Текст книги "Новая история происхождения жизни на Земле"
Автор книги: Джозеф Киршвинк
Соавторы: Питер Уорд
Жанр:
Биология
сообщить о нарушении
Текущая страница: 19 (всего у книги 31 страниц)
Еще один аспект пермского массового вымирания
Питер Уорд, один из авторов данного труда, изучал еще один аспект пермского массового вымирания. Результаты его исследований пока не опубликованы, и мы с удовольствием приводим их здесь, тем более что они имеют непосредственное отношение к предмету обсуждения. Фредерик Дули, аспирант Уорда, совместно с Ли Кампом пришел к удивительному выводу. Но сначала небольшое пояснение: Дули занимается вопросом воздействия сероводорода на растения и некоторых животных, а Камп разрабатывает модели состояния океана в конце пермского периода, и ему необходимо делать расчеты объемов сероводорода в верхних слоях Мирового океана. Результаты вычислений Кампа аспирант Дули использовал в экспериментах с одноклеточным океаническим планктоном, включая самый важный вид океанического зоопланктона – похожих на креветок веслоногих ракообразных-копеподов. Уровень сероводорода в эксперименте был недостаточным, чтобы убить водоросли, – наоборот, к удивлению экспериментатора, водоросли стали расти быстрее. Напротив, веслоногие погибли почти мгновенно. Без веслоногих, поедающих фитопланктон и таким образом контролирующих его размножение, эти крошечные растения погружаются на морское дно и там загнивают, уничтожая и без того небольшой запас кислорода в нижних слоях воды. Это приводит к резкому скачку содержания углекислого газа, а также убивает все виды морских животных в верхних слоях океана. В результате планета задыхается среди гниющих растений и остается почти совсем без животных – в конце пермского периода, по крайней мере в океане, так и произошло. Ситуация на суше напоминала две мировые войны одновременно Роджер Смит обнаружил весьма убедительные доказательства необычайной засушливости и неожиданной жары в Южной Африке 252 млн лет назад. Наши собственные изыскания в пустыне Карру (результаты опубликованы в 2005 году) позволяют подробно описать вымирание сухопутных животных в тот же временной период[178]178
P. Ward et al., «Abrupt and Gradual Extinction Among Late Permian Land Vertebrates in the Karoo Basin, South Africa».
[Закрыть]. Роджер Смит считает, что только засухи и жары уже было вполне достаточно, чтобы вымерло большинство позвоночных. Нам же больше нравится аналогия с мировыми войнами: огромные армии погибают в пустыне и, как во времена Первой мировой, задыхаются под действием отравляющего газа. Только в древности это был не хлор, а ядовитый сероводород в атмосфере и океане.
Глава 13
Триасовый взрыв:
252–200 миллионов лет назад
Одним из самых приятных ощущений от общения в научной среде – будь то в маленьком провинциальном колледже или в одном из крупнейших исследовательских центров мира – является наслаждение чувством коллегиальной солидарности. В Америке это обусловлено еще и самим устройством университетской системы, которая предполагает сперва 6–7 лет работы по временному контракту и только затем постоянную должность. Постоянство! Возможно, из всех профессиональных коллективов университетские факультеты – самые стабильные, и, в сравнении с другими коллективами, в университетах наблюдается относительно небольшая текучесть кадров. В результате складываются коллегиальные дружеские отношения, зачастую весьма продолжительные. В этом плане университеты очень похожи на своих предшественников – семинарии, куда монахи приходили еще молодыми людьми и где проводили всю свою жизнь в среде себе подобных. И так же, как в старинных аббатствах, более молодые коллеги приучались уважать тех, кто был старше и мудрее, и прислушиваться к ним.
Авторам данного труда в 2000-е годы или около того посчастливилось присутствовать на встрече с несколькими старшими коллегами естественнонаучного факультета в Калифорнийском технологическом институте. В числе старших товарищей был знаменитый Сэмюэль Эпстайн – один из наиболее выдающихся ученых в области геохимии. Сэм Эпстайн работал в Университете Чикаго как раз в тот момент, когда нобелевский лауреат Гарольд Юри открыл способ измерения температуры формирования древних карбонатных пород с использованием метода сопоставления изотопов кислорода, обнаруженных в карбонатных отложениях. Соотношение кислорода-16 варьировалось вместе с гораздо более редким кислородом-17 пропорционально температуре формирования пород.
Спустя некоторое время Сэм Эпстайн поступил на работу в Калифорнийский технологический институт и занимался высокоточными измерениями множества образцов, применяя самые разнообразные методы. Однако его первой любовью все же было исследование температур в древности. После замечательной встречи, о которой мы упоминали выше, он пригласил нас, Киршвинка и Уорда, в свою лабораторию, на тот момент уже частично демонтированную. Геохимическое оборудование 1950–1960-х годов (золотые дни Сэма) состояло в основном из самодельных колбочек, стеллажей с тонкими пробирками и трубками, которые, извиваясь спиралями и пересекаясь, образовывали замысловатую стеклянную паутину. В некоторых узлах этой «паутины» находились странные сосуды, вокруг которых вились резиновые трубки, оканчивающиеся краниками замысловатого вида. И все было сделано кустарями от науки, которые в середине XX века двигали исследования только вперед. Они были искусными технарями, целой эпохой, ушедшей по причине экономии бюджета и появления новых исследовательских технологий.
Сэм бродил по лаборатории, а разговор тем временем зашел о наших непосредственных научных интересах: пермском массовом вымирании и его возможных причинах. В то время теория столкновения с астероидом рассматривалась как одна из наиболее вероятных. Сэм, однако, эту точку зрения не разделял. Он повернулся к нам и с улыбкой рассказал следующую историю. Однажды он исследовал образцы морского известняка, относящиеся к самым нижним ярусам триаса и, вероятно, сформированные на очень мелководном участке моря в том месте, где находился экватор, а ныне Иран. В порыве внезапного вдохновения, а может, потому, что он больше всего любил именно этот аспект анализа, он решил проанализировать, при каких температурах могли сформироваться такие образцы породы. Сэм рассказал нам, что был поражен, когда понял, что все образцы были образованы при температуре выше 40 °C, а некоторые – при температуре даже выше 50 °C! Образцы были взяты от древних кораллов, существ, очень чувствительных к солености воды.
Подобные температуры могут наблюдаться в стоячих водоемах или в лагунах. Но в таких местах не обитают плеченогие! Температурные показатели, полученные Сэмом Эпстайном, не могли существовать нигде на Земле, поскольку подобное температурное состояние воды в океане нереально!
Восьмидесятилетний Сэм грустно улыбался. Он признался нам, что у него так и не хватило духу опубликовать эти данные. Всякий палеотемпературный анализ требует для чистоты эксперимента, чтобы образцы были «чистыми», тогда как породы частенько подвергаются воздействию подземных вод, химических процессов, последующему нагреванию или охлаждению и в результате «выдают» показатели того, что они якобы сформировались при аномально высоких температурах. И чем старше порода, тем сложнее получить точные данные при температурном анализе. Тем не менее Сэм был совершенно уверен, что он прав и что в первый миллион лет после пермского вымирания, то есть в первый миллион лет триасового периода, температура воды в океане была выше 37 °C.
Несколько лет спустя, проводя палеотемпературный анализ другого образца триасового периода, мы получили показатель температуры около 40 °C. На этот раз глубина залегания была даже ниже, чем у древних образцов, которые описывал Сэм Эпстайн. Но, как и он, мы не опубликовали свои данные.
Кто не рискует, тот не выигрывает. В 2012 году совместная группа китайских и американских ученых[179]179
Высокие температуры в нижних слоях атмосферы триасового периода – основное доказательство того, что предположение о «парниковом массовом вымирании» верно.
[Закрыть], пытаясь раскрыть секрет долгого восстановительного периода морской фауны после пермского массового вымирания, сделала открытие и опубликовала результаты: температура океана – 40 °C, на суше – все обжигающие 60 °C! В отличие от работ Эпстайна, данное исследование использовало более 15 000 образцов, что позволило провести очень детальный и трудоемкий анализ условий окружающей среды в период после пермского массового вымирания.
Ученые, получившие эти данные, попытались представить себе, каков был этот древний жаркий мир. Большинство морских организмов погибают при температуре воды выше 40 °C, а именно такой показатель был обнаружен. При такой температуре и выше практически прекращается фотосинтез. В таком мире зона тропиков должна быть необитаема, и жизнь главным образом сосредоточена на высоких широтах. Даже в средних широтах обитали очень немногие сухопутные животные. При такой жаре воздух был насыщен водяными парами, а тропики оставались влажными круглый год. Судя по всему, это была влажная, но пустыня – не было никакой растительности.
Более точная современная геохронология показывает, что период высоких температур продолжался по крайней мере первые три миллиона лет триаса. Возможно, температуры доходили и до более высоких показателей, и максимум пришелся на период около 247 млн лет назад, когда температура оказалась самой высокой за всю историю существования животных. Сэм Эпстайн был прав. И мы были правы[180]180
S. Schoepfer et al., «Cessation of a Productive Coastal Upwelling System in the Panthalassic Ocean at the Permian-Triassic Boundary,» Palaeogeography, Palaeoclimatology, Palaeoecology 313–14 (2012): 181–88.
[Закрыть]. Ошиблись мы только в одном – не надо было отказываться от публикации результатов своих работ.
Пермское вымирание явилось для растений и животных одной из самых ужасных катастроф в истории развития жизни на нашей планете. А вот с точки зрения микроорганизмов, особенно любителей серы, это событие оказалось чем-то вроде возвращения в рай. С наших же позиций пермское вымирание представляется приблизительным повторением произошедшего в конце девонского периода, то есть первого из так называемых парниковых массовых вымираний. Еще многому суждено было свершиться: и в конце триаса, и в юрский, и в меловой периоды, а последнее парниковое вымирание произошло вообще в конце палеоцена, всего 60 млн лет назад, но с пермским массовым вымиранием не сравнится ни одно из событий подобного рода, в том числе и по масштабам разнообразия форм жизни, которые появились после.
Пермское массовое вымирание открыло дорогу в мир многим новым существам, но для нас особенно интересны два совершенно новых на тот момент истории эволюционных направления – млекопитающие и динозавры, которые к концу триаса процветали и развивались. Это были чрезвычайно важные эволюционные линии развития жизни (редко какая эволюционная новинка дает название целым геологическим интервалам, как в случае с эрой динозавров), но появились они относительно поздно и в триасовый период оставались маленькими по размерам (особенно млекопитающие, которые редко были крупнее крысы), а также являлись малыми группами как по разнообразию видов, так и по численности. Эра динозавров началась не ранее юрского периода, а млекопитающим пришлось ждать своей эры до самого кайнозоя.
Задолго до появления динозавров и млекопитающих на эволюционной сцене выступали другие животные и растения триасового периода. Это были как уже существующие, но развившие новые черты в процессе эволюции таксономические группы, так и совершенно до того невиданные существа, обладающие новыми формами, кардинально отличными от форм палеозойской эры. Именно это смешение старого и нового сделало триас перекрестком эпох. В некотором отношении данный период можно сравнить с кембрием – множество новых морфологических типов наводнили экологические ниши, опустошенные недавним вымиранием (в тот раз это были представители вендобионты). И как во времена кембрийского взрыва, многие новинки эволюции оказались весьма недолговечными и погибли, не выдержав испытаний естественного отбора. Столь интенсивного появления новых форм, как в кембрии и триасе, больше ни в один из периодов не происходило. Тому, как кажется, есть две причины. Во-первых, пермское вымирание настолько опустошило различные среды обитания, что почти любой тип организмов мог иметь шанс выжить и развиваться, по крайней мере, некоторое время. Однако существует и вторая причина, которая может оказаться более значимой для всего, что происходило в триасовый период.
Едва оправившись от потерь пермского массового вымирания, раннетриасовый мир оказался почти необитаем. Кроме того, все исследовательские модели говорят о том, что уровень кислорода в тот период был значительно ниже современного. В предыдущих главах мы продемонстрировали, что низкие уровни кислорода, особенно во времена, следующие за массовыми вымираниями, стимулируют развитие новых строений тел. Два этих фактора – малая заселенность сред обитания и низкий уровень кислорода – в совокупности представляли собой благоприятные условия для бурного развития новых морфологических типов, то есть возникла ситуация, подобная обстоятельствам кембрийского взрыва. На этом основании мы полагаем, что вполне правомерно видеть сходство кембрия и триаса, и поэтому называем события соответствующего периода триасовым взрывом.
Триасовый период был временем развития широчайшего разнообразия в воде и на суше. В океане, например, место вымерших плеченогих заняли многие новые группы двустворчатых моллюсков, а различные аммоноидеи и наутилоиды наполнили моря новыми видами хищников. Четверть всех когда-либо существовавших аммонитов обнаружена именно в отложениях триасового периода – интервал, составляющий 10 % всего периода существования на Земле этих организмов. Океаны наполнились аммонитами, своей формой полностью не похожими на своих палеозойских предков, – почему бы нет, если эти существа показывали исключительную для беспозвоночных степень приспособленности к условиям дефицита кислорода. В то же время появились каменистые кораллы – новый отряд – и начали строить свои рифы[181]181
История коралловых рифов рассматривалась нами в главе, посвященной ордовикскому периоду. По этому вопросу наш главный эксперт – Джордж Стэнли. G. D. Stanley Jr., ed., Paleobiology and Biology of Corals, Paleontological Society Papers, vol. 1 (Boulder, CO: The Paleontological Society, 1996). Также внимания заслуживает и другая его работа «Кораллы и рифы: Кризис, Коллапс и Перемены» (Corals and Reefs: Crises, Collapse and Change), которая была представлена в виде краткого курса лекций Палеонтологического общества на собрании Геологического сообщества Америки в Миннеаполисе, 8 октября 2011 г.
[Закрыть]. Многие сухопутные пресмыкающиеся вернулись обратно в море. При этом именно на суше произошли самые замечательные изменения и эволюционные эксперименты в морфологии организмов. Никогда до и после мир не видал таких разнообразных анатомических вариантов на суше, как в тот период. Некоторые существовали еще в перми – терапсиды. Они пережили пермское вымирание, снова стали развиваться в начале триаса и теперь соперничали с архозаврами за господство на суше, впрочем совсем недолго. Конкуренцию терапсидам составляли многие рептилии. От звероподобных рептилий до ящериц, от самых ранних млекопитающих до настоящих млекопитающих – триас был настоящей экспериментальной лабораторией эволюции.
На первый взгляд, млекопитающие неизбежно должны были обогнать рептилий в эволюционной гонке. В конце концов, к тому моменту многие звероподобные рептилии уже были теплокровными, вероятно, способными (как сегодня) более эффективно, чем яйцекладущие динозавры, заботиться о потомстве; зубы млекопитающих (благодаря которым они потом все же стали господствующей группой организмов) приспособились к любой пище – семенам, траве, мясу. Но они все-таки проиграли в первом раунде. Первая эра млекопитающих закончилась их вымиранием, но на смену ей пришла вторая эра – с совершенно иными формами животных.
Сегодня работа палеонтологов во многом стала легче благодаря компьютерам. Новые революционные возможности в обмене информацией, морфологической характеризации, анализе изображений и в поиске источников позволяют значительно расширить исследование. Теперь доступны огромные базы данных, не нужно больше ходить по музеям, собирая данные, или глядеть в микроскоп, измеряя образцы чуть ли не вручную, – почти все новые данные, помогающие нам создать новую историю развития жизни на Земле, поступают от больших групп исследователей, которые вводят все новые сведения в машинные системы. Компьютеры делают для нас огромную работу, а мы получаем возможность по-новому взглянуть на изучаемый предмет.
Давайте взглянем на недавние результаты работы наших коллег из Мюнхенского университета, которые исследовали размеры позвоночных животных триаса, обитавших на суше.
В ходе работы этой исследовательской группы было обнаружено, что в раннем триасе на обедневшей после пермского вымирания планете возникли всего лишь два основных морфологических типа: с четырьмя лапами (четвероногие) и с двумя (двуногие). С течением времени (триас длился около 50 млн лет), и уже в юрском периоде (также длился 50 млн лет) эволюция ящерообразных породила гораздо большее разнообразие видов и структурных типов (в том числе в размерах), чем у звероподобных рептилий. Пока другие палеонтологи тратили время, осматривая музейные коллекции, мюнхенские коллеги получили готовые цифры, обосновавшие гипотетические сведения.
Данное исследование также подтвердило, что ящерообразные быстрее росли, достигая половозрелости и больших размеров значительно быстрее животных других групп. Эта черта – скорая готовность к размножению – пожалуй, самая важная из всех. Быстрые созревание и рост означают, что ящерообразные приспособились к экологическим ролям больших травоядных и крупных хищников намного быстрее, чем более мелкие, медленно растущие терапсиды, поэтому последние «опоздали к раздаче» соответствующих анатомических форм и экологических ниш.
Впрочем, остаются кое-какие нерешенные вопросы. В течение позднего триаса, когда динозавры уже вполне освоились в природе, они почему-то не выросли до гигантских размеров, характерных для последующего – юрского – периода, и не стали господствующей по численности группой существ. Как утверждает палеонтолог из Чикаго Пол Серено, в течение почти 20 млн лет, со времени своего появления около 221 млн лет назад и до конца триаса, около 201 млн лет назад, динозавры и терапсиды были одинаково немногочисленны и малорослы[182]182
P. C. Sereno, «The Origin and Evolution of Dinosaurs,» Annual Review of Earth and Planetary Sciences 25 (1997): 435–89; P. C. Sereno et al., «Primitive Dinosaur Skeleton from Argentina and the Early Evolution of Dinosauria,» Nature 361 (1993): 64–66; P. C. Sereno and A. B. Arcucci, «Dinosaurian Precursors from the Middle Triassie of Argentina: Lagerpeton chanarensis,» Journal of Vertebrate Paleontology 13 (1994): 385–99. Другие важные работы о ранних динозаврах и эволюции прочих позвоночных: M. J. Benton, «Dinosaur Success in the Triassie: A Noncompetitive Ecological Model,» Quarterly Review of Biology 58 (1983): 29–55; M. J. Benton, «The Origin of the Dinosaurs,» in C. A.-P Salense, ed., Ill Jomadas Internacionales sobre Paleontologta de Dinosaurios у su Entorno (Burgos, Spain: Salas de los Infantes, 2006), 11–19; A. P. Hunt et al., «Late Triassie Dinosaurs from the Western United States,» Geobios 31 (1998): 511–31; R. B. Trims et al., «A Late Triassie Dinosauromorph Assemblage from New Mexico and the Rise of Dinosaurs,» Science 317 (2007): 358–61; R. B. Irmis et al., «Early Ornithischian Dinosaurs: The Triassie Record,» Historical Biology 19 (2007): 3–22: S. J. Nesbitt et al., «A Critical Re-evaluation of the Late Triassie Dinosaur Taxa of North America,» Journal of Systematic Paleontology 5 (2007): 209–43; 8. J. Nesbitt et al., «Ecologically Distinct Dinosaurian Sister Group Shows Early Diversification of Omithodira,» Nature 464 (2010): 95–98.
[Закрыть]. Возможно, в тот период динозавров было больше, чем терапсид, но общая картина показывает, что обе группы не были доминирующими в экосистемах. Нам представляется, что в те времена вообще никакие организмы особо не процветали, а для четвероногих существ куда больше преимуществ имело возвращение в моря, что и происходило в триасовый период в больших масштабах.
Традиционно принято считать, что интенсивный рост многообразия видов в триасе связан с опустошительным пермским вымиранием, которое освободило многие экологические ниши для новых организмов. Возможно, впрочем, более простое объяснение: к тому времени многие морфологические типы сухопутных животных достигли такого этапа эволюции, когда строение их тел стало, наконец, наиболее функционально эффективным. Уже в конце пермского периода и в течение триаса развитые группы животных, например, звероподобные рептилии (точнее, группы дицинодонтов и цинодонтов), продолжали осваивать новые способы постановки тела в пространстве по сравнению с более примитивными сухопутными рептилиями, лапы которых находились по бокам тела.
Структурные характеристики тел развивались в таком направлении эволюции, когда наиболее успешными становились морфологические типы, способные питаться, размножаться и бороться за выживание в условиях малого содержания кислорода в окружающей среде. Есть старинная поговорка: ничто так не обостряет вкус жизни, как перспектива близкой смерти. То же верно и для эволюции: жизнедеятельность животных требует много кислорода, и в пермский период добыть его было легче легкого, но позднее пришлось приспосабливаться к самому жесткому из всех жестких условий естественного отбора – недостатку кислорода. Снижение объема кислорода в атмосфере на две трети от прежнего уровня запустило механизм эволюционных инноваций, который в полную силу заработал в триасе. Таким образом, разнообразие морфологических типов животных в триасовый период схоже с разнообразием морских обитателей в период кембрийского взрыва. Кембрийский взрыв следовал за массовым вымиранием (эдиакарская фауна), и то было время более низкого уровня кислорода по сравнению с сегодняшним. А низкий уровень кислорода всегда стимулирует эволюцию новых форм.
Триас – общая картина
Научно обоснованные временные рамки раннего триасового периода – 250–245 млн лет назад, и в этом интервале восстановления после массового вымирания почти не происходило. Любопытна история изменений уровней кислорода в тот период. Содержание кислорода в атмосфере снизилось почти до минимальных отметок в 10–15 % и оставалось таким на протяжении 5 млн лет, то есть 245–240 млн лет назад. Также существуют интересные данные о больших изменениях в соотношении изотопов углерода в тот период, указывающие, что весь углеродный цикл испытал некоторые возмущения, а это отражает либо последовательность выбросов метана в атмосферу и океан, либо говорит о том, что в тот временной интервал произошел ряд малых вымираний. И вновь мы сталкиваемся с удивительным сходством этого периода и кембрия.
Вся картина исследований показывает, что мир был неласков к животным. Возможно, микроорганизмы и процветали, особенно те, чей жизненный цикл связан с серой, но животные переживали по-настоящему трудные времена. Однако трудные времена всегда являются двигателем эволюционного прогресса и инноваций, и тот длительный период нехватки кислорода стал настоящим прорывом в области новых дыхательных систем. На суше развивались две новые группы: млекопитающие и динозавры. Первые ждали лучших времен, вторые быстро стали господствующей формой жизни на планете.
В предыдущей главе уже говорилось, что пермское вымирание почти уничтожило сухопутных обитателей. Сильно пострадали терапсиды. Об архозавроморфах (рептилии, похожие на крокодилов) того периода известно очень мало, в формациях Карру или в России в основном находятся окаменелости дицинодонтов (звероподобных рептилий). Впрочем, в пустыне Карру авторами этой книги были обнаружены, хотя и совсем немного, хорошо сохранившиеся окаменелости архозавроморфов в верхних слоях пермского периода.
Хотя мы и недостаточно осведомлены о пермских предках архозавроморфов, нет никаких пробелов в наших знаниях о том, как они развивались в триасовом периоде. В формации Карру, буквально несколькими метрами выше условной границы перми и триаса, достаточно регулярно обнаруживаются останки относительно крупной рептилии протерозуха (хасматозавр). Это было определенно сухопутное существо с впечатляющим количеством очень острых зубов, наверняка хищник. Его лапы, как у крокодила, располагались по бокам тела, хотя, впрочем, немного под телом, что позволяло ему находиться в более приподнятом над землей положении. В течение триасового периода положение тел архозавроморфов над землей становилось все более приподнятым, эти анатомические изменения происходили с ними очень быстро, и вскоре появились хищники, которые могли передвигаться с большей скоростью, чем протерозух.
Кроме очевидной необходимости в более быстром передвижении, новшества в положении лап относительно тела также решали важный вопрос одновременности движения и дыхания. Как и современные ящерицы, протерозух двигался, вероятно, изгибая туловище, что приводило к сжатию отдела легких в груди, и дыхание при передвижении затруднялось, особенно во время бега. Ящерицы и саламандры не дышат при передвижении, и протерозух также не избежал похожих проблем, хотя, вероятно, в меньшей степени[183]183
D. R. Carrier, «The Evolution of Locomotor Stamina in Tetrapods: Circumventing a Mechanical Constraint,» Paleobiology 13 (1987): 326–41.
[Закрыть].
Решение этой проблемы – переместить конечности под туловище, но это еще не всё[184]184
E. Schachner, R. Cieri, J. Butler, G. Farmer, «Unidirectional Pulmonary Airflow Patterns in the Savannah Monitor Lizard,» Nature 506, no. 7488 (2013): 367–70.
[Закрыть]. Чтобы по-настоящему избавиться от затруднений с дыханием, помимо структуры тела необходимо значительно перестроить и саму систему дыхания. Организмы той ветви эволюции, от которой произошли птицы и динозавры, развили эффективное качество – двуногость. Лишившись одной пары опорных конечностей, они получили возможность дышать и передвигаться одновременно. Предки млекопитающих также приобрели несколько новшеств, в том числе вторичное нёбо (позволяет одновременно дышать и поглощать пищу), а также полностью поднятое над землей туловище, хотя они по-прежнему оставались четвероногими. Но все же и этих новоприобретений оказалось недостаточно, требовалась новая дыхательная система. И появилась диафрагма – система мускулов, позволяющая намного интенсивнее вдыхать и выдыхать воздух.
Помимо изучения костей динозавров, существует много других способов узнать о развитии жизни на планете. Триасовый взрыв также связан с развитием разнообразия пресмыкающихся, вернувшихся к водному образу жизни, – так они отреагировали на усиление жары и снижение уровня кислорода в данный период.
Кислород необходим животным, чтобы регулировать обмен веществ, этот газ участвует в реакциях, которые составляют саму суть жизни. Однако в любом химическом процессе присутствует не один, а множество факторов, регулирующих реакции. Одним из самых важных факторов является температура. Обмен веществ, метаболизм – процесс, при котором организм поглощает энергию, и интенсивность именно этого процесса весьма различна для теплокровных и холоднокровных животных. Впрочем, даже в одном организме интенсивность обмена веществ в удивительно высокой степени и напрямую зависит от температуры. Недавние исследования показывают, что около одной трети, а иногда и половина всех энергетических ресурсов организма животного тратится на то, чтобы просто остаться в живых в ходе таких процессов, как белковый обмен, циркуляция крови, дыхание. Другие действия, более необходимые в тот или иной момент, – передвижение, размножение, принятие пищи и прочее – накладываются на упомянутые внутренние процессы, и скорость поглощения «горючего», а с ним и температура, возрастает[185]185
A. F. Bennett, «Exercise Performance of Reptiles,» in J. H. Jones et al., eds., Comparative Vertebrate Exercise Physiology: Phyletic Adaptations, Advances in Veterinary Science and Comparative Medicine, vol. 3 (New York; Academic Press, 1994), 113–38.
[Закрыть]. Однако с ростом интенсивности метаболизма увеличивается и потребность в кислороде, поскольку химические реакции, составляющие суть жизни, зависят от этого вещества. Ключом к проблеме является то, что интенсивность обменных процессов удваивается или утраивается с повышением температуры на каждые десять градусов. Последствия этого в мире, где мало (по сравнению с современностью) кислорода, но более высокие средние температуры, огромны.
Между уровнями атмосферного кислорода и температурой прямой зависимости нет. Зато она существует между температурой и углекислым газом. В главе 3 было указано, что уровни кислорода и углекислоты в атмосфере, грубо говоря, находятся в обратном отношении друг к другу: много кислорода – мало углекислого газа, и наоборот. Многие периоды в истории Земли демонстрируют эту обратную зависимость, и во времена с низким уровнем атмосферного кислорода уровень CO2 был высок, а значит, было и жарко. В мире, где очень жарко и мало кислорода, животным приходится нелегко. Мы уже рассказали о некоторых способах адаптации к условиям с низким уровнем кислорода. Один из них, самый очевидный, – искать пути охлаждения, иногда этого можно добиться физиологическими методами, а иногда – поведенческими.
Существует, например, способ, одновременно и морфологический, и физиологический, и поведенческий – возвращение в океан, прохладный океан. Даже в самые жаркие периоды истории океан оставался заметно прохладнее, поэтому, возможно, многие сухопутные животные мезозойской эры сменили лапы на ласты или плавники и сбежали в моря, причем в значительных количествах.
В данной главе уже упоминалось, что в описываемый период высоких температур и низкого уровня кислорода неуклонно возрастало число четвероногих, которые вернулись в морскую среду обитания. Ни до, ни после данного периода не было таких случаев, когда столько таксономических групп оставили бы сушу ради моря. Сегодня мы радуемся большому количеству видов китов, тюленей, пингвинов, а ведь эти три группы эволюционировали из сухопутных существ и теперь демонстрируют высокую степень приспособленности к морской среде. Впрочем, киты и тюлени вместе взятые составляют всего 2 % всех млекопитающих, а пингвины – 1 % птиц. Однако в триасовых морях водилось множество других «репатриантов» – животных, которые были сухопутными, но потом заново приспособились к жизни в воде. В триасе существовали гигантские ихтиозавры, четвероногие плакодонты (они очень походили на современных тюленей, только у них имелись плоские коренные зубы, явно приспособленные для перемалывания раковин и панцирей). В юрском периоде к ихтиозаврам присоединилась целая компания плезиозавров с короткой или длинной шеей. В меловом периоде ихтиозавры исчезли, а на смену им пришли крупные мозазавры. И всех этих существ объединяло одно – когда-то они были сухопутными.
Такое большое количество морских четвероногих подтверждается исследованием специалиста по морским обитателям Натали Бардет, которая в 1994 году опубликовала обзорную статью[186]186
N. Bardet, «Stratigraphic Evidence for the Extinction of the Ichthyosaurs,» Terra Nova 4 (1992): 649–56. См. также: C. W. A. Andrews, A Descriptive Catalogue of the Marine Reptiles of the Oxford Clay. Based on the Leeds Collection in the British Museum (Natural History), London. Part II (London: 1910): 1–205, также подробный обзор по данной теме в статье: R. Motani, «The Evolution of Marine Reptiles,» Evolution: Education and Outreach 2, no. 2 (2009): 224–35.
[Закрыть] обо всех известных тогда семействах морских рептилий мезозойской эры. Примечательно, что очень многие из них относятся к триасу. Так почему же столько животных вернулось в океан?
Низкий уровень кислорода и высокая температура были двумя основными доминантами в окружающей среде на планете тех времен. Специалист по рептилиям из Вашингтонского университета Рей Хьюи предположил, что именно жаркий климат триаса и юры был тем фактором, который спровоцировал эволюционный переход некоторых пресмыкающихся с суши обратно в океан. В 2006 году Питер Уорд (один из авторов данной книги) доказал, что между уровнями кислорода в мезозое и количеством рептилий существовала интересная обратная зависимость: периоды низкого уровня кислорода соответствовали времени появления большого количества морских рептилий. Рост уровня кислорода, наоборот, совпал с заметным сокращением числа семейств тех четвероногих, которые вели исключительно морской образ жизни. Впрочем, связи между абсолютным количеством морских обитателей и сухопутных динозавров не прослеживается, и упомянутая обратная зависимость между уровнем кислорода и числом животных остается просто интересным новым аспектом, в котором мы рассматриваем планету мезозойской эры.