355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Джеймс Глейк » Хаос. Создание новой науки » Текст книги (страница 13)
Хаос. Создание новой науки
  • Текст добавлен: 26 сентября 2016, 18:09

Текст книги "Хаос. Создание новой науки"


Автор книги: Джеймс Глейк



сообщить о нарушении

Текущая страница: 13 (всего у книги 22 страниц)

И хотя связь между вычислениями и физикой казалась весьма проблематичной, Файгенбаум понял, что должен искать новый способ расчетов сложных нелинейных проблем. До сих пор он занимался перебором различных функций, пытаясь подыскать среди них подходящую для моделирования систем. Открытие некой всеобщности означало, что избранный путь ведет в никуда. Регулярность никоим образом не касалась синусов, не имела ничего общего с параболами или с другими отдельно взятыми функциями. Почему? Это был шок! Природа, на мгновение отдернув занавес, позволила нам украдкой взглянуть на неожиданную упорядоченность. Но что еще пряталось за покровом тайны?

Озарение явилось Файгенбауму в образе двух небольших волнистых форм и еще одной, покрупнее. И ничего больше. Лишь яркое и четкое изображение, словно врезавшееся в сознание. Верхушка айсберга, отголосок мыслительных процессов, происходивших где-то на уровне подсознания; он был связан с масштабированием и указывал верный путь.

Файгенбаум изучал аттракторы. Устойчивое равновесие, о котором говорили его графики, являлось фиксированной точкой, притягивавшей, в свою очередь, другие. Не имело значения, какова начальная «популяция», – она все равно неуклонно приближалась к аттрактору. Затем, с первым раздвоением периодов, аттрактор, подобно делящейся клетке, раздваивался. Первоначально две эти точки находились совсем рядом, но по мере роста значения параметра они отдалялись друг от друга. Затем происходило следующее расщепление периодов, и каждая точка аттрактора вновь начинала делиться. Число – инвариант, полученный Файгенбаумом, – позволило ему предугадывать, когда именноэто произойдет. Ученый обнаружил, что может прогнозировать этот эффект для сложнейшего аттрактора – в двух, четырех, восьми точках… Говоря языком экологии, он мог прогнозировать действительную численность, которая достигается в популяциях во время ежегодных колебаний. Кроме того, здесь наблюдалась некая сходимость: все числа также подчинялись закону масштаба.

Файгенбаум занимался изучением давно забытой пограничной области между физикой и математикой. Какой из двух дисциплин принадлежит его работа, определить было нелегко. С одной стороны, его труд не принадлежал математике, ибо ничего не доказывал. Конечно, ученый оперировал числами, но математик относится к ним так же, как банкир к мешкам со звонкой монетой. Номинально эти металлические кругляши – предмет труда финансиста, но они мелковаты, и возни с ними не оберешься. Идеи – вот настоящая валюта математики! Изыскания Файгенбаума относились скорее к области физики, причем, как ни странно, физики экспериментальной.

Не мезоны и кварки, а числа и функции являлись объектом внимания ученого. Они тоже имели траектории и орбиты. Ему приходилось исследовать их поведение. Используя термин, который позже станет ходовым в новой науке, можно сказать, что Файгенбауму требовалось добиться интуитивного прозрения, которое отлилось бы в теорию и методологию. Спектрометр, ускоритель частиц и пузырьковую камеру ему заменил компьютер. Обычно пользователь формулирует задачу, программирует ее, вводит в вычислительную машину и ждет решения – одного для каждой конкретной проблемы. Файгенбаум и те, кто шел по его стопам, нуждались в большем. Требовалось повторить проделанное Лоренцем – создать миниатюрные вселенные и наблюдать за их эволюцией. Затем, меняя то или иное свойство, исследователи могли проследить, как меняются пути развития. В конечном счете они убедились, что крошечные изменения определенных качеств могут повлечь за собой значительные метаморфозы поведения системы в целом.


Рис. 6.1. Хаос под микроскопом. Простое уравнение, повторяемое много раз. Файгенбаум сосредоточился на линейных функциях, вычисляя значение одной величины в зависимости от значения другой. Для Популяций животного мира функция выражала соотношение между численностью в текущем и следующем году. Одним из способов наглядного представления таких функций является построение графика, где исходные данные отмечаются на горизонтальной оси, а конечные – на вертикальной. Для каждого значения xсуществует лишь одно значение y, и оба они образуют форму, представленную сплошной линией. Затем, чтобы изобразить долгосрочное поведение системы, Файгенбаум вычертил траекторию, начинавшуюся с произвольно взятого значения x. Поскольку каждое значение увновь подставлялось в ту же функцию в качестве новой исходной величины, ученый мог применить нечто вроде схематичного сокращения. Траектория скачками отдалялась от прямой, проведенной под углом 45°, где значения xи yравны. Для эколога наиболее очевидным типом функции, отображающей рост популяции, будет линейная – мальтузианская схема устойчивого и ничем не ограниченного увеличения с фиксированным ежегодным приростом (вверху слева).Более «реалистичные» функции представляют собой дугу, демонстрируя популяции. Здесь изображена так называемая логистическая карта для параболы, заданной функцией y= rx(1– x), где параметр rменяется от 0 до 4, определяя крутизну параболы. Но, как выяснил Файгенбаум, вид функции не имел значения. Действительно важным оказалось наличие у нее выпуклости. Поведение существенно зависело и от того, насколько парабола крута – от степени нелинейности, которую Роберт Мэй назвал «взлетами и падениями» (т. е. от способности живущей в естественных условиях популяции к увеличению и снижению числа составляющих ее особей). Слишком низкая парабола означала вымирание: любое начальное значение фактически приводило к нулю. Увеличение степени крутизны порождало устойчивое равновесие – ситуацию, понятную для эколога, который придерживается традиционных взглядов. Точка равновесия, находясь на любой траектории, являлась одномерным аттрактором. После определенной точки начинались разветвления, порождающие колеблющуюся популяцию с двумя периодами. Затем опять происходило удвоение периода, и еще, и еще раз, так что в конце концов траектория «успокаивалась» (внизу справа).Когда Файгенбаум попытался создать новую теорию, подобные изображения послужили ему отправной точкой. Он начал размышлять на языке итераций: функции функций, функции функций от функций и т. д.; схемы с двумя «горбами», потом с четырьмя…

Файгенбаум быстро выяснил, что компьютеры Лос-Аламоса мало подходят для вычислений, которые он задумал. Несмотря на огромные ресурсы лаборатории, гораздо более обширные, нежели в большинстве университетов, лишь несколько терминалов могли воспроизводить графики и изображения, да и те находились в отделе вооружения. Файгенбаум намеревался наносить определенные числа в виде точек на своеобразную карту и вынужден был прибегнуть к наиболее простому из возможных методов: он использовал длинные рулоны распечаток, где просматривались линии, составленные из чередующихся пробелов, звездочек и знаков сложения. Официальная политика лаборатории заключалась в том, что один большой компьютер лучше нескольких менее мощных. Это было следствие курса «одна проблема – одно решение». Маломощные машины отбивали всякую охоту к исследованиям; к тому же, приобретая компьютер, каждый отдел должен был следовать обязательным указаниям сверху и давать в этом отчет. Лишь гораздо позже, благодаря финансовой помощи теоретического отдела, Файгенбаум получил в личное пользование вычислительную машину стоимостью 20 000 долларов. Теперь он мог видоизменять свои уравнения и мелькавшие на экране картины, перестраивать их, играя на компьютере, словно на музыкальном инструменте. Но это было позже, а пока единственные терминалы, за которыми удавалось всерьез работать с графикой, находились в строго охраняемых зонах, как говорили в лаборатории – за забором. Файгенбауму приходилось использовать терминал, соединенный телефонными кабелями с центральным компьютером. Имея дело с таким устройством, оценить истинную мощность машины на другом конце кабеля весьма сложно, – даже решение простейших задач занимало целые минуты. Чтобы отредактировать лишь одну строчку программы, приходилось, нажав клавишу «Возврат», ждать под непрерывный гул терминала, пока центральный компьютер не обслужит других пользователей.

Вычисляя, Файгенбаум непрерывно размышлял. Какая еще неизвестная математика могла породить наблюдаемые им множественные масштабные модели? Он понял: нечто в этих функциях должно быть повторяющимся, самовоспроизводящимся.Поведением исследуемой системы руководило поведение другой, скрытой внутри нее. Волнистый контур, открывшийся ученому в миг озарения, кое-что прояснял в том, как масштаб одной функции мог быть подогнан в соответствие с другой функцией. Файгенбаум применил теорию групп перенормировки, прибегнув к масштабированию, чтобы избавиться от бесконечности и получить количественные оценки. Весной 1976 г. его жизнь обрела безумный ритм, какого он не знал прежде. Погрузившись в некий транс, Файгенбаум с каким-то неистовством писал программы, что-то черкал карандашом на бумаге и вновь программировал. Он даже не обращался за помощью в компьютерный отдел: это было бы равносильно отказу от собственного компьютера и замене его телефоном, а перестройка метода работы казалась весьма рискованной. Митчелл не прерывался более чем на пять минут, иначе компьютер автоматически отключил бы его линию. Все же временами машина подводила ученого, повергая его в состояние, близкое к шоку. Так, без перерыва, он работал больше двух месяцев. Его рабочий день длился двадцать два часа. Когда он ложился спать, напряжение не покидало его, поднимая ровно через сто двадцать минут и заставляя думать с того же места, где он остановился. Силы его поддерживал лишь кофе. (Даже в лучшие времена Файгенбаум существовал исключительно на полусырых бифштексах, кофе и красном вине. Друзья подшучивали, что он получает витамины из сигарет.)

Конец этому положил врач, прописав ученому успокоительное в скромных дозах и усиленный отдых. Но к тому времени Файгенбаум уже создал универсальную теорию.

Универсальность стирала грань между прекрасным и полезным. Математиков, которые перешли определенную черту, мало волнует пригодность их теорий для вычислений, физики же, миновав некую точку, нуждаются в числах. Всеобщность вселяла надежду на то, что, решив легкую задачу, физики смогут ответить на гораздо более сложные вопросы, поскольку решения будут идентичными. Встроив свое открытие в рамки групп перенормировки, Файгенбаум придал теории такой облик, что физики могли признать ее в качестве почти стандартного инструмента вычислений.

Но то полезное, что присутствовало в новой теории, одновременно делало ее и весьма сомнительной для физиков. Всеобщность означала, что различные системы ведут себя одинаково. Безусловно, Файгенбаум лишь изучал простые функции. Впрочем, он держался того мнения, что его теория отражает естественный закон, который относится ко всем системам, испытывающим переход от упорядоченного состояния к турбулентному. Все знали, что турбулентность представляет собой непрерывный спектр различных частот, но откуда они появлялись, оставалось загадкой. И вдруг удалось увидетьих последовательно появляющимися друг за другом! Физический подтекст заключался в том, что системы реального мира вели себя точно так же и их поведение можно было измерить. Универсальность Файгенбаума являлась не только качественной, но и количественной характеристикой, не только структурной, но и метрической.

Прошли годы, а Файгенбаум все еще хранил в ящике стола письма с вежливыми отказами в публикации статей. Тогда он уже в полной мере достиг славы и признания; работа, написанная в Лос-Аламосе, принесла ему награды и премии, которые, в свою очередь, означали престиж и немалые деньги. Но ученый все еще терзался тем, что редакторы главных научных журналов в течение двух долгих лет отказывают ему в публикации. Трудно поверить, что причиной отказа послужила невероятная оригинальность открытия. Современная наука с ее огромными потоками информации и беспристрастной манерой вдумчивого суждения не допускает предпочтений. И тем не менее… Один из издателей, вернувших Файгенбауму его рукопись, позже признался, что в самом деле отверг работу, ставшую поворотным пунктом в развитии науки. При этом он продолжал настаивать, что статья не очень отвечала профилю издания, каковым являлась прикладная математика. Между тем, несмотря на отсутствие публикаций, открытие Файгенбаума вызвало широкий резонанс в кругах математиков и физиков. Важнейшие пункты его теории стали известны из лекций и препринтов, как это часто и случается в современном научном мире. Файгенбаум рассказывал о своих исследованиях на конференциях, а просьбы предоставить копии статей, приходившие сначала десятками, позже буквально потекли рекой.

Сегодняшняя экономика в значительной степени зависит от эффективности теорий рынка. Предполагается, что знания циркулируют довольно свободно. По общему мнению, принимающие важные решения люди имеют доступ примерно к одной и той же совокупности данных. Бесспорно, не обходится без некоторых пробелов в знаниях или использования неких скрытых сведений. Так или иначе, ученые считают единожды обнародованную информацию известной везде. У историков науки на сей счет есть собственная концепция: каждое новое открытие, каждая новая идея сразу же причисляется к общему достоянию научного мира. Любой прорыв, озарение основаны на прошлом знании. Наука растет, словно дом, кирпичик за кирпичиком. Для целей практики можно считать, что научный прогресс движется поступательно и линейно.

Подобный взгляд на науку верен, когда все ожидают решения четко обозначенной проблемы в совершенно определенной области. В частности, открытие молекулярной структуры ДНК было правильно принято всеми. Но история распространения новых идей далеко не всегда столь безоблачна. Когда в недрах различных дисциплин возникли странные гипотезы о нелинейности, поток мысли уже проложил себе русла, не предусмотренные стандартной логикой историков. История науки о хаосе не только история новых теорий и неожиданных открытий, но и история запоздалого постижения забытых истин. Многие детали головоломки, замеченные еще Пуанкаре, Максвеллом, Эйнштейном, были отброшены и забыты. Новые элементы оказались доступны пониманию немногих. Относящееся к математике восприняли представители этой науки, физики извлекли что-то свое, а новое в метеорологии не заметил вообще никто. Укоренение новых идей в умах протекало так же нелегко, как и появление их на свет.

Каждый ученый – метеор, рожденный особым созвездием своих интеллектуальных предшественников. Каждый странствует в своем мире идей, и эти миры так или иначе ограничены. Знания несовершенны. Ученые подвержены влиянию традиций тех наук, которым они служат, или образования. Научный мир может быть удивительно консервативным. Историю в новое русло направляет отнюдь не собрание ученых мужей, а горсточка индивидов – носителей особого восприятия, особых целей.

Впоследствии оформился общий взгляд на то, чьи новации, чья роль важнее всего. Однако тут не обошлось без ревизионизма. В самый разгар становления новой науки, особенно в конце 70-х годов, вы не сыскали бы двух физиков или двух математиков, одинаково воспринимавших феномен хаоса. Тот, кто привык к классическим системам без трения или диссипации, принимал сторону русских ученых А. Н. Колмогорова и В. И. Арнольда. Специалисты, изучающие классические динамические системы, числили своими соратниками Пуанкаре и Биркхофа, Левинсона и Смэйла. Позже основная масса математиков отдала предпочтение Смэйлу, Гукенхаймеру и Руэллю, а также плеяде исследователей из Лос-Аламоса: Уламу, Метрополису, Стейну. Физик-теоретик выше всего ставил Руэлля, Лоренца, Ресслера и Йорка, биолог – Смэйла, Гукенхаймера, Мэя и Йорка. Число подобных комбинаций бесконечно; например, геолог или сейсмолог признавал прямое влияние идей Мандельбро, а физик-теоретик и имени-то такого, возможно, не слышал.

Роль Файгенбаума стала предметом ожесточенных споров. Много позже, когда слава его уже пошла на убыль, некоторые физики начали цитировать других ученых, работавших над тем же вопросом приблизительно в то же время. Некоторые обвиняли Файгенбаума в том, что он сосредоточился на слишком узком фрагменте широчайшего спектра хаотичного поведения. Как сказал бы физик, «файгенбаумологию» явно переоценили; разумеется, это прекрасная статья, но не настолько поворотная, как, например, работа Йорка. В 1984 г. Файгенбаума пригласили выступить на Нобелевском семинаре в Швеции, где разгорелись жаркие дискуссии. Бенуа Мандельбро, настроенный явно не самым лучшим образом, сделал доклад, о котором позже вспоминали как о «лекции против Файгенбаума». Откопав где-то работу об удвоении периодов, написанную двадцать один год назад финским математиком Мирбергом, он перекрестил последовательности Файгенбаума в «ряды Мирберга».

Как бы то ни было, именно Файгенбаум открыл всеобщность и создал теорию, ставшую точкой опоры для новой дисциплины. Не имея возможности опубликовать столь поразительные и кажущиеся противоречивыми результаты, он включил их в доклад на конференции в Нью-Хэмпшире в августе 1976 г., рассказывал о своей работе на международном заседании математиков в Лос-Аламосе в сентябре, беседовал о ней на встречах в университете Брауна. Как само открытие, так и сопутствующая ему теория вызывали удивление, недоверие, восторг. Чем больше ученые размышляли о явлении нелинейности, тем сильнее ощущали истинную власть универсальности Файгенбаума. Один из них, не мудрствуя лукаво, отметил: «Это открытие стало для нас одновременно и радостным, и шокирующим. В нелинейных системах присутствовали структуры, которые, если рассматривать их правильно, всегда являются одинаковыми». Некоторые физики позаимствовали как саму идею, так и методы Файгенбаума. Используя простейшие счетные машинки, они могли испытать то же изумление и удовлетворение, которое он чувствовал в Лос-Аламосе. Эти специалисты совершенствовали новый метод. Прослушав доклад Файгенбаума в Принстоне, в Институте перспективных исследований, Предраг Свитанович, специалист по физике частиц, помог ему упростить теорию и расширить ее универсальность, но сделал вид, что занимается этим лишь для развлечения, – стеснялся посвятить коллег в эту работу.

Большинство математиков также весьма сдержанно отнеслись к новой теории, главным образом потому, что Файгенбаум пренебрег точными доказательствами. Действительно, их не существовало до 1979 г., когда появилась работа Оскара Е. Ленфорда-третьего. Файгенбаум часто вспоминал о своем выступлении перед именитой аудиторией, собравшейся в сентябре в Лос-Аламосе: не успел он начать, как выдающийся математик Марк Кац, поднявшись, спросил: «Вы намерены предложить нам числа или все же доказательство?» «Больше, чем первое, но меньше, чем второе», – ответил Файгенбаум. «И подобное разумный человек называет доказательством?»

Файгенбаум предложил подождать суждения слушателей. Когда доклад подошел к концу, ученый осведомился о мнении Каца. Тот, сардонически упирая на звук «р», произнес: «Да, пожалуй, это действительно доказательство р-разумного человека, а детали пусть останутся точной математике».

Движение уже началось. Открытие всеобщности лишь подтолкнуло его. Летом 1977 г. двое физиков, Джозеф Форд и Джулио Казати, организовали первую конференцию, посвященную хаосу. Она проходила в Италии, на живописной вилле в маленьком городке Комо, находящемся южнее одноименного озера, удивительного прозрачно-голубого вместилища талых альпийских снегов. Около ста человек приехали туда – преимущественно физики, но попадались и представители других дисциплин.

«Митч, разглядев универсальность, выяснил, как она сводится к определенному масштабу, и расчистил путь к хаосу, привлекающий каждого уже на уровне интуиции, – заметил Форд. – Впервые у нас появилась четкая модель, понять которую сможет каждый. Практически всюду, начиная от астрономии и заканчивая зоологией, ученые занимались подобными исследованиями, направляли свои статьи в узкоспециальные журналы и даже не догадывались, что многие вокруг делают то же самое. Каждый думал, что он одинок, каждый в своей области слыл чудаком. Исчерпав все привычные, простые вопросы, они перешли к явлению куда более сложному. Когда же эти люди обнаружили, что у них есть соратники, то испытали чувство бесконечной благодарности».

Прошло несколько лет. Файгенбаум обитал в скромном жилище, в одной из комнат которого стояла кровать, в другой располагался компьютер, а в третьей помещалась аудиоаппаратура, на которой он слушал свою богатую коллекцию немецких дисков. Во время путешествия в Италию ученый разорился на мраморный кофейный столик, но дорогая вещица не пережила пересылки по почте – Файгенбаум получил лишь обломки мрамора. Вдоль стен были навалены горы книг и бумаг. Откидывая со лба прядь длинных волос – теперь уже каштаново-седых, – Митчелл говорил:

«В двадцатых годах произошло нечто ужасное. Почему-то физики споткнулись на описании окружающего их мира, которое было, в сущности, верным – ведь квантовомеханическая теория до некоторой степени правильна.Мы знаем, как вести расчеты с ее помощью. Она научила нас манипулировать Вселенной. Она поясняет, как сделать компьютер из грязи, как получить химические препараты, пластмассы, все что угодно. Словом, квантовая механика – великолепная вещь, за исключением того, что на определенном уровне она теряет всякий смысл.

Из цепочки образов выпадает звено. Задаваясь вопросом, каково на самом деле значение уравнений, что представляет собой картина мира, построенная данной теорией, получаешь ответ, который не совпадет с нашим ощущением действительности. Мы не можем полагать, будто частица, двигаясь, имеет траекторию. Подобное наглядное представление недопустимо. Чем больше задаешь вопросов о разных непростых вещах – как выглядит мир в зеркале теории? – тем дальше она кажется от наших обычных представлений. Мы запутываемся в противоречиях. Теперь, наверное, мы поймем истинную действительность. Но мы на самом деле еще не знаем, что иного способа обработки информации – способа, который бы не требовал Столь радикального ухода от интуитивного миропонимания, – просто не существует.

Основное установление физики требует для познания Вселенной разъединять ее на фрагменты и рассматривать их отдельно до тех пор, пока не вскроется нечто основополагающее. Затем мы заключаем, что непонятное нам – всего лишь мелочи, детали. Физики полагают, что имеется небольшое число принципов, которые мы можем уяснить, наблюдая объекты в их „чистом“ состоянии. Затем мы собираем детали в более сложную конструкцию, если намереваемся решить более запутанные проблемы. Если можемэто сделать.

В конце концов, для постижения всего этого стоит переключить передачу. Нужно переосмыслить свое представление о происходящем. Можно попытаться построить на компьютере модель жидкостной системы. Это уже становится возможным. Но все усилия окажутся напрасными, поскольку происходящее на самом деле не имеет ничего общего с жидкостью или отдельным уравнением. Построенная модель служит лишь общим описанием того, что имеет место в разнообразных системах, работающих как бы сами по себе. Нужно подойти к вопросу с другой стороны.

Взглянув на эту комнату – здесь навален хлам, тут сидит человек, за ним двери, – вы, вооружившись основными законами квантовой механики, используете для описания объектов волновые функции. Однако подобное неосуществимо. Может быть, это под силу Богу, но человек аналитически постигнуть данную проблему не может.

Вопрос о том, что происходит с облаками, уже не относится к чисто академическим. Люди хотят это знать, а следовательно, найдутся деньги на изыскания. Названный вопрос принадлежит по преимуществу к сфере физики. Если мы наблюдаем какое-либо сложное явление, то делаем это так: охватываем как можно больше точек, чтобы определить температуру воздуха, скорость ветра и тому подобные вещи, затем вводим все полученные данные в самую мощную машину, которая нам только доступна, и пытаемся выяснить, что произойдет в дальнейшем. Но все эти действия далеки от реальной жизни».

Файгенбаум, погасив окурок, прикурил следующую сигарету и продолжил:

«Необходимо поискать иные способы. Нужно найти масштабные структуры, соотносимость больших и малых фрагментов. Взгляните на турбулентность в жидкостях и другие сложные системы, в которых хаос проявляется постоянно, подобно некоему закономерному процессу. На определенном уровне еще не важно, каков масштаб этого процесса – охватывает ли он пространство размером с горошину или с баскетбольный мяч. Не имеет значения, где именно он происходит, даже более того – какова его продолжительность. Единственное, что может быть в известной степени универсальным, – масштабные явления.

В некотором смысле искусство представляет собой способ восприятия мира человеком. Очевидно, что никому не известны все детали окружающей нас реальности. Но посмотрите на полотна художников! Они осознали, что далеко не все по-настоящему важно, а затем пригляделись к самым интересным подробностям. Они способны проделать часть моих исследований за меня. Взглянув на ранние работы Ван Гога, можно заметить, что на них изображено огромное количество деталей, в них содержится огромный объем информации. Ему определенно было известно, каково минимальное количество деталей, которое требуется вместить в картину. Обратите внимание на то, как изображали линию горизонта голландские мастера графики начала XVII века. Крошечные коровки и деревца кажутся вполне реальными, и если присмотритесь поближе, заметите, что деревья имеют листья, а в них скрыты еще и небольшие веточки. Между податливыми, мягкими вещами и теми, у которых контуры более определенные, существует некое взаимодействие. Их комбинация так или иначе влечет за собой верное восприятие. Если обратиться к изображению бурных вод Рейсдалом и Тёрнером, то становится понятно, что это можно сделать итерационным способом. Сначала выполняется фон, затем поверху накладывается определенное количество краски, а дальше написанноеподвергается изменениям. Для художников турбулентные жидкости всегда обладают свойством масштаба.

Меня на самом деле интересует, как описать облака. Но я не начинал бы с выяснения того, какова плотность здесь, а какова рядом, то есть со сбора всей детальной информации. Думаю, это будет неверно. Человек – и, конечно, художник – воспринимает явления совсем не таким образом. Даже рассмотрение дифференциальных уравнений не решает эту проблему. Удивительное обещание мира состоит в том, что он заключает в себе прекрасные вещи, пленительные, зачаровывающие явления, и благодаря своей профессии мы можем понять их».

Файгенбаум положил сигарету. От пепельницы потянулся дымок, сначала тонким столбиком, а потом – с оглядкой на всеобщность – прихотливыми завитками, устремившимися к потолку.


    Ваша оценка произведения:

Популярные книги за неделю