Текст книги "Хаос. Создание новой науки"
Автор книги: Джеймс Глейк
сообщить о нарушении
Текущая страница: 10 (всего у книги 22 страниц)
Но работа ни на минуту не прекращалась. «Налицо был качественно определенный переход, – говорил Суинни, – и мы сочли это необыкновенной удачей. А затем вновь двинулись вперед, искать следующий».
И вдруг последовательность, о которой писал Ландау, разрушилась. Эксперимент не подтвердил теорию. При следующем переходе поток «перепрыгнул» к состоянию беспорядочности, не обнаружив сколько-нибудь заметных циклов: ни новых частот, ни постепенного увеличения беспорядочных фрагментов. Ничего. «Все, что мы обнаружили, так это то, что он внезапно стал хаотичным». Несколько месяцев спустя на пороге лаборатории появился худощавый, обаятельный европеец.
Давид Руэлль любил повторять, что существуют два типа физиков: ученые первого типа выросли, разбирая радиоприемники (до появления физики твердого тела можно было, уставившись на провода и светящиеся теплым светом вакуумные лампы, представлять себе потоки электронов), а те, кто принадлежал ко второму разряду, любили возиться с химическими реактивами. Сам Руэлль, родившийся и выросший на севере Бельгии, принадлежал как раз ко второму типу и всем игрушкам предпочитал наборы химика – даже не наборы в нынешнем смысле этого слова, а просто химикаты, неважно, взрывчатые или ядовитые, которыми его щедро снабжал местный аптекарь. Юный Давид смешивал, взбалтывал, нагревал, кристаллизировал и иногда даже взрывал все это богатство. Он родился в Генте в 1935 г. Его мать работала тренером по гимнастике, отец занимал должность профессора лингвистики в университете. И хотя юноша сделал карьеру весьма в далеком от обыденности мире науки, его всегда привлекала мистическая сторона природы, спрятавшей свои загадки в спорах губчатых грибов, селитре, зеленовато-желтой сере и древесном угле.
Математическая физика стала той областью, где Руэлль внес значительный вклад в открытие хаоса. К началу 70-х годов он работал в Институте высших научных исследований – учебном заведении в пригороде Парижа, основанном по образцу Института перспективных исследований в Принстоне. У него уже появилась привычка, сохранившаяся на всю жизнь: время от времени он оставлял семью и работу, чтобы с рюкзаком за спиной побродить в безлюдье Исландии или сельских районах Мексики. Порой он встречал людей, даривших ему свое радушие и гостеприимство. Разделяя с ними скромную трапезу из маисовых лепешек, мяса и овощей, ученый думал, что видит мир таким, каким тот был два тысячелетия назад. Вернувшись в институт, он снова с головой погружался в исследования. Коллеги замечали, как исхудало его лицо, как резко выступает линия бровей, как заострился подбородок. Руэлль слушал лекции Стива Смэйла о «подкове» и хаотическом потенциале динамических систем. Он размышлял о турбулентности в жидкостях и классической схеме Ландау, подозревая, что все это каким-то образом соотносится, но в то же время и противоречит друг другу.
Ученый раньше никогда не работал с потоками жидкости, но это совсем не отбило охоту к исследованиям, так же как и не обескураживало его менее удачливых предшественников. «Новое открывают, как правило, непрофессионалы, – говорил он. – На самом деле не существует сложной и глубокой теории турбулентности. Все, что мы можем выяснить о ней, имеет более общую природу, а посему доступно и людям, ранее этим не занимавшимся». Не составляло труда понять, почему турбулентность не поддавалась анализу, – поведение потоков жидкости описывали нелинейные дифференциальные уравнения, в большинстве своем нерешаемые. И все же Руэлль разработал весьма абстрактную альтернативу схеме Ландау, изложенную на языке Смэйла, где пространство использовалось как податливый материал, который можно сжать, вытянуть и согнуть, образовав формы типа «подковы». Работа была написана в Институте высших научных исследований, с перерывом на визиты к голландскому математику Флорису Такенсу, и опубликована совместно в 1971 г. В стиле статьи нельзя было ошибиться. Она являла собой чистую математику (заметьте, вышедшую из-под пера физика!) и содержала определения, теоремыи доказательства, за которыми с неизбежностью следовало: Допустим…Вот один из примеров: « Доказательство (5.2.).Допустим, что Хμ есть однопараметрическое семейство C k векторных полей в Гильбертовом пространстве H, таком, что…»
И все же в заголовке публикации, которая называлась «О природе турбулентности», прослеживалась связь с реальным миром и чувствовалось нарочитое созвучие с названием знаменитой работы Ландау «К вопросу о турбулентности». Руэлль и Такенс явно желали уйти гораздо дальше математики, пытаясь предложить альтернативу традиционным взглядам на порог турбулентности. Они предположили, что источником всего сложного в турбулентности является не наложение частот, ведущих к появлению бесконечного множества независимых и перекрывающих друг друга движений жидкости, а всего лишь три отдельных движения. Кое-что в их логике казалось весьма смутным, заимствованным, да и попросту неверным, или тем, другим и третьим сразу – пятнадцать лет спустя мнения на сей счет еще расходились.
Тем не менее глубокая проницательность, комментарии, заметки на полях и вкрапления из физики сделали работу объектом внимания на долгие годы. Наиболее соблазнительным казался образ, окрещенный авторами странным аттрактором. Это название было суггестивным, как говорят психоаналитики, т. е. самим своим звучанием рождало подсознательные ассоциации, что Руэлль ощутил позднее. Термин «странный аттрактор» приобрел такую популярность у исследователей хаоса, что Такенс и Руэлль потом оспаривали друг у друга авторство. Ни тот ни другой не могли отчетливо припомнить, кто первый использовал термин. Такенс – высокий, румяный и неистовый норманн – временами ронял: «Вам когда-нибудь доводилось спрашивать у Господа, как он создал эту чертову Вселенную?.. Я ничего не помню… Творю, не запоминая подробностей этого процесса». На что Руэлль, главный из соавторов, мягко замечал: «Разные люди и работают по-разному. Некоторым людям следовало бы писать статьи в одиночку, чтобы затем единолично пожинать лавры».
Странный аттрактор обитает в фазовом пространстве – одном из удивительнейших изобретений современной науки. Фазовое пространство делает возможным превращение чисел в изображения, извлекая даже малую толику существенной информации из движущихся систем, механических или жидкостных, и наглядно демонстрируя все их возможности. Физики уже имели дело с двумя более или менее простыми типами аттракторов – фиксированными точками и замкнутыми кривыми, описывающими поведение таких систем, которые достигли устойчивого состояния или непрерывно себя повторяют.
В фазовом пространстве все известные данные о динамической системе в каждый момент времени концентрируются в одной точке, которая и представляет собой данную систему в кратчайшем временном отрезке. В следующее мгновение система уже претерпит изменения, пусть даже совсем незначительные, и точка изменит свое местонахождение. Всю длительность существования системы можно изобразить на графике, следя за перемещениями точки с течением времени и наблюдая за ее орбитой в фазовом пространстве.
Но как же все данные о сложнейшей системе могут быть представлены лишь в одной точке? Если система характеризуется двумя переменными, найти ответ не составляет труда, он напрямую вытекает из Евклидовой геометрии, преподаваемой в средней школе: одна из переменных располагается на горизонтальной оси x, а другая – на вертикальной оси y. Если же система представляет собой качающийся маятник, свободный от действия силы трения, то одна из переменных является его положением в пространстве, а другая – скоростью. Они непрерывно меняются, образуя линию из точек, которая изгибается петлей, вновь и вновь повторяющей саму себя. Та же система, но обладающая более высокой энергией, раскачивающаяся быстрее и дальше, образует в фазовом пространстве петлю, схожую с первой, но большую по размерам.
Впрочем, столкнувшись с одним из проявлений реальности – трением, система начинает претерпевать изменения. Чтобы описать поведение маятника, подверженного трению, не нужны уравнения движения: каждое его колебание фактически заканчивается на одном и том же месте, в центре, откуда начиналось движение, и скорость его в эти моменты равна нулю. Данная центральная фиксированная зона как бы «притягивает» колебания. Вместо того чтобы вечно чертить на графике петли, орбита маятника спиралью закручивается внутрь. Трение рассеивает энергию системы, что в фазовом пространстве выглядит как толчок к центру. Наблюдается движение из внешних зон с высокой энергией к внутренним зонам с низкой энергией. Аттрактор – простейший из возможных – подобен магниту величиной с булавочную головку, встроенному в лист резины.
Одним из преимуществ рассмотрения состояний системы как совокупности точек в пространстве является то, что в таком случае легче наблюдать происходящие изменения. Система, в которой переменные непрерывно увеличиваются и уменьшаются, превращается в движущуюся точку, словно муха, летающая по комнате. Если некоторые комбинации переменных никогда не возникают, ученый может просто предположить, что пределы комнаты ограничены и насекомое никогда туда не залетит. При периодическом поведении изучаемой системы, когда она снова и снова возвращается к одному и тому же состоянию, траектория полета мушки образует петлю, и насекомое минует одну и ту же точку в пространстве множество раз. Своеобразные портреты физических систем в фазовом пространстве демонстрировали образцы движения, которые были недоступны наблюдению иным способом. Так фотография природного ландшафта в инфракрасных лучах открывает те мелочи и детали, которые существуют вне досягаемости нашего восприятия. Ученый, взглянув на фазовую картину, мог, призвав на помощь воображение, уяснить сущность самой системы: петля здесь соответствует периодичности там, конкретный изгиб воплощает определенное изменение, а пустота говорит о физической невероятности.
Даже при наличии двух переменных изображения в фазовом пространстве могли еще многим удивить. Даже на мониторах настольных компьютеров можно было построить кое-какие из них, превращая уравнения в красочные траектории. Некоторые физики начали создавать серии движущихся картинок и снимать видеопленки, чтобы продемонстрировать их своим коллегам. Математики из Калифорнии публиковали книги, иллюстрированные множеством красно-сине-зеленых рисунков в стиле анимации, – «комиксы хаоса», как отзывались о них, не без яда, коллеги авторов. Но пара измерений не охватывала всего богатства систем, которые хотели изучать физики, и ученые стремились ввести больше двух переменных, что, естественно, требовало увеличения числа измерений. Каждый фрагмент динамической системы, способный к независимому перемещению, является уже новой переменной, воплощая иную «степень свободы», и для каждой такой степени требуется новое измерение в фазовом пространстве. Иначе нет уверенности, что одна-единственная точка содержит достаточно информации для описания состояния системы в каждый конкретный момент времени. Простые уравнения, изучавшиеся Робертом Мэем, являлись однопространственными. Они позволяли обойтись одним числом – значением температуры или численности популяции, которое определяло местоположение точки на прямой, располагавшейся в одном измерении. Развернутая система Лоренца, описывавшая конвекцию в жидкостях, имела три измерения, но не потому, что жидкость двигалась в трех пространственных измерениях, а потому, что для описания состояния жидкости в каждый момент времени требовалось три вполне определенных числа.
Даже топологу с самой развитой фантазией нелегко представить пространства, обладающее четырьмя, пятью и более измерениями. Однако сложные системы имеют множество независимых переменных, поэтому математикам пришлось смириться с тем, что множество степеней свободы требует фазового пространства, где бесконечно много измерений. Так ничем не ограниченная природа дает о себе знать в бурных струях водопада или в непредсказуемости человеческого мозга. Но кто сумеет справиться с буйным, необоримым чудищем турбулентности, которому присущи многообразие форм, неопределенное число «степеней свободы», бесконечное количество измерений?
Физики имели вполне вескую причину, чтобы с неприязнью относиться к модели, поведение которой столь неясно. Используя нелинейные уравнения, описывающие движения жидкости, мощнейшие суперкомпьютеры мира не могли точно проследить турбулентный поток даже одного кубического сантиметра жидкости в течение нескольких секунд. Конечно, виновата в этом больше природа, нежели Ландау, тем не менее предложенная советским ученым схема производила эффект «поглаживания против шерсти». Даже не имея сколько-нибудь солидных знаний, физик вполне мог заподозрить, что феномен не поддается интерпретации. Подобное ощущение выразил словами великий теоретик квантовой физики Ричард Филлипс Фейнман: «Меня всегда беспокоило, что согласно законам в их современном понимании вычислительной машине нужно выполнить бесчисленное количество логических операций, чтобы выяснилось, что же происходит в пространстве и времени, независимо от того, насколько малым является это пространство и сколь коротким – время. Как подобное может случаться в таком маленьком пространстве? Почему требуется столько усилий, чтобы выяснить наконец, какова дальнейшая судьба отрезка времени или капельки пространства?»
Рис. 5.1. Новый способ изучения маятника.
Одна лишь точка в фазовом пространстве (справа)передает всю информацию о состоянии динамической системы в конкретный момент времени (слева). Для простого маятника достаточно двух чисел, представляющих его скорость и местоположение.
Точки образуют траекторию, которая позволяет наглядно представить непрерывное поведение динамической системы в течение длительного периода времени. Повторяющаяся «петля» отображает систему, которая всегда воспроизводит одно и то же свое состояние. Если повторяющееся поведение устойчиво, как у часов с маятником, система при незначительных помехах возвращается к прежней орбите движения. В фазовом пространстве траектории вблизи орбиты как бы вовлечены в нее, а сама орбита является аттрактором.
Рис. 5.2. Аттрактор может являть собой одну-единственную точку. В случае с маятником, непрерывно теряющим энергию на трение, все траектории имеют форму спирали, закручивающейся внутрь, по направлению к точке, в которой система устойчива, – в таком случае движения не наблюдается вообще.
Как и многие из тех, кто занимался хаосом, Давид Руэлль подозревал, что видимые в турбулентном потоке объекты: перепутанные струи, спиральные водовороты, волшебные завитки, появляющиеся и вновь исчезающие, – должны отражать то, что объяснялось законами физики, но еще принадлежало к сфере таинственного и неоткрытого. В его понимании рассеивание энергии в турбулентном потоке должно было вести к своеобразному сокращению фазового пространства, притягиванию к аттрактору. Бесспорно, последний не оставался неподвижной точкой, поскольку поток никогда не приходил в состояние покоя, – энергия поступала в систему и уходила из нее. Каким еще мог быть аттрактор? Помимо описанного, согласно догмату, существовал лишь один возможный тип – периодический аттрактор, или замкнутая кривая, орбита, притягивающая все близлежащие орбиты. Если маятник получает энергию от подвеса и теряет ее из-за трения, то устойчивая орбита может представлять собой замкнутую петлю в фазовом пространстве, отражающую, например, регулярные колебательные движения маятника дедушкиных часов. Неважно, где именно начнет двигаться маятник, в конечном счете он придет именно к данной орбите. Но придет ли? В силу неких начальных условий (а они характеризуются минимумом энергии) маятник остановится. Таким образом, получается, что система в действительности имеет два аттрактора, один из которых является замкнутой петлей, а другой – фиксированной точкой. Каждый из аттракторов имеет собственную «нишу» в фазовом пространстве. В целом это напоминает две речные долины, разграниченные водоразделом.
В короткий период времени каждая точка фазового пространства может означать возможное поведение динамической системы. При изучении долгосрочной перспективы единственными моделями поведения становятся сами аттракторы. Все иные типы движения преходящи. По определению, аттракторам присуще важнейшее качество – устойчивость. В реальной системе, где движущиеся элементы сталкиваются и раскачиваются из-за помех окружающей среды, движение обычно возвращается к аттрактору. Толчок способен ненадолго исказить траекторию, однако возникающие случайные движения быстро исчезают, – даже если вдруг кошка заденет часы с маятником, минута не увеличится до шестидесяти двух секунд. Однако турбулентность в жидкостях – явление иного порядка, никогда не порождающее единичный ритм. Известное свойство такого явления заключается в том, что в данный момент времени наблюдается весь спектр возможных колебаний. Турбулентность можно сравнить с «белым шумом» или статикой. Могла ли простая детерминистская система уравнений описывать подобный феномен?
Руэлль и Такенс задались вопросом, обладает ли какой-либо иной тип аттрактора подходящим набором характеристик: устойчивостью, малым числом измерений, непериодичностью. Устойчивость означала достижение конечного состояния системы вопреки всем помехам в полном шумов мире. Малое число измерений предполагало, что орбита в фазовом пространстве должна представлять собой прямоугольник или форму типа коробки, обладающие лишь несколькими степенями свободы. Непериодичность подразумевала отсутствие повторений – ничего общего с монотонным тиканьем старых часов. С геометрической точки зрения вопрос казался чистой воды головоломкой. Какой вид должна иметь орбита, изображаемая в ограниченном пространстве, чтобы она никогда не повторяла и не пересекала саму себя? Ведь система, вернувшаяся в свое прежнее состояние, согласно принятой модели, должна следовать по своему обычному пути. Чтобы воспроизвести каждыйритм, орбита должна являть собой бесконечно длинную линию на ограниченной площади. Другими словами, она должна стать фрактальной.
Исходя из математических резонов, Руэлль и Такенс провозгласили, что описанный феномен должен существовать. Хотя они никогда не видели и не изображали его, одного заявления оказалось довольно. Впоследствии, выступая с речью на пленарном заседании Международного конгресса математиков в Варшаве, Руэлль заявил: «Научное сообщество весьма прохладно отнеслось к нашему предположению. Упоминание о том, что непрерывный спектр будет ассоциироваться с незначительным числом „степеней свободы“, многие физики посчитали просто ересью». Но были и другие – горсточка, не больше. Почувствовав всю значимость вышедшей в 1971 г. работы, они стали описывать то, что в ней подразумевалось.
На самом же деле к 1971 г. в научной литературе уже имелся один небольшой набросок того невообразимого чудовища, которое пытались оживить Руэлль и Такенс.
Рис. 5.3. Первый странный аттрактор. В 1963 г. Эдвард Лоренц смог вычислить только первые несколько элементов аттрактора для своей простой системы уравнений. Однако он понял, что «прослойка» двух спиральных крылообразных форм должна иметь необычную структуру, неразличимую в малых масштабах.
Эдвард Лоренц сделал его приложением к своей статье о детерминистском хаосе, вышедшей в 1963 г. Этот образ представлял собой сложную конструкцию из двух кривых, одна внутри другой, справа и пяти кривых слева. Лишь для схематичного изображения этих семи «петель» потребовалось пятьсот математических операций, с успехом выполненных компьютером. Точка, двигаясь вдоль указанной траектории в фазовом пространстве, демонстрировала медленное хаотичное вращение потоков жидкости, что описывалось тремя уравнениями Лоренца для явления конвекции. Поскольку система характеризовалась тремя независимыми переменными, данный аттрактор лежал в трехмерном фазовом пространстве. И хотя изображен был лишь его фрагмент, Лоренц смог увидеть гораздо больше: нечто вроде двойной спирали, крыльев бабочки, сотканных с удивительным мастерством. Когда увеличение количества теплоты в системе Лоренца вызывало движение жидкости в одном направлении, точка находилась в правом «крыле», при остановке течения и его повороте точка перемещалась на другую сторону.
Аттрактор был устойчивым, непериодическим, имел малое число измерений и никогда не пересекал сам себя. Если бы подобное случилось и он возвратился бы в точку, которую уже миновал, движение в дальнейшем повторялось бы, образуя периодичную петлю, но такого не происходило. В этом-то и заключалась странная прелесть аттрактора: являвшиеся взору петли и спирали казались бесконечно глубокими, никогда до конца не соединявшимися и не пересекавшимися. Тем не менее они оставались внутри пространства, имевшего свой предел и ограниченного рамками коробки. Почему такое стало возможным? Как может бесконечное множество траекторий лежать в ограниченном пространстве?
До того как изображения фракталов Мандельбро буквально наводнили научный мир, представить себе особенности построений подобных форм казалось весьма трудным. Сам Лоренц признавал, что в его собственном экспериментальном описании присутствовало «явное противоречие». «Очень непросто слить две поверхности, если каждая содержит спираль и траектории не стыкуются», – сетовал ученый. Однако в массе компьютерных вычислений он все же разглядел слабо просматривавшееся решение. Лоренц понял, что, когда спирали явно начинали соединяться, поверхности должны были делиться, образуя отдельные слои, словно в стопке писчей бумаги. «Мы видим, что каждая поверхность состоит на самом деле из двух поверхностей, так что, когда они сходятся, появляется уже четыре. Продолжая подобную процедуру, заметим, что возникает восемь поверхностей и т. д. В итоге мы можем заключить, что налицо бесконечное множество поверхностей, каждая из которых находится чрезвычайно близко к одной из двух соединяющихся поверхностей». Не удивительно, что в 1963 г. метеорологи оставили подобные рассуждения без внимания. Десятилетие спустя Руэлль, узнав о труде Лоренца, был буквально ошеломлен. Впоследствии он посетил Лоренца, однако вынес из этой встречи чувство легкого разочарования. Общие научные интересы исследователи обсуждали совсем недолго; с характерной для него робостью Лоренц избегал полемики и постарался придать визиту светский характер: ученые с женами посетили художественный музей.
Пытаясь отыскать ключи к решению загадки, Руэлль и Такенс пошли двумя путями. В частности, они попытались дать теоретическое обоснование странных аттракторов. Являлся ли аттрактор Лоренца типичным? Возможны ли какие-то иные формы? Второй тропинкой, по которой пошли ученые, стала экспериментальная деятельность. Она преследовала цель подтвердить или опровергнуть весьма далекое от математики убеждение, что странные аттракторы применимы к хаосу в природе.
В Японии исследование электронных схем, имитировавших колебание механических струн, но в ускоренном темпе, привело Иошисуке Уэда к обнаружению последовательности невероятно прекрасных странных аттракторов. В Германии Отто Рёсслер, непрактикующий доктор медицины, пришедший к исследованию хаоса через химию и теоретическую биологию, попробовал взглянуть на странные аттракторы сквозь призму философии, оставив математику на втором плане. Его имя стало ассоциироваться с одним из простейших аттракторов – узкой лентой со сгибом, которую изучали довольно широко в силу легкости ее построения. Однако ученый облек в зримую форму и аттракторы с большим числом измерений. «Представьте сосиску, внутри которой заключены, одна в другой, еще сосиски, – говорил он. – Выньте ее, сверните, сожмите и положите обратно». Действительно, сгибание и сжатие пространства оказались ключом к построению странных аттракторов и, возможно, даже к динамике порождавших их реальных систем. Рёсслер чувствовал, что эти формы олицетворяли принцип самоорганизации окружающего мира. Его воображению рисовалось нечто вроде ветроуказателя на аэродроме. «Замкнутый с одного конца рукав с отверстием на другом конце, куда рвется ветер, – разъяснял исследователь. – Вдруг ветер оказался в ловушке. Его энергия совершает нечто продуктивное, подобно дьяволу в средневековой истории. Принцип таков, что природа делает что-то против своей воли и, запутавшись сама в себе, рождает красоту».
Создание изображений странных аттракторов вряд ли можно назвать обычным делом. Запутанные пути орбит вьются сквозь три и более измерений, образуя в пространстве темный клубок, который похож на детские каракули и наделен внутренней структурой, невидимой извне. Чтобы представить подобную трехмерную «паутину» в виде плоских картин, ученые сначала применили технику проекции. Рисунок являл собой тень, отбрасываемую аттрактором на поверхность. Однако, если странные аттракторы довольно сложны, проекция смазывает все детали, и взору предстает путаница, которую почти невозможно расшифровать. Более эффективная техника заключается в построении так называемой обратной схемы,или схемы (сечения) Пуанкаре. Суть ее сводится к отделению «ломтика» запутанной сердцевины аттрактора и перенесению его в двухмерное пространство, подобно тому как патологоанатом помещает срез ткани на предметное стекло микроскопа.
Схема Пуанкаре лишает аттрактор одного измерения и превращает непрерывную линию в совокупность точек. Преобразуя аттрактор в схему Пуанкаре, ученый ни на минуту не сомневается, что сохранит самую суть движения. Он может вообразить, к примеру, что странный аттрактор вьется, словно пчела, у него перед глазами и орбиты аттрактора перемещаются вверх и вниз, влево и вправо, взад и вперед по дисплею компьютера, и каждый раз, когда орбита аттрактора пересекает плоскость экрана, она оставляет светящуюся точку в месте пересечения. Такие точки либо образуют похожее на кляксу пятно произвольной формы, либо начинают вычерчивать некий контур на экране.
Описанный выше процесс соответствует отбору образцов состояния системы, который ведется не постоянно, а лишь время от времени. Когда брать пробу, т. е. из какой области странного аттрактора вырезать ломтик, – дело исследователя. Временной интервал, в котором содержится наибольшее количество информации, должен соответствовать некоему физическому свойству динамической системы. Например, на схеме Пуанкаре можно отражать скорость отвеса маятника каждый раз, когда он проходит через самую низкую точку. Или экспериментатор волен выбрать определенный регулярный промежуток времени, «замораживая» последовательные состояния во вспышках воображаемого света, исходящего из стробоскопического источника. В любом случае в получаемых изображениях проявится в конце концов изящная фрактальная структура, о которой догадывался Эдвард Лоренц.
Рис. 5.4. Структура аттрактора. Странный аттрактор, как показано на верхних рисунках, сначала имеет одну орбиту, затем десять, затем сто. Он описывает хаотичное поведение ротора-маятника, колеблющегося по всему кругу и регулярно приводимого в движение притоком энергии. Через некоторое время, когда на рисунке появится тысяча орбит (ниже), аттрактор превратится в запутанный клубок. Чтобы можно было исследовать его внутреннее строение, компьютер делает поперечный срез аттрактора – так называемое сечение Пуанкаре (рисунок в рамке). Этот прием уменьшает число измерений с трех до двух. Каждый раз, когда траектория пересекает плоскость, она оставляет на ней точку. Постепенно возникает весьма детализированный образ. Показанный здесь образец состоит более чем из восьми тысяч точек, каждая из которых находится на орбите, окружающей аттрактор. Фактически система замеряется в регулярные промежутки. Одни данные утрачиваются, зато другие выявляются во всем их разнообразии.
Наиболее доступный для понимания и самый простой странный аттрактор был построен человеком, весьма далеким от загадок турбулентности и гидродинамики, – астрономом Мишелем Эноном из обсерватории Ниццы на южном побережье Франции. Бесспорно, в каком-то отношении астрономия дала толчок изучению динамических систем. Планеты, двигающиеся с точностью часового механизма, обеспечили триумф Ньютона и вдохновили Лапласа. Однако небесная механика значительно отличалась от земной: земные системы, теряющие энергию на трение, являются диссипативными, чего нельзя сказать об астрономических, считающихся консервативными, или гамильтонианскими. На самом же деле в масштабе, близком к бесконечно малому, даже в астрономических системах наблюдается нечто вроде торможения. Оно происходит, когда звезды излучают энергию, а трение приливно-отливного характера истощает кинетическую энергию движущихся по орбитам небесных тел. Однако для практического удобства астрономы в своих вычислениях пренебрегают рассеиванием, а без него фазовое пространство не будет складываться и сжиматься так, чтобы образовалось бесконечное множество фрактальных слоев. Странный аттрактор не может возникнуть. А хаос?
Не один астроном сделал карьеру, обойдя стороной динамические системы, но не таков был Энон. Он родился в Париже в 1931 г., всего на несколько лет позже Лоренца. Энон тоже являл собой тип ученого, которого неумолимо влечет к математике. Ему нравилось решать небольшие конкретные вопросы, которые могли быть привязаны к определенным физическим проблемам, – по его собственному выражению, «не то, что делают современные математики». Когда компьютеры стали доступны даже любителям, машина появилась и у Энона. Собрав ее собственноручно, ученый наслаждался компьютерными забавами. Кстати, задолго до описываемых событий он исследовал особенно сложную проблему из области гидродинамики. Она касалась сферических кластеров – шаровидных скоплений звезд, в которых число светил доходило до миллиона. Это древнейшие и наиболее интересные объекты ночного неба. Плотность их внушает изумление. Как такое огромное количество звезд сосуществует в ограниченном объеме пространства и эволюционирует во времени, астрономы пытались выяснить в течение всего XX века.
С точки зрения динамики, сферический кластер, включающий в себя множество тел, представляет собой довольно важный предмет исследования. Когда речь идет о паре объектов, особых сложностей не возникает – Ньютон полностью разрешил эту проблему: каждое из пары тел, например Земля и Луна, описывает идеальный эллипс вокруг общего центра тяжести системы. Но добавьте хотя бы еще один обладающий тяготением объект, и все изменится. Задача, в которой фигурируют три тела, уже более чем трудна. Как показал Пуанкаре, в большинстве случаев она неразрешима. Можно просчитать орбиты для некоторого временного интервала, а с помощью мощных вычислительных машин удается проследить их в течение более длительного периода, пока не возникнут помехи, однако уравнения аналитически не решаются, т. е. долгосрочный прогноз поведения системы из трех тел выполнить невозможно. Устойчива ли Солнечная система? Конечно, ей присуще подобное свойство, но даже сегодня никто не уверен в том, что орбиты некоторых планет не изменятся до неузнаваемости, заставив небесные тела навсегда покинуть Солнце.