355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Джеймс Глейк » Хаос. Создание новой науки » Текст книги (страница 15)
Хаос. Создание новой науки
  • Текст добавлен: 26 сентября 2016, 18:09

Текст книги "Хаос. Создание новой науки"


Автор книги: Джеймс Глейк



сообщить о нарушении

Текущая страница: 15 (всего у книги 22 страниц)

Период первой появившейся волны составлял около двух секунд, а следующее разветвление произошло уже с некоторыми изменениями. Виток в жидкости продолжал колебаться, температура, показываемая болометром, росла и падала с определенной цикличностью, но на одной из ветвей температура стала чуть выше, чем раньше, а на другой – чуть ниже. Фактически значение температуры расщепилось, образовав два различных максимума и минимума. Вычерчиваемая графопостроителем линия, весьма сложная для интерпретации, фиксировала как бы одно колебание на другом, своего рода «метаколебание». На спектральной диаграмме описанный эффект выглядел более четко: прежняя частота еще в значительной мере присутствовала, хотя температура, как и раньше, поднималась каждые две секунды. Однако теперь новая частота составляла ровно половину прежней, поскольку в системе проявился некий повторяющийся каждые четыре секунды компонент. Затем, по мере появления разветвлений, стали возникать новые частоты, вдвое меньше предыдущих. Диаграмма с четвертыми, восьмыми и шестнадцатыми долями скоро уже напоминала забор, в котором чередовались высокие и низкие рейки (т. е. пики).

Человек, ищущий в беспорядочной информации скрытые формы, должен проделать один и тот же опыт десятки и сотни раз, прежде чем начнут проясняться закономерности поведения исследуемой системы. Когда наши экспериментаторы, ученый и инженер, постепенно увеличивали температуру и система переходила от одного состояния равновесия к другому, порой наблюдались весьма специфичные явления. Иногда появлялись промежуточные частоты, плавно скользившие по спектральной диаграмме и вскоре исчезавшие. Временами изменялась наблюдаемая геометрия, и вместо двух появлялось три валика жидкости. И как можно было угадать, что же на самом деле происходит внутри маленькой стальной ячейки?

Знай тогда Либхабер об открытии Файгенбаумом всеобщности, он бы точно представлял, что такое разветвления и где их искать. К 1979 г. все больше математиков и сведущих в математике физиков обращали внимание на новую теорию Файгенбаума, но в массе своей ученые, знакомые с трудностями изучения реальных физических систем, воздерживались от каких-либо определенных суждений по весьма веским причинам. Одномерные системы, вроде тех, которые исследовали Мэй и Файгенбаум, – это одно, а реальные, конструируемые инженерами механизмы – совсем другое. Поведение реальных устройств описывается не простыми алгебраическими, а громоздкими дифференциальными уравнениями. Более того, еще одна пропасть отделяла двух-, трех– и четырехмерные системы от жидкостных потоков, которые физики рассматривали как системы с потенциально бесконечным числом измерений. Даже структурированная ячейка Либхабера, содержала бесконечно большое число частиц жидкости, и каждая из них обладала, по крайней мере, потенциалом независимого движения. Значит, при определенных обстоятельствах любая частица могла стать источником нового изгиба или вихря.

«Никто и не помышлял, что действительно нужное нам основное движение в такой системе упрощается и описывается схемами», – признался Пьер Хоэнберг из лабораторий «AT & Т Bell» в Нью-Джерси. Он входил в число тех немногих физиков, которые доверяли как новой теории, так и связанным с ней экспериментам. «Файгенбаум, может быть, и мечтал о таком, но не высказывал своих чаяний вслух. Его работа была посвящена схемам. Почему они должны интересовать физиков? Забава, не более того… Пока шли игры со схемами, все казалось слишком далеким от того, что мы действительно стремились понять. Но когда теория подтвердилась на опыте, она нас не на шутку взволновала. Самое удивительное заключается в том, что, исследуя по-настоящему интересныесистемы, можно во всех деталях понять их поведение при помощи модели с малым числом степеней свободы».

В конце концов именно Хоэнберг познакомил экспериментатора и теоретика. Летом 1979 г. он проводил семинар в Аспене, где побывал Либхабер. (Четырьмя годами ранее, на такой же летней встрече, Файгенбаум слушал доклад Стива Смэйла о числе – одном-единственном числе, которое словно бы «взорвалось», когда математик наблюдал переход к хаосу в определенном уравнении.) Либхабер описал свои опыты с жидким гелием, а Хоэнберг сделал заметки. По пути домой он заглянул в Нью-Мексико повидаться с Файгенбаумом. Вскоре после этого Файгенбаум посетил Либхабера в Париже, и тот с гордостью продемонстрировал свою миниатюрную ячейку, дав Файгенбауму возможность разъяснить последний вариант его теории. Потом они вместе бродили по Парижу в поисках хорошей кофейни, и Либхабер позже вспоминал, как был удивлен, увидев столь молодого и, по его собственному выражению, живогоученого-теоретика.

Переход от схем к реальным потокам жидкости казался настолько значительным достижением, что даже самые щепетильные и недоверчивые ученые восприняли его как чудо. Каким образом природа смогла сочетать крайнюю сложность с предельной простотой, никто не понимал. Джерри Голлаб предложил «рассматривать это не как обычную связь между теорией и опытом, а как некое чудо». И это чудо в течение нескольких лет повторялось снова и снова в огромном бестиарии лабораторных систем: в увеличенных в размерах ячейках с водой и ртутью, электронных осцилляторах, лазерах и даже в химических реакциях. Теоретики, восприняв методы Файгенбаума, обнаружили и иные математические пути к хаосу, родственные удвоению периодов, – прерывистость и квазипериодичность, которые тоже доказали свою универсальность как в теории, так и в опытах.

Открытия ученых стимулировали компьютерные эксперименты. Физики обнаружили, что вычислительные машины воспроизводят изображения, аналогичные тем, что наблюдаются в реальных опытах, только в миллионы раз быстрее и куда надежнее. Многим более убедительной, нежели результаты Либхабера, казалась жидкостная модель Вальтера Францечини из Университета Модены (Италия) – система из пяти дифференциальных уравнений, генерировавшая аттракторы и удвоение периодов. Хотя Францечини ничего не знал о Файгенбауме, его сложная модель с большим числом измерений выдавала те же постоянные, которые нашел Файгенбаум с помощью своих одномерных схем. В 1980 г. группа европейских ученых выработала довольно убедительное математическое объяснение феномена: диссипация «опорожняет» сложную систему, устраняя множество противодействующих движений и фактически преобразуя поведение множества измерений в одно.

Тем не менее поиски странного аттрактора в реальных экспериментах с жидкостью еще не увенчались успехом, так что исследователи вроде Гарри Суинни не оставляли своих трудов и в 80-х годах. Когда наконец цель была достигнута, некоторые новоиспеченные компьютерные эксперты постарались преуменьшить значение полученных результатов, объявив их лишь приблизительным и предсказуемым подражанием тем великолепным детальным картинам, которые были уже созданы графическими терминалами. В компьютерном эксперименте, генерирующем тысячи или миллионы единиц информации, образцы сами собой приобретают более или менее ясные очертания. В лаборатории же, как и везде в реальном мире, нужную информацию необходимо отделять от шумов. В компьютерном эксперименте данные льются как из рога изобилия, а в лаборатории приходится сражаться за каждую каплю.

Однако новые теории Файгенбаума и других исследователей не привлекли бы внимания столь широкого круга ученых, будь они подкреплены одними только компьютерными экспериментами. Модификации, компромиссы и аппроксимации, необходимые для того, чтобы справиться с системой нелинейных уравнений, казались слишком сомнительными. В процессе моделирования пространство «разбивали» на огромное, но всегда казавшееся недостаточным число фрагментов, а сама компьютерная модель представлялась лишь совокупностью правил, выбранных наугад программистами. В отличие от такой модели, реальная жидкость, даже в крохотной ячейке миллиметровых размеров, обладает несомненной способностью к совершенно свободному, ничем не сдерживаемому движению, составляющему основу естественного беспорядка. Она еще может нас удивить.

В эпоху виртуальных построений, когда суперкомпьютеры создают модели потоков в любых системах, начиная от струйных турбин и заканчивая сердечными камерами, забываешь, как легко природа может поставить экспериментатора в тупик. Фактически ни один компьютер сегодня не в состоянии полностью имитировать даже такую несложную систему, как ячейка с жидким гелием Либхабера. Всякий раз, когда опытный физик изучает компьютерную модель, он вынужден задаваться вопросом, какая часть действительности не учтена и какие подвохи это сулит. Либхабер любил повторять, что не рискнул бы пуститься в дорогу на виртуальном самолете – кто знает, какой детали в нем недостает? Более того, он замечал, что компьютерные модели, помогая строить интуитивные догадки или совершенствовать вычисления, не становятся источником подлинных открытий. Во всяком случае, так звучало кредо истинного экспериментатора.

Опыт Либхабера казался слишком безукоризненным, а научные цели – столь абстрактными, что находились физики, относившие его работу больше к философии или к математике, нежели к физике. Экспериментатор, в свою очередь, полагал, что в его дисциплине господствуют редукционистские стандарты, отдающие пальму первенства изучению свойств атомов. «Физик спросит: как может данный атом, появившись здесь, обосноваться там? Что произойдет у поверхности объекта? Можно написать гамильтониан системы? Если я отвечу, что меня интересует лишь сама форма, ее математика и эволюция, разветвление, переходы к другой форме, возвращение к рассматриваемой, он заявит, будто я занимаюсь не физикой, а математикой. Даже сегодня я слышу такие утверждения. Что я могу сказать на это? Да, конечно, я занимаюсь математикой, но она напрямую относится к тому, что происходит вокруг нас, и это тоже природа».

Обнаруженные Либхабером модели действительно были абстрактными, математическими и ничего не проясняли в свойствах жидкого гелия, меди или в поведении атомов при температуре, близкой к абсолютному нулю. Но именно о таких моделях мечтали мистически настроенные предшественники Либхабера. Эти модели узаконили эксперименты, которыми вскоре займутся многие ученые, ищущие новые элементы движения, от химиков до инженеров-электронщиков. Модели обнаружились, когда Либхабер, увеличив температуру, сумел выделить первое удвоение периодов, затем спрогнозировать следующее и т. д. Согласно новой теории, бифуркации должны были воспроизводить геометрию с точным масштабированием, что и обнаружил Либхабер. Универсальные инварианты Файгенбаума с этого мгновения превращались из математического идеала в физическую реальность, которую можно было измерить и воспроизвести. Либхабер долго вспоминал потом свои ощущения в тот сверхъестественный миг, когда он узрел одну бифуркацию за другой и понял, что перед ним бесконечный каскад изменений с богатейшей структурой. Это было, как он заметил, занятно.

Глава 8
Образы хаоса

Что еще, как не хаос, взывает к внутренним силам,

Дабы придать форму единственному листку…

Конрад Айкен

Математик Майкл Барнсли встретил Митчелла Файгенбаума во время конференции на Корсике в 1979 г. Барнсли, недавний выпускник Оксфорда, только-только познакомился с понятием всеобщности, удвоением периодов и бесконечным каскадом бифуркаций. «Отличная идея, – подумал он. – И конечно, все набросятся на нее, чтобы отхватить себе по кусочку». Барнсли тоже присмотрел себе кусочек, не замеченный еще ни одним из конкурентов.

Откуда происходили эти циклы (2, 4, 8, 16), эти последовательности Файгенбаума? Появлялись ли они, будто по мановению волшебной палочки, из математической пустоты или содержали намек на нечто более глубокое? Барнсли интуитивно чувствовал, что они – часть какого-то невероятного фрактального объекта, ускользавшего до сих пор из поля зрения ученых.

Для проверки идеи уже имелся математический аппарат – комплексная плоскость. В данной плоскости числа от минус бесконечности до плюс бесконечности, т. е. все действительные числа, лежат вдоль линии, которая тянется с запада на восток, а ноль располагается в середине. Но данная линия лишь экватор мира, простирающегося на север и на юг до бесконечности. Каждое число состоит из двух частей: действительной, соответствующей долготе, и мнимой, соответствующей широте. Эти комплексные числа условно записываются следующим образом: 2 + 3і, где і обозначает мнимую часть. Обе части сообщают каждому числу уникальное местоположение на данной двухмерной плоскости. Первоначальная линия, таким образом, является лишь частным случаем – совокупностью чисел, мнимая часть которых равна нулю. Рассматривать в такой сложной плоскости лишь действительные числа (точки экватора) значит ограничить свое поле зрения случайными пересечениями форм, которые, будучи обозрены в двух измерениях, могут открыть нечто новое. Так полагал Барнсли.

Понятие действительногои мнимогочисла возникло в те времена, когда обычные числа казались более реальными, чем новый «гибрид». Ныне любой ученый сознает, что названия эти произвольны. Числа каждого типа столь же действительны, сколь и мнимы. Ранее мнимые числа использовались для заполнения умозрительного вакуума, порождаемого вопросом: чему равен квадратный корень из отрицательного числа? Условно квадратный корень из -1 принимали за і, квадратный корень из -4 – за 2і и т. д. Это была лишь одна из ступеней на пути к осознанию того, что сочетание действительных и мнимых чисел позволяет отыскать все корни многочлена. Комплексные числа можно складывать, умножать, делить, усреднять, интегрировать. Словом, почти каждое вычисление с действительными числами удается проделать и с комплексными. Итак, Барнсли начал переводить функции Файгенбаума в комплексную плоскость, и тут он заметил контуры, порождаемые удивительным семейством форм. Они относились, по-видимому, к тем динамическим системам, которые ставили в тупик физиков-экспериментаторов. Эти формы являлись одновременно и поразительными математическими конструкциями.

В конце концов Барнсли понял, что циклы в последовательностях Файгенбаума возникают не на пустом месте. Они относятся к линии, удаленной от комплексной плоскости, где, если приглядеться, существует целое «созвездие» циклов всех порядков. Там всегда наблюдались цикл-два, цикл-три, цикл-четыре, ускользавшие из виду до тех пор, пока они не достигнут линии-экватора с действительными числами. Вернувшись с Корсики в Технологический институт Джорджии, Барнсли написал статью и предложил ее журналу, занимавшемуся вопросами математической физики. Редактор, которым оказался Давид Руэлль, огорчил его: Барнсли, сам того не ведая, повторил открытие пятидесятилетней давности, которое сделал один французский математик. «Руэлль отфутболил мою работу, сопроводив ее припиской: „Майкл, здесь речь идет о множествах Джулиа“», – вспоминал позже Барнсли. Руэлль также посоветовал математику связаться с Мандельбро.

Джон Хаббард, американский математик, обожавший модные рубашки, уже три года преподавал начала математического анализа первокурсникам в Университете Орсе, во Франции. Среди прочих тем в учебный план входило рассмотрение метода Ньютона – классической схемы решения уравнений путем последовательных приближений, или итераций. Хаббарда, впрочем, привычные темы немного утомляли, и однажды он решил, что преподнесет вопрос в такой форме, которая заставит студентов поразмыслить.

Ньютонов метод известен давно. Он не отличался новизной даже тогда, когда Ньютон его «изобрел». Древние греки применяли один из вариантов этого метода для извлечения квадратных корней. Решение начинается с догадки, с начального числа, которое приводит к более точному результату, и процесс итерации устремляется к ответу, подобно тому как динамическая система стремится обрести устойчивое состояние. Процесс идет достаточно быстро, и количество точных цифр после запятой, как правило, удваивается с каждым шагом. Конечно, сейчас квадратные корни вычисляют более аналитическими методами, как и все корни квадратных уравнений – тех, в которых неизвестное xвозводится не более чем во вторую степень. Но Ньютонов метод является действенным и для многочленов с высокими степенями, которые не могут быть разрешены аналитически. Он прекрасно подходит для множества компьютерных алгоритмов – ведь итерационные процедуры, как никакие другие, подходят для выполнения на вычислительной машине. Одним маленьким недостатком данного метода можно считать то, что уравнения обычно имеют более одного корня, особенно если среди этих корней есть комплексные решения. Какое именнорешение будет найдено с помощью метода итераций, зависит от первоначальной догадки. На практике для студентов не составляет труда преодолеть начальный этап. Обычно имеется отправной пункт, и если сделанное предположение приводит к неверному решению, надо просто начинать с другой точки.

Вы спросите, каким маршрутом метод Ньютона приводит к корням квадратного уравнения на комплексной плоскости? Рассуждая геометрически, ответим, что метод позволяет отыскать тот из двух корней, который ближе к первоначальной догадке. Именно это Хаббард и объяснил своим студентам, когда однажды ему задали такой вопрос. «Уравнения, скажем, третьей степени решаются сложнее, – заметил преподаватель. – Я подумаю над этой проблемой, и мы займемся ею через неделю».

Он полагал, что наибольшую трудность для студентов будет представлять итерационный процесс, но никак не выдвижение начальной догадки. Но чем больше Хаббард размышлял на эту тему, тем менее определенным казалось то, что следует считать разумной догадкой или к чему на самом деле приводит метод Ньютона. Очевидным геометрическим решением было бы разделение плоскости на три равных сектора, похожих на куски пирога, в каждом из которых находилось бы по одному корню. Однако, как обнаружил Хаббард, идея не срабатывала: около границ секторов творились весьма странные вещи. Кроме того, выяснилось, что он далеко не первый специалист, споткнувшийся на этом чрезвычайно сложном вопросе. Так, Артур Кейли в 1879 г. попытался перейти от уравнений второй степени, которые казались вполне понятными, к пугающе сложным уравнениям третьей степени. Тем не менее Хаббард столетие спустя имел в своем распоряжении то, чего недоставало Кейли.

Хаббард относился к числу тех математиков, которые, уважая точность, презирали всяческие догадки, аппроксимации и эмпирику, основанную скорее на интуиции, чем на доказательстве. Даже спустя двадцать лет после появления в литературе упоминания об аттракторе Лоренца он продолжал настаивать на том, что фактически никто не знал, дали начало аттрактору уравнения Лоренца или нет. Это представлялось ему лишь недоказанным предположением, а уже знакомая нам двойная спираль, по его утверждению, была не доказательством, а простой очевидностью, тем, что изображают компьютеры.

Но сейчас, отринув сомнения, Хаббард все-таки обратился к компьютеру, чтобы выполнить то, что общепринятые методы обошли стороной. Компьютер не доказал быничего, но, по крайней мере, он мог бы кое-что прояснить, чтобы математик понял, что именно ему предстоит доказать. Итак, Хаббард начал экспериментировать, рассматривая Ньютонов метод не как средство решения задач, а как саму задачу. Он взял в качестве примера простое кубическое уравнение x³ – 1 = 0, при решении которого требуется найти кубический корень из единицы. В случае с действительными числами решение вполне тривиально – единица. Однако данный многочлен имеет также два комплексных корня:


Нанесенные на комплексную плоскость, три указанных корня образуют равносторонний треугольник, одна вершина которого будет находиться на трех часах, другая – на семи часах, и третья – на одиннадцати часах. Коль скоро в качестве начальной точки выбрано любое комплексное число, вопрос заключается в том, чтобы увидеть, какое именноиз трех решений даст вычисление по методу Ньютона. Это все равно что рассматривать данный метод как динамическую систему, а три решения – как три аттрактора. Или представить комплексную плоскость в виде ровной поверхности, спускающейся к трем углублениям. Мраморный шарик, начав катиться с любой точки на плоскости, приведет в одну из долин. Какую?

Хаббард приступил к рассмотрению бесконечного числа точек, составляющих плоскость. Его компьютер переходил от точки к точке, рассчитывая Ньютоновым методом каждую из них и кодируя результат определенным цветом. Те начальные точки, которые вели к первому решению, стали синими, точки, генерировавшие второе решение, – красными, а тем, которые давали третий результат, был присвоен зеленый цвет. Математик заметил, что даже при самом грубом приближении плоскость в силу динамики метода действительно делится на три сектора. Как правило, точки, близкиек определенному решению, быстро вели прямо к нему. Тем не менее систематическое компьютерное исследование выявило сложную скрытую организацию, которая ранее никогда не могла быть обнаружена математиками, способными только рассчитывать точки в разных зонах. В то время как некоторые начальные предположения быстро приводили к одному из корней, другие словно бы «прыгали» рядом с ним совершенно произвольно, пока не приближались наконец к решению. Иногда казалось, что точка может стать началом периодического цикла, который будет повторяться вечно, не достигая ни одного из трех возможных корней.

Когда Хаббард запустил компьютер, намереваясь более детально исследовать пространство, начала вырисовываться картина, которая сбила с толку и преподавателя, и его студентов. Например, вместо аккуратного «гребня» между синей и красной долинами математик увидел пятна зеленого цвета, соединенные словно бусины ожерелья. Это выглядело так, словно шарик, попавший в ловушку на стыке двух соседних долин, остановился в третьей, самой отдаленной зоне. Граница между двумя цветами никогда полностью не формировалась, и даже при увеличении линия между зеленым пятном и синей областью включала в себя клочки красного цвета. И так снова и снова… Линия границы в конце концов открыла Хаббарду особое свойство, которое показалось бы весьма странным даже человеку, знакомому с жуткими фракталами Мандельбро: ни однаиз точек не разделяет только два цвета. Где бы два цвета ни старались соединиться, там всегда появляется третий, внедряясь новыми, внутренне подобными рядами. Непостижимо, но каждую пограничную точку окаймляли зоны всех трех цветов.

Хаббард начал изучать обнаруженные сложные формы. В результате его работа, а также исследования коллег ознаменовали собой новый штурм проблемы динамических систем. Ученому стало ясно, что схематичное отображение Ньютонова метода – одно из целого семейства еще не открытых изображений, передающих действия сил в реальном мире. Майкл Барнсли столкнулся с другими фрагментами такого же рода, а Бенуа Мандельбро, как вскоре поняли и Хаббард и Барнсли, обнаружил прототип всех этих форм.

Множество Мандельбро, как любят повторять его почитатели, является наиболее сложным объектом во всей математике. Чтобы увидеть его полностью – круги, усыпанные колючими шипами, спирали и нити, завивающиеся наружу и кругом, с выпуклыми пестрыми молекулами, висящими, словно виноградины на личной лозе Господа Бога, – не хватит целой вечности. Если разглядывать модель в цвете на подходящем экране, множество Мандельбро кажется более фрактальным, нежели сами фракталы, настолько оно изобилует сложностью, пронизывающей все масштабы картины. Построение каталога различных составляющих элементов или числовое изображение очертаний системы потребует бесконечного количества данных. Однако, как это ни парадоксально, для передачи полного описания системы по линии связи хватит нескольких десятков кодовых символов, а в компьютерной программе содержится достаточно информации, чтобы воспроизвести систему целиком. Догадавшиеся первыми, каким образом в системе смешиваются сложность и простота, были застигнуты врасплох – даже сам Мандельбро. Система превратилась в эмблему хаоса для широкой публики. Она замелькала на глянцевых обложках тезисов конференций и инженерных журналов и сделалась украшением выставки компьютерного искусства, показанной во многих странах в 1985–1986 годах. Ее красота ощущалась сразу. Гораздо труднее было уловить математический смысл. Ученые долго вникали в ее суть.

Неисчислимое разнообразие фрактальных форм может быть образовано итерацией в комплексной плоскости, но система Мандельбро была одной-единственной. Смутная и призрачная, она начала вырисовываться, когда ученый попытался найти способ сведения к общим законам класса форм, известного как множества Джулиа. Множества эти были открыты и изучены еще во время Первой мировой войны французскими математиками Гастоном Джулиа и Пьером Фато, работавшими без каких бы то ни было компьютерных изображений. Мандельбро в двадцатилетнем возрасте познакомился с их скромными рисунками и прочитал их работу, уже канувшую в безвестность. Именно множества Джулиа во всем разнообразии обличий оказались тем, что поставило в тупик Барнсли. Некоторые из порождаемых ими форм похожи на круги, проколотые и деформированные во многих местах, что придает им фрактальную структуру, другие разбиты на зоны, третьи – на разъединенные пылинки. Для их описания не подходят ни обычные слова, ни понятия Евклидовой геометрии. Французский математик Адриен Доуди заметил: «Получив непредсказуемо многоликие образы множеств Джулиа, замечаем, что некоторые выглядят словно пухлое облако, другие представляют собой тощий куст ежевики, третьи похожи на искорки, плывущие в воздухе после фейерверка. Один объект напоминает кролика, и многие имеют хвосты, как у морских коньков».


Рис. 8.1. Примеры изображений, полученных с помощью множеств Джулиа.

В 1979 г. Мандельбро обнаружил, что может создать в пределах комплексной плоскости один образ, который послужит своего рода каталогом множеств Джулиа, ориентиром для каждого из составляющих эти множества объектов. Тогда он изучал итерационные решения квадратных и тригонометрических уравнений (последние включали функции синуса и косинуса). Даже основываясь на гипотезе о порождении простотой сложности, он отнюдь не сразу понял, насколько необычным являлся объект, возникший на экране монитора в его кабинете в Гарварде. Программисты, пытаясь эффективно распределить память компьютеров, корпели над новыми интерполяциями точек в машине IBM с обладающим низким разрешением, черно-белым дисплеем, а ученый торопил их, желая рассмотреть мельчайшие детали. Вдобавок приходилось следить за тем, чтобы не попасть в ловушку артефактов, возникающих из-за сбоя в машине и исчезающих при изменении программы.

Мандельбро обратился к простейшим изображениям, запрограммировать которые не составляло труда. На грубо набросанной координатной сетке, где несколько раз повторялась петля обратной связи, возникли первые контуры кругов или дисков. Проделанные вручную расчеты показали, что с математической точки зрения они вполне реальны и не являются некими вычислительными странностями. Справа и слева от главных дисков появлялись иные неясные очертания. Как позже вспоминал сам Мандельбро, воображение нарисовало ему нечто большее – целую иерархию форм, где от атомов, словно ростки, отпочковываются всё новые и новые атомы, и так до бесконечности. А там, где система пересекала действительную ось, ее уменьшающиеся с каждым разом диски подчинялись определенному масштабированию с геометрической регулярностью, которую ученые, занимающиеся динамическими системами, определяют сейчас как последовательность бифуркаций Файгенбаума.

Эти исследования подтолкнули Мандельбро к продолжению работы и совершенствованию первых черновых изображений. Вскоре он обнаружил некие включения, собиравшиеся по краям дисков и «плававшие» в близлежащем пространстве. Продолжая рассчитывать мельчайшие детали, он вдруг почувствовал, что удача покинула его, – на картинах вместо четких изображений появлялась путаница. Тогда он направился обратно в исследовательский центр IBM, надеясь попытать удачи на компьютерах корпорации в частном порядке, чего не мог позволить себе в Гарварде. К удивлению Мандельбро, нарастание путаницы в изображениях говорило о чем-то реальном. Отростки и завитки медленно отделились от основного островка, и возникла кажущаяся однородной граница, которая распадалась на цепочку спиралей, напоминавших хвосты морского конька. Иррациональное породило нечто рациональное.

Система Мандельбро являет собой скопление точек, и каждая точка комплексной плоскости – иными словами, каждое комплексное число – или входит в их множество, или находится вне его пределов. Определить границы множества можно одним способом – тестированием каждой точки с помощью простого итерационного процесса. Для этого необходимо, выбрав комплексное число, возвести его в квадрат, прибавить результат к первоначальному числу, итог вновь возвести в квадрат, вновь прибавить результат к первоначальному числу, вновь возвести итог в квадрат и так далее, снова и снова. Если полученное число стремится к бесконечности, значит, точка не входит в систему Мандельбро. Если же итог имеет предел (может быть «пойман» какой-нибудь из повторяющихся петель или хаотично блуждать), в таком случае точка находится в пределах системы.

Повторение процедуры неопределенное число раз и постоянная проверка того, бесконечен ли ее результат, напоминает процессы обратной связи в повседневной жизни. Представьте себе, что в аудитории вы размещаете микрофон, усилители и громкоговорители. Вас беспокоит, не возникнут ли пронзительные завывания при обратной связи. Что это такое? Если микрофон достаточно чувствителен, усиленный громкоговорителем звук достигнет его и породит бесконечные, еще более громкие отклики. С другой стороны, если звуки слабы, они просто затухнут. Чтобы построить модель процесса обратной связи, необходимо выбрать начальное число, умножить его на самое себя, затем вновь умножить получившееся число на самое себя и т. д. Мы обнаружим, что большие числа быстро приведут к бесконечности: 10, 100, 10 000… Маленькие же числа стремятся к нулю: ½, ¼, 1/ 16… Чтобы построить геометрическое изображение, мы определим совокупность численных значений, при подстановке которых данное уравнение не стремится к бесконечности. Примем во внимание точки на прямой от нуля и далее. Если точка ведет к эффекту обратной связи (визгу в микрофоне), закрасим ее белым цветом, а все другие – черным. Вскоре у нас появится изображение в виде линии, черной от нуля до единицы.


    Ваша оценка произведения:

Популярные книги за неделю