355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Джеймс Глейк » Хаос. Создание новой науки » Текст книги (страница 7)
Хаос. Создание новой науки
  • Текст добавлен: 26 сентября 2016, 18:09

Текст книги "Хаос. Создание новой науки"


Автор книги: Джеймс Глейк



сообщить о нарушении

Текущая страница: 7 (всего у книги 22 страниц)

Творец своей собственной мифологии, Мандельбро во вступлении к книге «Кто есть кто» писал: «Наука разрушила бы саму себя, поставив во главу угла состязательность, как это происходит в спорте, и объявив одним из своих правил обязательный уход в узкоспециальные дисциплины. Те немногие ученые, которые по собственному желанию становятся „кочевниками“, исключительно важны для процветания уже устоявшихся научных отраслей».

Итак, этот «кочевник» по убеждению, а также «первооткрыватель по необходимости» покинул Францию, приняв предложение Томаса Дж. Уотсона из Исследовательского центра корпорации IBM. Что случилось после этого? Ни разу за тридцать последующих лет, выведших Мандельбро из тени безвестности к славе, ни одна его работа не была принята всерьез представителями тех дисциплин, которыми он занимался. Даже математики, не злословя открыто, замечали, что кем бы ни был Мандельбро, он не их поля ягода.

Находя вдохновение в малоизвестных фактах малоизученных областей истории науки, ученый медленно нащупывал собственный путь. Он занялся математической лингвистикой, рискнув истолковать закон распределения языковых единиц. (Позже он утверждал, что данный вопрос оказался в его поле зрения совершенно случайно: наткнулся на статью в книжном обозрении, которое он выудил из мусорной корзины знакомого математика, чтобы было что почитать в метро.) Изучал Мандельбро и теорию игр. Он также выработал собственный подход к экономике, писал об упорядоченности масштабов в распространении малых и больших городов и т. д. и т. п. То общее, та первооснова, что связывала все его труды воедино, оставалась еще в тени, не получив завершения.

В самом начале работы на IBM, вскоре после исследования ценовых механизмов, Мандельбро столкнулся с практической задачей, в решении которой был весьма заинтересован его патрон. Инженеров корпорации ставила в тупик проблема шума в телефонных линиях, используемых для передачи информации от одной вычислительной машины к другой. Электрический ток несет информацию в виде импульсов. Инженеры прекрасно понимали, что влияние помех будет тем меньше, чем выше мощность сигнала, однако некий самопроизвольный шум никак не удавалось свести на нет. Временами он возникал, угрожая стереть часть сигнала и тем самым внести ошибку в передаваемые данные.

Несмотря на то что помехи при трансляции сигнала имели случайную природу, шумы генерировались в виде кластеров. Промежутки «чистой» передачи сменялись периодами помех. Поговорив с инженерами, Мандельбро выяснил, что специалисты уже слагают о шумах легенды. Устранить помехи стандартными методами они не смогли, – чем ближе располагались пучки шума, тем более сложными виделись скопления погрешностей. Мандельбро удалось описать распределение ошибок так, чтобы точно предсказать наблюдаемые эффекты. Но все же этот феномен был в высшей степени странным! В силу определенных причин подсчитать средний уровень шумов – их среднее количество в час, минуту или секунду – представлялось невозможным.

Однако модель Мандельбро работала, достаточно четко разделяя периоды передачи и периоды помех. Что это означает? Допустим, мы разбили сутки на часовые интервалы. Первый час проходит вообще без сбоев, появляющихся в следующий час, а затем исчезающих на такой же период времени.

При разбиении часового промежутка с помехами на более мелкие временные интервалы, например двадцатиминутные, оказывается, что некоторые из них абсолютно чистые, в то время как в других внезапно обнаруживаются шумы. Фактически, утверждал Мандельбро – и это совершенно противоречило интуиции! – не найти временного промежутка, в течение которого распределение погрешностей станет непрерывным. Внутри каждого пучка шумов, независимо от его продолжительности во времени, всегда будут наблюдаться моменты абсолютно чистой передачи. Более того, Мандельбро обнаружил устойчивое отношение между периодами ошибок и промежутками чистой передачи. В масштабах часа или даже секунды соотношение этих двух периодов оставалось постоянным. (Однажды ученого напугали сообщением, что схема его будто бы не срабатывает. Однако выяснилось, что инженеры просто не зафиксировали кое-какие детали, решив, что они не относятся к делу.)

Эти инженеры не обладали достаточными знаниями, чтобы оценить глубину мыслей Мандельбро, чего нельзя сказать о математиках. В сущности, он продублировал абстрактную конструкцию, названную последовательностью Кантора – по имени великого математика XIX века. Для ее построения необходимо начать с интервала от нуля до единицы, представленного в виде отрезка линии, а затем удалить одну его треть из середины. Останутся два крайних отрезка, которые нужно подвергнуть той же процедуре. Повторяя эту операцию до бесконечности, мы получим странную «пыль» точек, собранных в кластеры. Их бесконечно много, и они непрерывны. Мандельбро рассматривал погрешности в передаче информации как последовательность Кантора во времени.

Такое в высшей степени абстрактное описание много значило для ученых, пытавшихся выработать эффективную стратегию борьбы с ошибками при передаче информации. Сделанные Мандельбро выводы подсказали, что увеличивать силу сигнала в целях устранения большего количества шумов бесполезно. Разумнее остановить выбор на сравнительно слаботочной связи, смириться с неизбежностью погрешностей и использовать стратегию дублирования сигналов для исправления ошибки. Благодаря Мандельбро инженеры корпорации изменили свои взгляды на причину шумов: раньше внезапное появление помех списывали на то, что где-то техник орудует отверткой, но построенная ученым модель доказала, что нельзя объяснять природу помех специфичными локальными явлениями.


Рис. 4.2. Множество Кантора. Начинаем с одного отрезка, у которого удаляем среднюю треть. Затем удаляем средние трети оставшихся сегментов и т. д. Последовательностью Кантора именуется «пыль» из точек, остающихся после подобных операций. Точек бесконечно много, но конечная длина каждого получившегося отрезка равна нулю. Математиков XIX века смущали парадоксы подобных конструкций. Мандельбро использовал последовательность Кантора в качестве модели возникновения помех во время передачи электрических сигналов. Свободные от шумов периоды передачи данных чередовались с промежутками, в которых внезапно возникали помехи. При ближайшем рассмотрении оказывалось, что «вспышки» ошибочной информации содержали внутри себя совершенно «чистые» промежутки. Этот феномен представлял собой пример фрактального времени. Мандельбро обнаружил, что в каждом временном масштабе, начиная от часа и заканчивая секундами, соотношение погрешностей и «чистых» сигналов постоянно. Подобные множества точек, заключил он, необходимы при моделировании прерывистости.

Затем воображение Мандельбро захватила информация, почерпнутая из гидрографии, точнее – из истории Нила. Египтяне тысячелетиями наблюдали и фиксировали уровень вод и делали это совсем не из праздного любопытства, а для оценки будущего урожая и определения будущих налогов. Уровень вод великой реки варьировался чрезвычайно резко: в иные годы он поднимался довольно высоко, в другие могучий поток мелел. Мандельбро классифицировал данные о таких изменениях. Он выделил два типа эффектов, наблюдаемых также и в экономике, и назвал их эффектами Ноя и Иосифа.

Эффект Ноя, или скачок, обозначает отсутствие последовательности, иначе говоря, разрыв: количественная величина может изменяться сколь угодно быстро. Экономисты полагали, что цены меняются довольно плавно в том смысле, что проходят – быстро или медленно – через все уровни, лежащие на пути от одной точки к другой. Этот образ движения, заимствованный из физики, был ложным: цены могут совершать мгновенные скачки, сменяющие друг друга с той же быстротой, с какой мелькают новости на ленте телетайпа и брокеры просчитывают в уме выгоды от возможной сделки. Мандельбро утверждал, что стратегия фондовой биржи обречена на провал, если определенные акции надо продать за 50 долларов, пока цена бумаг снижается с 60 до 10 долларов.

Эффект Иосифа символизирует непрерывность. Наступят семь плодородных лет на земле египетской, и придут после них семь лет голода.Периодичность, если именно о ней идет речь в библейской легенде, понимается чересчур упрощенно, однако периоды наводнений и периоды засухи действительно настают вновь и вновь, чередуясь друг с другом. Хотя подобное кажется случайностью, но чем дольше та или иная определенная местность страдает от засухи, тем больше вероятность, что засушливые периоды повторятся. Более того, математический анализ колебаний уровня Нила выявил, что подобное постоянство наблюдалось как десятилетиями, так и веками.

Два явления – скачок и непрерывность – стремятся к противоположным результатам, но сводятся к одному: тенденции в природе вполне реальны, однако способны затухать так же быстро, как и проявляться.

Отсутствие последовательности, внезапные «вспышки» помех, множества Кантора – подобным явлениям не нашлось места в геометрии двух прошедших тысячелетий. Формами классической геометрии считаются прямые и плоскости, окружности и сферы, треугольники и конусы. Они воплощают могущественную абстракцию действительности, они вызвали к жизни непревзойденную философию гармонии Платона. Евклид построил на их основе геометрию, известную уже две тысячи лет, и по сей день большинство людей знакомы только с ней. Художники распознавали в таких формах идеалы красоты, астрономы составили из них Птолемееву картину мира, но для постижения истинной сложности наука нуждается в ином типе абстракции, нежели тот, что присущ классической геометрии.

Как любил повторять Мандельбро, облака далеки по форме своей от сфер, горы совсем не конусы, а молния отнюдь не придерживается в своем движении прямой линии. Новая геометрия подобна зеркалу, отражающему вовсе не плавные и мягкие очертания привычной Вселенной, а неровный и шершавый контур иного мира. Зарождающуюся науку можно назвать геометрией ям и впадин, фрагментов разбитого единства, изгибов, узлов, переплетений. Пониманию сложной природы живого мира недоставало одного лишь предположения о далеко не случайном характере сложности. Истинное проникновение в глубины хаоса требовало безоговорочной веры в то, что интереснейшей чертой, например, разряда молнии является не ее направление, а скорее расположение ее зигзагов. Исследования Мандельбро претендовали на новое видение действительности, указывая на то, что различные странные формы имеют особое значение. Впадины и сплетения стоят много больше, нежели классические формы Евклидовой геометрии, зачастую являясь ключом к постижению самой сущности явлений.

Что можно считать главным, скажем, в линии побережья? Мандельбро задал такой вопрос в статье «Какова длина береговой линии Великобритании?», ставшей поворотным пунктом в мышлении ученого.

С феноменом береговой линии он столкнулся, изучая малоизвестную работу английского ученого Льюиса Ф. Ричардсона, вышедшую после смерти автора. Последнему удалось отыскать множество поразительных вещей, ставших впоследствии элементами хаоса. Ричардсон еще в 1920-х годах размышлял о предсказании погоды. Он изучал турбулентность в жидкостях, бросая мешок с белыми цветами в воды канала Кейп-Код, и задавался вопросом «Имеет ли ветер скорость?» в одноименной статье 1926 г. («Спрашивать о таком, на первый взгляд, глупо, но осведомленность расширяет кругозор», – писал ученый позже.) Зачарованный извивами береговых линий и государственных границ, Ричардсон проштудировал энциклопедии Испании и Португалии, Бельгии и Нидерландов и обнаружил 20-процентное отклонение истинной протяженности их общих рубежей от длины, указываемой справочными изданиями.

Анализ, проделанный Мандельбро, ошеломлял. Посвященные в его результаты испытывали шок от этих умозаключений, не то до боли очевидных, не то до абсурда ложных. Как подметил ученый, на вопрос о длине береговых линий большинство людей дают один из двух стандартных ответов: «Не знаю. Это не по моей части» или «Даже не представляю. Посмотрю в энциклопедии».

Длина любой береговой линии, объяснял Мандельбро, в известном смысле, бесконечно велика. Если подходить с другой стороны, ответ, конечно же, будет зависеть от величины мерки. Рассмотрим один из возможных методов измерения. Топограф, вооружась циркулем, разводит его ножки на расстояние одного ярда и измеряет им линию побережья. Полученный результат будет приблизительным, поскольку циркуль «перешагивает» изгибы и повороты, длина которых меньше ярда. Если топограф разведет ножки не так широко, скажем на один фут, и повторит процедуру, конечный результат окажется больше предыдущего. Будет «схвачено» больше деталей. Чтобы покрыть расстояние, которое ранее измерялось одним шагом циркуля, потребуется уже более трех шагов длиной в один фут. Топограф записывает новый результат и, разведя ножки на четыре дюйма, начинает трудиться заново. Подобный мысленный эксперимент показывает, как можно получить различные результаты при изменении масштаба исследования. Наблюдатель, пытающийся измерить длину береговой линии Великобритании с космического спутника, получит менее точный результат, чем тот, кто не поленится обойти все бухты и пляжи. Последний же, в свою очередь, проиграет улитке, оползающей каждый камешек.

Хотя результат каждый раз будет возрастать, здравый смысл подсказывает, что он неуклонно стремится к некой конечной величине – истинной длине береговой линии. Иными словами, все измерения сойдутся в одной точке. Если бы линия побережья представляла собой одну из фигур Евклидовой геометрии, к примеру круг, применение вышеописанного метода сложения отрезков прямой линии, измеренных каждый раз с большей точностью, оказалось бы успешным. Однако Мандельбро обнаружил, что при бесконечном уменьшении меры измеряемая длина береговой линии неограниченно растет. В бухтах и на полуостровах обнаруживаются мелкие бухточки и мысики – и так вплоть до размеров крошечного атома. Лишь при достижении атомного уровня измерения подойдут к концу. Возможно…


Рис. 4.3. Фрактальный берег. Береговая линия генерирована компьютером. Детали ее не упорядочены. Однако фрактальное измерение постоянно, так что шершавости и неровности выглядят все теми же, независимо от степени увеличения.

Геометрия Евклида, оперирующая длинами, ширинами и высотами, не позволяла постичь сущность неправильных форм, и Мандельбро пришло в голову отталкиваться от идеи размерности, в которой ученые усматривают гораздо больше, чем обыватели. Напомню, что мы живем в трехмерном пространстве: чтобы определить положение точки, надо задать три координаты, например долготу, широту и высоту. Оси трехмерного пространства представляют собой три взаимно перпендикулярные линии, пересекающиеся в начале координат. Это все еще территория Евклидовой геометрии, где пространство характеризуется тремя измерениями, плоскость – двумя, прямая – одним, а точка имеет нулевую размерность.

Абстрактная процедура, позволившая Евклиду постичь одномерные и двухмерные объекты, может быть с легкостью применена и к явлениям повседневной жизни. Так, из чисто практических соображений карта дорог являет собой двухмерный объект – фрагмент плоскости, в котором для адекватного отражения изображаемого задействованы два измерения. Безусловно, реальные дороги трехмерны, как и все остальное, однако их высота столь трудноуловима (и в общем-то не существенна для их эксплуатации), что ее можно не учитывать. Заметим, что карта дорог остается двухмерной даже тогда, когда ее сворачивают. Так и нить всегда имеет лишь одно измерение, а частица или точка не имеют его вовсе.

А сколько измерений у клубка бечевки? По мнению Мандельбро, ответ на этот вопрос зависит от уровня восприятия. С огромного расстояния клубочек представляется не более чем точкой с нулевой размерностью. Приближаясь, можно заметить, что он подобен сфере и, таким образом, характеризуется уже тремя измерениями. На еще более близком расстоянии становится различимой сама бечевка, а объект приобретает одно измерение, скрученное таким образом, что задействуется трехмерное пространство. Вопрос о числе цифр, определяющих положение точки, остается актуальным: пока мы вдалеке, нам не нужно ни одной, поскольку мы видим лишь точку; приблизившись, мы нуждаемся уже в трех, а подойдя еще ближе, довольствуемся одной, так как любое заданное положение вдоль всей длины бечевки неповторимо, независимо от того, вытянута ли она или смотана в клубок.

Продвигаясь далее, к более мелким, видимым только под микроскопом деталям, обнаружим следующее: бечевка состоит из скрученных трехмерных протяженных объектов, а те, в свою очередь, – из одномерных волокон, вещество которых распадается на частицы с нулевыми измерениями. Так Мандельбро, поправ математические традиции, обратился к относительности, заявив: «Представление о том, что численный результат измерений зависит от отношения объекта к наблюдателю, вписывается в понятия современной физики и даже является их превосходной иллюстрацией».

Оставив в стороне философию, мы увидим, что реальные измерения объекта оказываются отличными от его трех земных параметров. Ахиллесовой пятой выдвинутых Мандельбро аргументов оказалось то, что они основывались на слишком смутных понятиях – «издалека» и «чуть ближе». А что наблюдается в промежутке? Бесспорно, провести строгую черту, по пересечении которой клубок бечевки превращается из трехмерного объекта в одномерный, невозможно. Тем не менее у рассуждений Мандельбро была и сильная сторона: неточное определение дальности перемещений заставило по-новому взглянуть на проблему размерности.

Мандельбро двигался от целочисленных размерностей 0, 1, 2, 3… к тому, что казалось невозможным, – к дробным измерениям. Представление о них было столь экстравагантным, что ученые-нематематики не столько осмысливали его, сколько принимали на веру. Тем не менее неожиданный подход оказался чрезвычайно перспективным.

Дробное измерение позволяет вычислять характеристики, которые не могут быть четко определены иным путем: степени неровности, прерывистости или неустойчивости какого-либо объекта. Например, извилистая береговая линия, несмотря на неизмеримость ее «длины», обладает присущей только ей шероховатостью. Мандельбро указал пути расчета дробных измерений объектов окружающей действительности при использовании определенной методики построения форм или некоторых заданных величин. Создавая свою геометрию, он выдвинул закон о неупорядоченных формах, что встречаются в природе. Закон гласил: степень нестабильности постоянна при различных масштабах. Справедливость этого постулата подтверждается вновь и вновь. Мир снова и снова обнаруживает устойчивую неупорядоченность.

Однажды зимним днем 1975 г. Мандельбро работал над своей первой монографией. Размышляя о явлении параллельных токов, он понял, что должен найти некий термин, который стал бы стержнем новой геометрии. Одолжив у сына латинский словарь, он стал перелистывать его и наткнулся на слово fractus, образованное от глагола fragere – «разбивать». Слово было созвучно английским fracture (разрыв) и fraction (дробь). Так Мандельбро придумал термин fractal (фрактал), которое вошло как существительное и прилагательное в современный английский и французский языки.

Фрактал позволяет вообразить бесконечность.

Представьте себе равносторонний треугольник с длиной стороны в один фут. А теперь мысленно проделайте следующую несложную трансформацию: выделите на каждой стороне треугольника среднюю треть и приставьте к ней равносторонний треугольник, длина стороны которого составляет одну треть от длины стороны исходной фигуры. Вы получите звезду Давида. Она образована уже не тремя отрезками длиной в один фут, а двенадцатью отрезками длиной в четыре дюйма, и вершин у нее не три, а шесть.

Повторите операцию, прикрепив еще более маленький треугольник к средней трети каждой из двенадцати сторон. Если проделывать эту процедуру вновь и вновь, число деталей в образуемом контуре будет расти и расти, подобно тому как дробится последовательность Кантора. Изображение приобретает вид снежинки с геометрически идеальными очертаниями. Оно известно как кривая Коха. Связная линия, составленная из прямых или криволинейных участков, названа по имени шведского математика Хельга фон Коха, впервые описавшего подобный феномен в 1904 г.


Рис. 4.4. «Снежинка» Коха. «Приблизительная, но весьма удачная модель береговой линии» – так охарактеризовал ее Мандельбро. Чтобы создать подобную конструкцию, начнем с построения треугольника, каждая сторона которого равна единице. В середину каждой стороны встроим новый треугольник, уменьшенный в три раза, и повторим преобразования многократно. Длина контура полученной фигуры равна 3 × 4/3 × 4/3 × 4/3… и так далее до бесконечности. Однако ее площадь все же меньше площади окружности, описанной около первоначального треугольника. Таким образом, бесконечно длинная линия очерчивает ограниченную площадь.

Поразмыслив, можно заключить, что кривой Коха присущи некоторые весьма занимательные черты. Прежде всего, она представляет собой непрерывную петлю, никогда не пересекающую саму себя, так как новые треугольники на каждой стороне всегда достаточно малы и поэтому не сталкиваются друг с другом. Каждое преобразование добавляет немного пространства внутри кривой, однако ее общая площадь остается ограниченной и фактически лишь незначительно превышает площадь первоначального треугольника. Если описать окружность около последнего, кривая никогда не растянется за ее пределы.

Но все же сама кривая бесконечно длинна, так же как и Евклидова прямая, стремящаяся к краям ничем не ограниченной Вселенной. Подобно тому как во время первой трансформации один отрезок длиной в один фут заменяется на четыре длиной в четыре дюйма, так же и каждое последующее преобразование умножает общую длину кривой на четыре третьих. Подобный парадоксальный итог – бесконечная длина в ограниченном пространстве – в начале XX века поставил в тупик многих математиков. Кривая Коха оказалась монстром, безжалостно поправшим все мыслимые интуитивные ощущения относительно форм и (это воспринималось как данность) не похожим на что-либо, существующее в природе.

Удивительные исследования вызвали слабый отклик в научном мире. Однако несколько упрямых математиков создали иные формы, которым были присущи странные черты кривой Коха, – появились кривые Пеано, а также «ковры» и «набивки» Серпински. Для построения «ковра» нужно взять квадрат и разделить его на девять равных квадратов меньшей площади, а затем удалить центральный. Далее следует повторить операцию с восьмью оставшимися квадратами, сделав в центре каждого из них отверстие. «Набивка» представляет собой примерно то же самое, но ее составляют не квадраты, а равносторонние треугольники. Она обладает качеством, которое весьма трудно представить: любая произвольная точка является точкой разветвления, своего рода «вилкой» в структуре. Вообразить подобное сложно, пока не посмотришь на Эйфелеву башню: ее антенны, металлические связки и мачты, разветвляясь на изящные решетчатые конструкции, являют собой мерцающую сетку тончайших деталей. Эйфель, конечно же, не мог достичь бесконечности в своем творении, однако эта хитрая инженерная уловка, скрадывая тяжеловесность сооружения, не лишает его внушительности и мощи.

Очень трудно постичь всю сложность бесконечности, внедряющейся в самое себя. Однако человеку с развитым пространственным воображением такое повторение структуры во все более мелких масштабах может открыть целый мир. Мандельбро исследовал подобные конфигурации, пытаясь силой разума расширить таящиеся в них возможности. Это занятие увлекало его, как игра; словно ребенок, он с восторгом любовался на поразительные изменения, которые никто не увидел и не постиг до него. Он придумывал этим диковинным конфигурациям названия: канаты, простыня, губка, пена, сгусток, набивка.

Фрактальное измерение оказалось замечательным инструментом. В известном смысле степень неровности определяла способность того или иного объекта занять определенное пространство. Обычная Евклидова одномерная прямая в этом не нуждается, чего нельзя сказать о контуре кривой Коха, бесконечная длина которого теснится в ограниченном пространстве. Сама кривая являет собой уже нечто большее, чем просто линию, но все же это еще и не плоскость; она глубже одномерного объекта, но поверхностнее двухмерной формы. Используя технику, созданную математиками в начале XX века, но потом почти забытую, Мандельбро смог вполне точно описать фрактальное измерение. Для кривой Коха, например, бесконечное умножение на 4/ 3дает размерность 1,2618.


Рис. 4.5. Конструкция с отверстиями. Лишь некоторые математики в начале XX века проникли в сущность объектов, созданных с помощью техники добавления или удаления бесконечного множества составляющих их частей. Внешний вид подобных конструкций казался зачастую просто чудовищным. Одной из таких фигур является ковер Серпински. Для его построения удаляют одну девятую часть из центра квадрата, затем вырезают девятые части из центров оставшихся, менее крупных восьми квадратов и т. д. Аналогом ковра в трехмерном пространстве считается губка Менгера, весьма внушительная решетка, имеющая бесконечную площадь поверхности и нулевой объем.

Продолжая следовать этим путем, Мандельбро, по сравнению с другими математиками, пользовался двумя преимуществами. Во-первых, он имел доступ к вычислительной технике корпорации IBM, что помогло ему решить задачу, идеально подходящую для высокоскоростного компьютера. Подобно тому как метеорологам приходится проделывать одни и те же подсчеты для миллионов соседствующих друг с другом точек атмосферы, Мандельбро должен был вновь и вновь выполнять несложное преобразование. Компьютер мог справиться с этим без особого труда, демонстрируя порой весьма неожиданные результаты. Математики в начале XX века быстро споткнулись на сложных вычислениях, так же и для первых биологов стало серьезным препятствием отсутствие микроскопа. Воображение способно рисовать тончайшие детали, но лишь до определенной черты.

Как отмечал Мандельбро, «целое столетие для математики прошло впустую, поскольку рисование не играло тогда в науке никакой роли. Рука, карандаш и линейка исчерпали себя. Будучи слишком привычными и понятными, эти средства никогда не выдвигались на передний план, а компьютера еще не существовало. Вступив в игру, я ощутил, что в ней не задействуется интуиция – разве что случайно. Интуиция, взлелеянная традиционным воспитанием, вооруженная рукой, карандашом и линейкой, посчитала новые формы весьма уродливыми и далекими от общепринятых стандартов, вводя нас в заблуждение. Первые полученные изображения весьма удивили меня, но позже во вновь конструируемых картинах проглядывали фрагменты предыдущих, и так продолжалось довольно долго. Отмечу, что интуиция не дается нам изначально. Я приучал свою интуицию воспринимать как должное те формы, которые считались абсурдными и отвергались с самого начала. И я понял, что любой может поступить точно так же».

Другим преимуществом Мандельбро стала картина реальности, которую он начал выстраивать, столкнувшись с флуктуациями цен на хлопок, шумов при передаче сигналов, разливов рек. Картина эта начала приобретать отчетливость. Исследование образцов неупорядоченности в естественных процессах и анализ бесконечно сложных форм пересекались, и точкой пересечения послужило так называемое внутреннее подобие: «Фрактальный» – это прежде всего «внутренне подобный».

Внутреннее подобие представляет собой симметрию, проходящую сквозь масштабы, повторение большого в малом. Таблицы Мандельбро, отражавшие изменения во времени цен и уровня рек, обнаруживали подобие, поскольку не только воспроизводили одну и ту же деталь во все более малых масштабах, но и генерировали ее с определенными постоянными измерениями. Чудовищные формы вроде кривой Коха являлись внутренне подобными потому, что выглядели все теми же даже при большом увеличении. Подобие «встроено» в саму технику создания кривых: одно и то же преобразование повторяется при уменьшающемся масштабе. Подобие легко распознается, ведь его образы витают всюду: в бесконечно глубоком отражении фигуры человека, стоящего между двумя зеркалами, или в мультфильме о том, как рыбина заглотила рыбу, которая слопала рыбку, съевшую совсем маленькую рыбешку. Мандельбро любил цитировать Джонатана Свифта: «Итак, натуралисты наблюдают, как на блоху охотятся маленькие блошки, а их, в свою очередь, кусают еще более мелкие блошки, и так далее до бесконечности».

На северо-западе США землетрясения лучше всего изучать в геофизической лаборатории Ламонт-Догерти, которая размещена в нескольких ничем не примечательных зданиях, затерянных среди лесов на юге штата Нью-Йорк, к западу от реки Гудзон. Именно там Кристофер Шольц, профессор Колумбийского университета, специализировавшийся на изучении формы и строения твердого вещества Земли, впервые задумался о таком явлении, как фракталы.

Математики и физики-теоретики с пренебрежением отнеслись к трудам Мандельбро. Шольц, однако, принадлежал как раз к тому типу прагматиков, ученых практического склада, которые приветствовали появление фрактальной геометрии. Имя Мандельбро он впервые услышал в 60-х годах, когда первооткрыватель фракталов еще занимался экономикой, а сам Шольц заканчивал обучение в Массачусетском технологическом институте и ломал голову над проблемой землетрясений. Еще за два десятка лет до того было выявлено, что распределение землетрясений большой и малой силы подчиняется особой математической модели, подобной той, что отражает распределение доходов в экономике свободного рынка. Это наблюдение одинаково подходило для любого района земного шара, где бы ни подсчитывали число толчков и ни измеряли их силу. Принимая во внимание, сколь беспорядочны, непредсказуемы были сотрясения земной коры во всех других отношениях, имело смысл доискаться, какие именно физические процессы обуславливают подобную регулярность. По крайней мере, так думал Шольц. Многие другие сейсмологи довольствовались констатацией факта землетрясений.

Шольц не забыл имени Мандельбро, и когда в 1978 г. на глаза ему попалась богато иллюстрированная и напичканная уравнениями книга «Фракталы: форма, случайность и размерность», он купил этот труд – собрание весьма причудливых мыслей. Казалось, Мандельбро свалил туда в беспорядке все свои знания и гипотезы о Вселенной. За несколько лет эта работа и ее второе, расширенное и дополненное издание «Фрактальная геометрия природы» разошлись тиражом, какого не имела ни одна другая работа по высшей математике. Стиль изложения был темен и рождал досаду, хотя местами остроумие разбавляло сухую непроницаемость авторской манеры. Мандельбро называл свои писания «манифестом и настольной книгой».


    Ваша оценка произведения:

Популярные книги за неделю