
, а иногда (и не только в Китае) даже мягкие ткани[236]236
  M. H. Schweitzer et al., «Soft-Tissue Vessels and Cellular Preservation in Tyrannosaurus rex,» Science 307, no. 5717 (2005); C. Dal Sasso and M. Signore, «Exceptional Soft-Tissue Preservation in a Theropod Dinosaur from Italy,» Nature 392, no. 6674(1998): 383–87; M. H. Schweitzer et al., «Heme Compounds in Dinosaur Trabecular Bone,» Proceedings of the National Academy of Sciences of the United States of America 94, no. 12 (1997): 6291–96.


[Закрыть]
. Однако находки окаменелостей птиц встречают в научном сообществе без возражений и горячих споров нечасто[237]237
  Dr. Paul Willis, «Dinosaurs and Birds: The Story,» The Slab, http://www.abc.net.au/science/slab/dinobird/story.htm.


[Закрыть]
. Эволюция полета (не просто планирование) – важная инновация, которую с успехом освоили членистоногие, рептилии, динозавры (в виде птиц) и млекопитающие, – была и остается благодатным полем для исследований[238]238
  J. A, Clarke et al., «Insight into the Evolution of Avian Flight from a New Clade of Early Cretaceous Omithurines from China and the Morphology of Yixianomis grabaui,» Journal of Anatomy 208 (3 (2006): 287–308.


[Закрыть]
.

На сегодняшний день известно около 120 видов птицеподобных существ мезозойской эры, обитавших на всех континентах, кроме большей части Африки[239]239
  N. Brocklehurst et al., «The Completeness of the Fossil Record of Mesozoic Birds: Implications for Early Avian Evolution,» PLOS One (2012); J. A. Clarke et al., «Definitive Fossil Evidence for the Extant Avian Radiation in the Cretaceous,» Nature 433 (2005): 305–8.


[Закрыть]
. Несмотря на эти постоянно обновляемые сведения, некоторые аспекты эволюции птиц, в том числе время происхождения и распространения современных видов птиц (Neornithes, то есть настоящих птиц)[240]240
  L. Witmer, «The Debate on Avian Ancestry: Phylogeny, Function and Fossils,» in L. Chiappe et al., eds., Mesozoic Birds: Above the Heads of Dinosaurs (Berkeley, California: University of California Press, 2002), 3–30; L. M. Chiappe and C. J. Dyke, «The Mesozoic Radiation of Birds,» Annual Review of Ecology and Systematics 33 (2002): 91–124; J. W. Brown et al., «Strong Mitochondrial DNA Support for a Cretaceous Origin of Modem Avian Lineages,» BMC Biology 6 (2008): 1–18; J. Cracraft, «Avian Evolution, Gondwana Biogeography and the Cretaceous-Tertiary Mass Extinction Event,» Proceedings of the Royal Society B-Biological Sciences 268 (2001): 459–69; S. Hope, «The Mesozoic Radiation of Neomithes,» in L. M. Chiappe et al., eds., Mesozoic Birds: Above the Heads of Dinosaurs (Berkeley: University of California Press, 2002), 339–88; Z. Zhang et al., «A Primitive Confuciusornithid Bird from China and Its Implications for Early Avian Flight,» Science in China Series D 51, no. 5 (2008): 625–39.


[Закрыть]
, не получают однозначного определения.

Ископаемые птицы обнаружены в самых древних отложениях мелового периода (который делится на ранний мел – 145–100 млн лет назад, и поздний – 100–65 млн лет назад). Птицы раннего мела, должно быть, быстро эволюционировали и превратились в существ самых разнообразных форм и размеров. Некоторые были размером с ворону, с сильными клювами, например, конфуциусорнисы, к тому же обладавшие здоровенными когтями на крыльях. У других представителей птиц того времени, например, сапеорнисов, присутствовали длинные и узкие, как у чаек, крылья. Существовали маленькие птички, типа иберомезорниса, размером с воробья. Однако, несмотря на все свои развитые летные качества, птицы раннего мела были еще и зубастыми, как археоптерикс. Тем не менее разнообразие черепов, крыльев и лап показывает, что птицы раннего мелового периода уже различались по образу жизни и пищевым привычкам Одни питались семенами, другие – рыбой, третьи – насекомыми, некоторые предпочитали сок растений, кое-кто – мясо. Строение крыльев и грудных клеток тех птиц свидетельствует, что вскоре после археоптерикса у птиц мелового периода развилась способность к полету, во многом уже сходная с умениями современных птиц.

Зубы оставались архаичной чертой птиц мелового периода. У всех современных птиц клювы имеют роговое покрытие, формы их очень разнообразны и приспособлены к различным типам пищи. Когда появилась первая беззубая птица? Этот вопрос также остается открытым. Возможно, ответ мы найдем на холодном антарктическом полуострове…

Современные птицы, ни у одной из которых нет зубов, произошли от своих зубастых предков в меловом периоде. Но это было не замещение одной формы другою, а сперва дополнительное новшество, поскольку ранние птицеподобные формы с зубами и длинными хвостами еще долгое время сосуществовали с процветающими группами крылатых рептилий мелового периода, в том числе с птерозаврами – крупнейшими летунами второй половины мела. Птицы с зубами вымерли лишь в конце мелового периода вместе со своими предками-динозаврами. По крайней мере, об этом можно судить по совокупности всех найденных ископаемых птиц из самого полного отложения позднего мела – в западной части США, в формации Хелл-Крик, которая является усыпальницей трицератопсов, тираннозавров, а также многочисленных примитивных птиц.

Выжившие после мел-палеогенового массового вымирания группы птиц относились к примитивным бескилевым. В подкласс бескилевых птиц входят крупные нелетающие птицы, например, страусы, нанду, казуары, а также гигантские формы, которых мы уже не увидим своими глазами – моа из Новой Зеландии и слоновые птицы-эпиорнисы с Мадагаскара, которых уничтожили люди в течение последней тысячи лет. Некоторые обычные птицы наших дней, в том числе водоплавающие утки, птицы сухопутного образа жизни, и лучшие летуны современности – настоящие птицы – ведут свое происхождение от бескилевых.

В формации Хелл-Крик и в схожих с ней породах Северной Америки на сегодня обнаружено всего 17 видов, из них семь принадлежат к самым древним из всех птиц видам, в их числе зубастые птицы группы гесперорнисов – ныряющие формы около 1 м в длину. Среди найденных образцов есть как меньшие формы, так и крупные летающие птицы времен юры и мела, и это со всей определенностью говорит о том, что значительная доля эволюционного разнообразия видов птиц имела место еще до гибели динозавров.

Действительно, «сообщество» птиц из формации Хелл-Крик показывает значительное преобладание морских обитателей, и это неудивительно, поскольку рядом с этим местом в меловом периоде находилось внутреннее море, разделявшее североамериканский континент на два субконтинента. Ни одна из групп, известных по данной формации, не дожила до палеогена, и их присутствие в Хелл-Крик (последние 2–3 млн лет маастрихтского яруса позднего мела) подтверждает, что во время мел-палеогенового вымирания древние формы птиц в самом деле погибли[241]241
  N. R. Longrich et al., «Mass Extinction of Birds at the Cretaceous-Paleogene (K-Pg) Boundary,» Proceedings of the National Academy of Sciences 108 (2011): 15 253-57; G. Mayr, Paleogene Fossil Birds (Berlin; Springer, 2009), 262; J. A. Clarke et al., «Definitive Fossil Evidence for the Extant Avian Radiation in the Cretaceous,» Nature 433 (2005): 305–8; T. Fountaine, et al., «The Quality of the Fossil Record of Mesozoic Birds,» Proceedings of the Royal Academy of Sciences B-Biological Science 272 (2005): 289–94.


[Закрыть]
. Но вот что не дает покоя: хотя многие птицы из североамериканских отложений являются представителями «продвинутого» в морфологическом смысле этапа эволюции, ни один род не может быть однозначно причислен к настоящим птицам. Последние известны со времен позднего мелового периода, хотя в тот момент их разнообразие и количество типов строения тела уступали современным птицам. Ископаемые из формации Хелл-Крик тем не менее помогают нам лучше понять масштаб гибели птиц в мел-палеогеновом вымирании.

Птицы принадлежат к тем позвоночным, которым суждено было пережить последствия падения Чуксулубского астероида. Пожары на большей части лесных территорий в первые дни после катастрофы, кислотные дожди, полгода темноты, а значит, и голода, уничтожение практически всех экосистем, в том числе в морях и пресных водоемах, – условия были ужасающими. Даже не пострадавшие физически глубоководные экосистемы в дальнейшем были затронуты нехваткой пищевых ресурсов, поступающих сверху, – мертвого планктона и крупных погибших животных. На суше выживаемость зависела от размеров: чем крупнее был организм, тем меньше у него оставалось шансов выжить. Но птицы-то не принадлежали к крупным организмам…


    Ваша оценка произведения:

Популярные книги за неделю