355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Дэвид Ирвинг » Вирусный флигель » Текст книги (страница 5)
Вирусный флигель
  • Текст добавлен: 15 сентября 2016, 00:29

Текст книги "Вирусный флигель"


Автор книги: Дэвид Ирвинг



сообщить о нарушении

Текущая страница: 5 (всего у книги 23 страниц)

В середине ноября Эзау в последний раз обратился за помощью к своему шефу по министерству просвещения профессору Менцелю. Реакция Менцеля была весьма характерной: он не только не оказал Эзау поддержки, но накричал на него и не постеснялся даже обвинить своего ближайшего сотрудника в том, что идею атомных исследований он украл у Департамента армейского вооружения, где такие исследования ведутся «уже много лет». Обвинение совершенно абсурдное, ибо никакие исследования не были мыслимы до открытия расщепления урана. Но Менцеля это вряд ли смутило, демагогия в гитлеровской Германии была вернейшим и испытанным средством. Взбешенный Эзау не нашел ничего лучшего как написать Беккеру. Но как ни был он обозлен, он понимал, что в создавшихся условиях и у него есть лишь одно средство – демагогия, облаченная в ризы «высших германских интересов». В письме Беккеру он утверждал, что во имя этих высших интересов необходима координированная работа всех специалистов. Он утверждал, что инициатива в организации снабжения ураном, в проведении анализов принадлежит ему лично и что «грубое устранение» его от предпринятых исследований нанесло серьезный урон Физическому отделу Имперского исследовательского совета (директором Совета и был Менцель), поставило под удар авторитет Эзау как главы Физического отдела. Однако у Менцеля и Беккера, видимо, были свои расчеты. Письмо не помогло Эзау. Запасы урана были в конце концов у него изъяты и переданы в Институт кайзера Вильгельма.

В один из декабрьских дней в коридоре Лейпцигского института Багге повстречался с сияющим от радости Гейзенбергом. Не в силах скрыть свое торжество, Гейзенберг затащил Багге к себе в кабинет и похвастался, что ему только что удалось разрешить проблему стабилизации цепной реакции с медленными нейтронами. Крошащимся под рукой мелом Гейзенберг быстро выписал на доске несколько формул, говоривших обоим физикам очень многое. Цепная реакция могла стабилизироваться автоматически! Ибо при повышении температуры эффективное сечение ядер урана уменьшалось, а вследствие этого и скорость протекания цепной реакции должна была падать до тех пор, пока при некоторой температуре, определяемой конструктивными параметрами реактора, не наступала стабилизация. Расчеты показывали и другое отрадное обстоятельство: температура, при которой происходила стабилизация, оказывалась сравнительно невысокой, всего порядка сотен градусов, а не тысяч, как ожидалось. По всем имевшимся у него тогда данным, Гейзенберг полагал ее близкой к 800 градусам для сферического реактора диаметром 120 сантиметров, заполненного пастой из смеси двух тонн урана и тонны тяжелой воды с отражателем из тяжелой воды.

А 6 декабря в своем отчете военному министерству Гейзенберг указывал, что при послойном расположении урана и замедлителя, предложенном Хартеком, размеры реактора окажутся даже значительно меньшими. Другим замечательным свойством такого реактора была возможность снимать с него мощность в соответствии с потребностью. Эта возможность сохраняется до тех пор, пока не произойдет «выгорание» большей части топлива, или же до тех пор, пока не наступит отравление уранового топлива продуктами деления[12]12
  Физики, работавшие в США, не представляли себе возможных масштабов отравления уранового топлива в больших реакторах, до тех пор пока в Ханфорде не вошли в строй гигантские реакторы для производства плутония. Они вышли из строя один за другим в течение нескольких дней вследствие образования ксено-на-135 при делении урана. Хотя изотоп ксенона содержался в реакторах в очень небольших концентрациях, он оказался неожиданно сильным поглотителем тепловых нейтронов.


[Закрыть]
.

Последние абзацы отчета, написанного Гейзенбергом для военного министерства, показывают, как много смогли сделать немецкие ученые всего лишь за два месяца, прошедшие со дня начала работ.


Заключение. В свете современных данных процессы расщепления урана, открытые Ганом и Штрассманом, могут быть использованы для производства больших количеств энергии. Наиболее надежным путем создания реактора, способного производить большое количество энергии, является обогащение ураном-235. Чем выше степень обогащения, тем меньшим по размерам можно сделать реактор. Обогащение ураном-235 – единственная возможность создать реактор, объем которого будет заметно меньше одного кубического метра. Более того, обогащение – единственный метод изготовления взрывчатого вещества силой, на несколько порядков величины превышающей все до сих пор известные.

Однако что касается производства энергии, то в этом случае возможно применение обычного необогащенного урана при условии, что уран будет использоваться совместно с другим веществом, замедляющим, но не поглощающим нейтроны, испускаемые ураном. Вода непригодна для этой цели. Исходя из существующих данных можно полагать, что подходящими окажутся тяжелая вода и чрезвычайно чистый графит. Даже ничтожные примеси приведут к полной невозможности получения энергии.

Гейзенберг предупреждал также, что реактор явится исключительно мощным источником опасного нейтронного и гамма-излучения.

Как показал в 1932 году американский ученый Юри, в водороде, выделяющемся при электролитическом разложении воды, содержится в 5—6 раз меньше тяжелого водорода – дейтерия, – чем в воде, остающейся в баллоне для электролиза. Однако, чтобы получить один литр тяжелой воды с концентрацией 99%, потребуется разложить сто тысяч литров обычной воды, если электролиз производить в одной ступени. Поэтому на практике так никогда не делается, тяжелую воду получают путем использования нескольких последовательных ступеней электролиза; обогащенная вода из первой ступени заливается во вторую, где она обогащается в еще большей степени, затем – в третью и так далее.

Тяжелая вода, о которой уже не раз говорилось на страницах этой книги, по целому ряду технических соображений является идеальным веществом для замедления нейтронов до таких скоростей, что ядра урана-238 уже не захватывают их, но в то же время скорость нейтронов остается достаточной для расщепления ядер урана-235. Как явствует из самого названия, удельный вес тяжелой воды больше, чем обычной. Поскольку в молекуле тяжелой воды D20 вместо двух атомов обычного водорода содержатся два атома тяжелого водорода – дейтерия, удельный вес последней на 11% выше, чем легкой воды. В ядре дейтерия дополнительно содержится нейтрон, в то время как в ядре обычного водорода содержится только один протон.

Точка замерзания тяжелой воды соответствует не 0°С, а 3,81° С, температура кипения при нормальном давлении равна 101,42° С.

Когда разразилась война, во всем мире только одна фирма – Норвежская гидроэлектрическая компания – выпускала в коммерческих масштабах тяжелую воду, которая была побочным продуктом получаемого электролизом водорода. Завод, являвшийся, по словам одного немецкого физика, «шедевром норвежской техники и науки», был расположен в Веморке, близ Рьюкана, в Южной Норвегии.

Здесь, ниже гигантского водопада Рьюкан-Фосс, в гранитном здании электростанции, примостившейся у крутого склона, работали гидрогенераторы постоянного тока общей мощностью 120 тысяч киловатт. Электроэнергия на этой станции обходилась очень дешево, и львиная доля ее направлялась прямо в здание электролизного производства, расположенное на том же выступе скалы, что и сама электростанция.

Как уже говорилось, обычный процесс электролиза очень неэкономичен, так как значительная часть дейтерия при этом пропадает впустую, уходит вместе с водородом. Поэтому Норвежская гидроэлектрическая компания в 1934 году усовершенствовала последние три из девяти ступеней электролиза. Усовершенствование заключалось в установке на последних трех ступенях устройств для сжигания в кислороде обогащенного дейтерием водорода, выделяющегося при электролизе в этих трех ступенях. При сжигании получалась обогащенная вода, и ее вновь направляли на электролиз, но в более ранние ступени, где концентрация тяжелой воды была примерно той же самой. Обычный водород, получаемый в первых шести ступенях, поступал на завод синтетического аммиака. Этот завод являлся первым норвежским предприятием по изготовлению искусственных удобрений.

Однако концентрация тяжелой воды на девяти ступенях электролиза повышалась далеко не достаточно, всего лишь до 13%. Для получения почти чистой тяжелой воды обогащенная вода направлялась на завод высокой концентрации, спроектированный профессором Лейфом Тронстадом и доктором Йомаром Вруном. Здесь концентрация тяжелой воды электролитическим способом повышалась до 99,5%.

Завод в Веморке вошел в строй в 1934 году, а к 1938 году его полная выработка исчислялась лишь 40 килограммами. Но к концу 1939 года только месячное производство уже достигло 10 килограммов. Если учесть, что в самой Германии существовал один жалкий заводишко электролитического водорода мощностью 8000 киловатт, легко представить себе, насколько немцы были заинтересованы заводом в Веморке. Правда, им следовало еще заручиться согласием самих норвежцев (Норвегия еще оставалась свободной), и в этом-то заключалась главная трудность.

В декабре и ноябре 1939 года в Гамбургской лаборатории Пауля Хартека исследования велись по двум темам. Профессор Кнауэр и доктор Суэсс построили аппарат непрерывного действия для измерения концентрации нейтронов в постоянно циркулирующем растворе азотнокислого уранила. Эксперимент должен был дать среднее значение числа нейтронов, выделяющихся при делении ядра урана, и зависимость этого числа от нескольких переменных. А параллельно велась работа над аппаратом Клузиуса-Диккеля для шестифтористого урана. Пробные эксперименты, в ходе которых вместо шестифтористого урана использовался ксенон, хорошо освоенный в институте Хартека, были уже проведены и принесли удачу. Оставалось установить, окажется ли поведение шестифтористого урана в колонне аппарата Клузиуса-Диккеля сходным с поведением ксенона.

Пока на Леверкузенской фабрике фирмы «ИГ Фарбениндустри» шла подготовка к коррозионным испытаниям, необходимым для выбора подходящего материала, в Гамбурге строили новую большую колонну специально для разделения изотопов урана; ее высота была 7,5 метра, а обогрев осуществлялся паром. В середине декабря Шуман настолько расщедрился, что разрешил Хартеку израсходовать 6 тысяч марок еще до официального заключения контракта.

На рождество 1939 года Хартек отправился на юг страны и посетил самого Клузиуса. Последний, даже не дожидаясь одобрения свыше, уже вел работу с целью выяснить, возможно ли на основе закона распределения Нернста повышать концентрацию урана-235, используя для этого растворы урановых соединений. Иначе говоря, Клузиус намеревался разделять изотопы урана, применяя две несмешивающиеся жидкости. По идее следовало ожидать повышения концентрации легкого изотопа в одной жидкости, а тяжелого – в другой. Результатом встречи Хартека и Клузиуса явилось решение проверить на практике оба метода разделения.

Практическое осуществление плана военного министерства «мобилизовать» Институт физики кайзера Вильгельма в Далеме сразу же натолкнулось на трудности. Дело в том, что директором Института был в то время прославленный голландский физик-экспериментатор Петер Дебай. А поскольку намечавшиеся исследования имели сугубо секретный характер, к ним, по мнению военных властей, не мог быть допущен иностранец. Поэтому Дебая поставили перед альтернативой либо принять германское подданство, либо оставить директорский пост. Дебай не пожелал отказаться от голландского гражданства. Но все же отстранить от должности без достаточных оснований столь крупного физика казалось неловким даже нацистам. К счастью для Дебая, кто-то предложил удобный компромисс: Дебая не освобождали от поста директора, а считали, что он принял приглашение прочитать цикл лекций в нейтральных тогда Соединенных Штатах. Дебай покинул Германию в 1940 году и уже не вернулся туда.

Креатурой Шумана на посту директора, разумеется, стал Дибнер. Однако его назначение встретило резкую оппозицию со стороны Фонда кайзера Вильгельма (где председателем был Альберт Фёглер). Главное возражение против Дибнера состояло в том, что он не был физиком такого лее калибра, как и Дебай. Однако и отказать военным Фонд не имел возможности, и, в конце концов, Дибнер внедрился в Институт в качестве временно исполняющего обязанности директора на срок пребывания Дебая за границей.

День, когда Дибнер занял директорское кресло в Институте кайзера Вильгельма, не только этим стал знаменателен в истории немецких атомных разработок. Этот день можно считать началом интриг и конкурентной борьбы между физиками группы Дибнера и физиками из окружения Гейзенберга, борьбы длительной и упорной, обессилевшей немецкую ядерную физику и обескровившей весь немецкий атомный проект, особенно на его последних этапах.

Слухи о предстоящих изменениях в руководстве дошли до Карла Виртца, и он решил совместно с Вайцзеккером наметить план действий на случай, если в «институте появится рьяный наци». Виртц предложил и тактику: всеми правдами и неправдами перетянуть в институт Гейзенберга, а когда тот укрепится, протолкнуть его на директорский пост и тем самым нейтрализовать влияние Дибнера. Однажды, вскоре после того как Дибнер уже приступил к исполнению своих новых обязанностей, в его кабинете появился Вайцзеккер и как бы невзначай заметил, что было бы полезно пригласить в качестве консультанта Гейзенберга, разумеется, если он того пожелает. Не подозревая, что сулит ему появление Гейзенберга в институте, Дибнер спокойно согласился. Ликующий Вайцзеккер примчался к Виртцу и с гордостью рассказал, как ловко удалось обвести Дибнера вокруг пальца. Гейзенберг согласился с предложением занять место консультанта, но покинуть Лейпциг не пожелал. Он продолжал работать в Лейпциге, но регулярно приезжал в Берлин.

В июле 1940 года было решено спроектировать специально для новой лаборатории небольшое деревянное здание. Его собирались построить на территории Института биологических и вирусных исследований, расположенного рядом с Физическим институтом в Далеме. В этом домике впоследствии и был создан первый в Германии подкритический атомный реактор. Чтобы не выдавать истинного назначения размещенной в нем лаборатории и держать непрошеных посетителей подальше, домик назвали «Вирусный флигель».

Плутониевая альтернатива

1

Уже в первую военную зиму стало совершенно ясно: создать урановую бомбу, не построив предварительно реактора, невозможно. Реактор явился бы средством практической проверки теоретических выводов и, что не менее важно, сделался бы вещественным доказательством успеха, столь нужного для воздействия на правительство и военных. Это оказалось тем более необходимым, что ученые уже довольно отчетливо представляли себе, сколь трудным и дорогостоящим будет путь к атомной бомбе. В последующие два года в немецких документах лишь изредка, да и то в крайне осторожной форме, упоминается об атомной бомбе; все усилия концентрируются на завершении промежуточного этапа – на создании атомного реактора.

Почти с первых дней физики не сомневались, что работу можно вести двумя методами: либо чисто эмпирически, то есть использовать уран или его соединения в различных конструктивных конфигурациях совместно с различными замедляющими веществами и посмотреть, что из этого получится, либо положиться на руководящую роль теории. Первый путь имел свои достоинства и существенные недостатки: прежде всего сразу же требовались большие количества урана и других дефицитных веществ, а к тому же чистая эмпирика могла привести к крайне опасным последствиям. Второй метод, теоретический, требовал проведения весьма точных расчетов, которые указывали бы необходимые дальнейшие шаги. По, чтобы проводить такие расчеты, нужны исходные данные, которые можно получить только в эксперименте; к этим данным относились некоторые ядерные параметры, в частности эффективное сечение атомов различных веществ и зависимость величины этого сечения от скорости бомбардирующих нейтронов. Измерения таких параметров были исключительно тонким и кропотливым делом, а на их осуществление потребовалось бы очень много времени. Правда, тогда удалось бы обойтись очень незначительным количеством столь дефицитных веществ. Последнее обстоятельство в 1940 году оказалось решающим – запасы чистого графита, бериллия, чистой тяжелой воды в Германии были ничтожными.

В основном поэтому 1940 год явился годом сравнительно умеренного экспериментирования. В Лейпциге, Берлине, Гейдельберге, Вене и Гамбурге опыты были направлены главным образом на измерение ядерных констант наиболее подходящих веществ. В Гейдельберге Боте определял длину диффузии тепловых нейтронов в графите; в Лейпциге, ближе к концу лета, Гейзенберг и Дёппель – последний в сотрудничестве с женой – измеряли длину диффузии нейтронов в тяжелой воде, а осенью – в окиси урана. Пожалуй, самыми важными являлись опыты Боте, ведь графит был куда менее дефицитен, чем тяжелая вода. Боте установил, что если удастся получать более чистый и однородный графит, чем тот, которым ему пришлось пользоваться во время опытов, то графит можно было бы выбрать в качестве замедлителя. Лейпцигцы, обследовав тяжелую воду, убедились в ее несравненных качествах как замедлителя; качества эти оказались даже лучшими, чем считалось ранее, и это позволило прийти к выводу о возможности создания реактора на природном уране, если в нем замедлителем будет тяжелая вода.

Пока проводились измерения, в Берлине начали серию других исследований. Берлинцы, стремились выяснить влияние конструктивных параметров реактора на ход цепной реакции. Этим путем они хотели установить минимально необходимые количества урана и тяжелой воды. Теоретики из Физического института во главе с Вайцзеккером изучили несколько возможных конфигураций и пришли к выводу, что при послойном расположении, предложенном Хартеком, для создания реактора понадобится около двух тонн окиси урана и около полутонны тяжелой воды; воду и окись урана при этом следовало разделить на пять-шесть слоев, при высоте реактора от 70 до 90 сантиметров. Рассматривалась и другая конструкция реактора – сферическая, – в которой окись урана и тяжелая вода располагались бы концентрическими слоями. Практическое выполнение подобной конструкции было трудным делом. Зато цепная реакция в сферическом реакторе возникла бы при еще меньшем количестве исходных материалов: тогда считали, что хватит всего 320 литров тяжелой воды и 1,2 тонны окиси урана. Но и такое уменьшение размеров и количества исходных материалов еще не являлось предельным. По расчетам теоретиков, размеры реактора можно было бы еще уменьшить, окружив его графитовым рефлектором, отражающим обратно в реактор нейтроны, которые в противнем случае улетали бы наружу без всякой пользы.

В один из дней Боте, встретившись с Гейзенбергом, высказал подозрение относительно правильности некоторых теоретических положений, изложенных в декабрьском отчете военному министерству. Спустя пару месяцев Гейзенберг засел за детальное математическое описание того, что в предыдущей работе было сделано лишь приближенно. И вот тогда-то он, не имея на то никаких данных, почему-то решил, что как замедлитель чистый графит имеет куда худшие качества, чем считалось ранее, и забраковал его. Забраковал он и гелий, поскольку при использовании газа размеры реактора оказались бы чрезмерно большими. Это и привело к тому, что тяжелую воду стали считать единственным возможным замедлителем.

2

В январе 1940 года, казалось бы, все подтверждало возможность получения цепной реакции в природном уране при наличии достаточного количества тяжелой воды. 15 января Хартек в дружеском письме Гейзенбергу подчеркивал, что производство тяжелой воды ничуть не менее важно, чем производство урана: «Раз уж вся тяжесть проведения этих опытов обрушилась на плечи нас, несчастных экспериментаторов», – писал он, – «не могу ли я просить вас разузнать, кто – если вообще имеется кто-либо – в Германии занимается производством тяжелой воды?». И добавлял: «По собственному опыту я знаю наше военное министерство, и, если производство тяжелой воды оставить в его ведении, оно не справится с задачей и за несколько лет. Но я вполне уверен, что, взявшись за это дело и имея дельного сотрудника в нашей тяжелой промышленности, я смог бы оказаться у цели гораздо скорее».

Еще дней за десять до того, как Хартек написал письмо Гейзенбергу, у Дибнера состоялось совещание о производстве тяжелой воды. На нем присутствовали Гейзенберг, Виртц и лейпцигский физико-химик профессор Карл Фридрих Бонхоффер. Все они одинаково расценивали отношение военного министерства к производству тяжелой воды. Дибнер спросил Гейзенберга, стоит ли немедленно начинать в Германии строительство завода тяжелой воды. Гейзенберг осторожно ответил, что прежде он предпочел бы получить хотя бы самые первые экспериментальные данные о поглощении нейтронов тяжелой водой. Для этого ее потребуется незначительное количество, а сами опыты не займут много времени. Дибнер пообещал срочно получить из Норвегии десять литров Тяжелой воды. Гейзенберг ответил, что в таком случае они смогут доподлинно установить пригодность тяжелой воды и при положительном результате строительство завода станет необходимым. Однако в своем ответе Хартеку 18 января Гейзенберг высказался определеннее. Строительство завода он считал делом физико-химиков, поскольку это относится «к их епархии», а физикам, по его мнению, следовало заняться своим прямым делом – экспериментами по созданию реакторов на тяжелой воде.

В то время немецким физикам казалась весьма сомнительной возможность получения необходимых количеств тяжелой воды из Норвегии. И они искали другие пути обеспечения этой дефицитной жидкостью. Еще за несколько лет до войны Хартек и Суэсс пытались разработать процесс каталитического обмена для получения тяжелой воды. Но оставили работу, не доведя ее до конца, так как вступил в строй норвежский завод, который с лихвой удовлетворял все тогдашние потребности в тяжелой воде. Теперь положение стало иным, и 24 января Хартек написал в военное министерство, предложив пересмотреть отношение к процессу каталитического обмена, поскольку тяжелой воды потребуется очень много; ведь в расчетах Гейзенберга необходимое количество тяжелой воды в реакторе получилось примерно равным количеству урана, а это означало, что тяжелой воды будет нужно много тонн.

И если получать тяжелую воду из Норвегии окажется невозможным, единственным выходом станет строительство собственного электролизного завода на электроэнергии от тепловых станций. А тогда для изготовления одной тонны тяжелой воды потребуется сжигать сто тысяч тонн угля! Эта цифра ошеломила военных, но они стоически выдержали потрясение и лишь строго отчитали Хартека, вступившего без их ведома в прямой контакт с Гейзенбергом; они напомнили Хартеку, что «проект полностью засекречен и непосредственная передача сведений, с ним связанных, из одного института в другой в будущем строго воспрещается. В каждом случае переписка должка вестись только через Департамент армейского вооружения». Все же военные сочли возможным уведомить Хартека о решении январского совещания у Дибнера относительно строительства завода тяжелой воды.

По расчетам Хартека и Суэсса предлагаемый ими процесс помог бы значительно удешевить производство тяжелой воды. В принципе такой процесс несложен: через жидкость пропускается газообразный водород, и благодаря присутствию специального катализатора содержание дейтерия в жидкости становится в три раза большим, чем в газе. Хартек предложил построить опытную установку и попросил у военных разрешения привлечь к работе Бонхоффера. Военные не возражали, и вскоре Хартек повидался с Бонхоффером, рассказав о своих планах «пристройки» завода каталитического обмена к одному из действующих гидрогенизационных предприятий. В конце февраля Хартек получил от Бонхоффера письмо, в верхнем углу которого стояла пометка: «Уничтожить по прочтении»; Бонхоффер сообщал о своих переговорах с представителями аммиачного завода фирмы «ИГ Фарбениндустри», которые «целиком одобряли идею». И действительно, никаких принципиальных возражений не предвиделось, предприятие в Лейне было достаточно мощным, оно вырабатывало до 170 тысяч кубических метров водорода в час. Главное же было в том, «удастся ли найти подходящий катализатор?»

Не оставался без внимания и самый прямой путь обеспечения тяжелой водой. Германское правительство вступило в контакт с Норвежской гидроэлектрической компанией. Как впоследствии стало известно от норвежцев, завод в Рьюкане посетил представитель «ИГ Фарбениндустри», имевший финансовые связи с Норвежской гидроэлектрической компанией, и попытался уговорить норвежцев уступить Германии все запасы – сто восемьдесят пять килограммов тяжелой воды с концентрацией 99,6 и 99,9 процента. За это немцы сулили сделать еще больший заказ, они собирались ежемесячно получать по 100 килограммов, хотя фактическое производство в то время не превышало 10 килограммов тяжелой воды и месяц. Норвежцы, естественно, заинтересовались, зачем немцам понадобилось столько тяжелой воды, но прямого ответа не получили. В феврале 1940 года Норвежская гидроэлектрическая компания дала ответ: к ее глубочайшему сожалению, она не располагает возможностями удовлетворить немецкий заказ.

Подобный ответ был далеко не случаен.

Французские физики, работавшие под руководством Фредерика Жолио, продолжали эксперименты, и работа неизбежно привела их к тому же выводу, что и немцев, – уран есть именно тот материал, в котором возможна цепная реакция. Они даже попытались построить действующий котел, применив в качестве «топлива» окись урана, а в качестве замедлителя обычную воду, графит или твердую двуокись углерода. Еще в августе 1939 года они сложили из кубиков урана нечто, напоминающее сферу, и погрузили ее в воду. Даже такой несовершенный котел подавал признаки жизни, французам удалось наблюдать в нем первые едва заметные и очень кратковременные вспышки цепной реакции. В то время и это было замечательным успехом, особенно принимая во внимание, что обычная вода является скверным замедлителем; лишь очень немногие нейтроны замедляются в ней так, как это нужно, а большинство просто поглощается. Август 1939 года был последним месяцем мира. В сентябре началась война, и группа французских атомников лишилась одного из своих ведущих физиков; для безопасности республики было важнее, чтобы он служил прожектористом. Но работы все же продолжались. Фон Халбан встретился в Париже с министром военного снабжения Раулем Дотри и уговорил его выделить на экспериментальные нужды десять тонн графита. Затем, уже в феврале 1940 года, с Дотри встретился сам Жолио. К тому времени Жолио не сомневался в перспективности тяжелой воды и, рассказав министру о ее ценнейших качествах, поставил вопрос об организации производства тяжелой воды. Жолио рассказал Дотри и о запасах тяжелой воды в Рьюкане. Этих запасов, по мнению Жолио, хватило бы для проведения решающего эксперимента.

Дотри не забыл своего разговора с Жолио и вскоре послал для переговоров с норвежцами весьма примечательную личность. Этой личностью был Жак Алье, лейтенант французской секретной службы, а одновременно работник Департамента взрывчатых веществ и видный представитель банка, контролировавшего Норвежскую гидроэлектрическую компанию. На Алье возложили миссию весьма тонкого характера, требовавшую от него знания свойств человеческих. Алье справился с этим. Он решил «воззвать к здравому смыслу» директора Норвежской компании доктора Акселя Оберта и столь в этом преуспел, что уже через несколько дней было подписано соглашение, по которому Франции совершенно безвозмездно достались все запасы тяжелой воды и были даны заверения в предоставлении приоритета на тяжелую воду в следующем году. Оберт также попросил Алье передать добрые пожелания французскому премьеру Даладье и «заверить его, что Норвежская гидроэлектрическая компания не возьмет ни сантима за тяжелую воду, если это будет способствовать победе французов». Вскоре баки с драгоценной жидкостью были тайно вывезены из Норвегии. И именно тогда немцы получили от Норвежской гидроэлектрической компании отказ, составленный в самых вежливых выражениях.

Из теории Гейзенберга следовал совершенно ясный вывод: чем ниже температура в реакторе, тем проще добиться возникновения цепной реакции. 8 апреля 1940 года, как раз в те дни, когда французы готовили свой первый эксперимент со столь удачно приобретенной тяжелой водой, профессор Пауль Хартек посетил аммиачные заводы «Лейна» в Мерсебурге и изложил «национал-социалистскому директору» исследовательских работ доктору Герольду план получения цепной реакции путем помещения окиси урана в сухой лед – вещество недефицитное, удобное в обращении и способное сохраняться достаточное время; скорость испарения сухого льда невелика, он имеет достаточно низкую температуру (—78° С) и его легко приготовить химически чистым.

Идея Хартека была поистине блестящей! И кто знает, как пошли бы работы дальше, если бы план Хартека осуществился? В ней явно ощущалась школа Резерфорда. Хартек недаром поработал с этим величайшим мастером физического эксперимента. Сотрудничество с Резерфордом не только научило Хартека экспериментировать, оно открыло ему глаза на истинное состояние экспериментальной техники в Германии. Вернувшись из Англии, Хартек ясно видел то, чего не желали или не могли заметить националистически настроенные немецкие ученые, превозносившие германскую физику. Хартек понимал, что на самом деле положение в германской физике далеко не блестящее и, до тех пор пока уровень немецких лабораторий и исследований не сравняется с английским, нечего возлагать серьезных надежд на будущее германской науки. Но кому нужны были, кто пожелал бы прислушиваться к выводам Хартека в атмосфере националистического угара, душившей Германию, кто осмелился бы поставить под сомнение будущее немецкой науки, «очищенной» от всех ненемецких элементов?

Итак, эксперимент, задуманный Хартеком, мог бы дать очень многое. И были люди, желавшие воспользоваться этим, а потому помогавшие Хартеку. В их числе оказался и Герольд. Его фирму сразу же заинтересовали коммерческие выгоды, которые сулило создание атомных реакторов, он пообещал совершенно бесплатно выделить для эксперимента необходимое количество сухого льда и даже предложил место для проведения экспериментов непосредственно на заводах «Лейна». Однако в верхах «ИГ Фарбениндустри» было решено проводить опыты у Хартека, в Гамбурге.

Время благоприятствовало опытам. Весна еще не кончилась, и почти до конца мая спрос на сухой лед должен был оставаться очень небольшим. Нужное Хартеку количество сухого льда обещали доставить не позже чем через сутки после запроса. Обнадеженный Хартек приступил к подготовке фундамента для размещения урана и сухого льда. А одновременно отправил Дибнеру письмо с просьбой выделить от 100 до 300 килограммов урана и получил в ответ обещание передать ему во временное пользование не менее 100 килограммов окиси урана и заверение, что вагону с сухим льдом будет открыта через Германию зеленая улица.


    Ваша оценка произведения:

Популярные книги за неделю