Текст книги "Книга по химии для домашнего чтения"
Автор книги: Борис Степин
Соавторы: Людмила Аликберова
сообщить о нарушении
Текущая страница: 10 (всего у книги 27 страниц)
После получения Нобелевской премии здоровье Вернера заметно ухудшилось. У него нашли общий атеросклероз, который медленно прогрессировал. Вскоре у Вернера появились дефекты речи и провалы памяти. В 1918 г. он дошел до такого состояния, что сам уже не мог написать заявление об отставке с поста директора Химического института. В 1919 г. смерть освободила Вернера от физических и моральных страданий.
Современники вспоминали Вернера как широкоплечего человека плотного сложения, шумливого и оживленного, с резкими движениями и жестикуляцией. Он часто и заразительно смеялся – совсем по-детски. Его массивная фигура, окутанная дымом неизменной сигары, лицо с большими проницательными глазами и пушистыми темными усами сразу привлекали внимание. Вернер отличался независимостью суждений, редким мужеством говорить правду всякому человеку, невзирая на его положение в обществе. Он обладал, как говорили даже его недруги, «прямолинейной порядочностью».
Вернер увлекался коллекционированием марок, любил охоту, хорошо играл в шахматы.
Вернер любил аккуратность, не выносил болтовни и безделья во время работы. Однажды, проходя по лаборатории, он заметил на одном из студенческих столов страшный беспорядок. Не говоря ни слова, Вернер резким движением руки смахнул на пол всю посуду, которая разбилась вдребезги.
2.52. ДЕМИДОВСКАЯ ПРЕМИЯ КАРЛА КЛАУСА
«Более целого года трудился я над этим предметом, но наконец открыл легкий и верный способ добывания его в чистом состоянии. Этот новый металл, который мною назван рутением в честь нашего отечества, принадлежит без сомнения к телам весьма любопытным».
(К. Клаус, 1843 г.)
Карл Карлович Клаус (1796–1864) – русский химик-неорганик и фармацевт, член-корреспондент Петербургской академии наук – родился в Дерпте (Тарту) в семье художника. Четырех лет он лишился отца, а шести лет – матери. Не окончив никакой гимназии, он смог тем не менее сдать экзамен на аптекаря в Петербургской медико-хирургической академии. Позднее он вспоминал: «Я был самым молодым экзаменационным аптекарем в России, мне не было еще полных 21 года».
В 1821 г. Клаус женился на Эрнестине Батэ, с которой был знаком в юности. Он переехал с ней в Казань, где получил в свое заведование аптеку. В Казани у них родились три дочери. Клаусу было 32 года, в его семье росло трое детей, когда он решил начать учебу в Дерптском университете. Чтобы содержать семью, ему пришлось занять должность инспектора химического кабинета, по существу – лаборанта. В Дерпте у Клауса родился сын. В 1835 г. он окончил университет, а через два года защитил диссертацию на степень магистра философии.
Он снова переезжает с семьей в Казань, где был избран профессором по кафедре химии университета. Здесь он открывает новый химический элемент рутений (см. 4.46), за что получает в 1844 г. Демидовскую премию в 5000 руб. Премия удачно подоспела к семейному торжеству – старшая дочь выходила замуж.
Стремление объединить семьи своих дочерей и уменьшить семейные расходы заставляет Клауса вернуться в Дерпт, где жила его вторая дочь и учился сын. В 1853 г. он пишет: «Я устроился в Дерпте очень хорошо и живу в кругу своей семьи тихой и уютной патриархальной жизнью. В материальном отношении я здесь обеспечен лучше, чем в Казани». В этом городе и прошли последние годы жизни Клауса.
Вот как описывает Бутлеров внешность Клауса: «Сама наружность Карла Карловича представляла много симпатичного. Он был среднего роста, худощавый, с длинными серыми волосами на затылке, с лысой вершиной головы, всегда закинутой немного назад… яркий румянец не сходил у него со щек; его добрые серо-голубые глаза приветливо смотрели поверх золотых очков, спущенных на конец носа».
3. НАЗВАНИЯ, СИМВОЛЫ И ФОРМУЛЫ – ИСТОРИЯ И СОВРЕМЕННОСТЬ

В 1787 г. французский химик Лавуазье (см. 2.28), один из создателей первой химической номенклатуры, записал: «Невозможность отделить номенклатуру от науки и науку от номенклатуры объясняется тем, что каждая естественная наука необходимо состоит из ряда фактов, которые составляют науку, представлений, их вызывающих, и слов, их выражающих. Слово должно рождать представление, представление должно изображать факт, это три оттиска одной и той же печати».
3.1. МИСТИЧЕСКОЕ ЧИСЛО СЕМЬ. АЛХИМИЧЕСКИЕ СИМВОЛЫ: «КРАСНЫЙ ЛЕВ» И «ПРЕКРАСНАЯ ЛИЛИЯ»
Человечество давно питает особое пристрастие к числу семь. В детстве мы слушаем свои первые сказки: «Волк и семеро козлят», «Цветик-семицветик», «Белоснежка и семь гномов». В зрелом возрасте мы говорим: «семь раз примерь…», «семь бед – один ответ». В древности существовало семь чудес света и семь царств. В библейских текстах встречаем «семь коров тощих и семь тучных»… Какое значение число «семь» имело в алхимии?
Алхимики считали, что в природе существует только семь металлов по числу известных в то время планет и что эти семь металлов связаны со средой обитания человека, его душевным состоянием, днем недели и космосом. Поэтому металлы имели названия соответствующих планет (табл. 1).
Алхимики не знали состава используемых химических веществ, не умели их анализировать и химические взаимодействия записывали словами. Вещества, участвующие в реакциях, они называли, не руководствуясь никакими правилами, и поэтому понять, что они делали, было очень трудно. Гёте в «Фаусте» дал пример записи алхимической процедуры:
«Являлся красный лев – и был он женихом,
И в теплой жидкости они его венчали
C прекрасной лилией, и грели их огнем,
И из сосуда их в сосуд перемещали…»
Таблица 1.
Алхимические обозначения металлов

Зная особое пристрастие алхимиков к соединениям ртути, можно предположить, что в «Фаусте» описано получение сулемы – хлорида ртути HgCl2. «Красный лев» – это скорее всего красный оксид ртути HgO (впрочем, алхимики также называли «красным львом» и сурик Pb3O4 (см. 1.11), а «прекрасная лилия» – хлороводородная кислота НСl:
HgO + 2НСl = HgCl2 + H2O.
Далее у Гёте написано, что полученное вещество применяли как лекарство. Действительно, сулему использовали как обеззараживающее средство, однако из-за ее ядовитых свойств уже небольшая передозировка могла привести к печальному исходу. Как в «Фаусте»:
«И стали мы лечить – удвоились мученья,
Больные гибли все без исключенья…».
3.2. ПЕРВЫЕ УСЛОВНЫЕ ОБОЗНАЧЕНИЯ ВЕЩЕСТВ
Алхимические обозначения химических веществ представляли собой различные геометрические фигуры. Например, вода часто изображалась при помощи треугольника

карбонат калия – знаком

триоксид мышьяка – в виде гантели

трисульфид сурьмы – ромбом

и т. п. Современные химические формулы этих веществ, в порядке их перечисления: H2O, K2CO3, As2O3, Sb2S3.
Таблица 2.
Символы химических элементов в XVII–XIX веках

Например, формулу азотной кислоты HNO3 Дальтон записывал в виде

а серной —

Воду он изображал символом

Алхимические обозначения не включали символов химических элементов, не характеризовали состав вещества, а представляли лишь условное его изображение, с помощью которого алхимики зашифровывали свои «секреты», причем почти у каждого из них был свой набор подобных знаков, известный только ему одному.
Первый значительный шаг в изображении химического состава веществ сделали во Франции инженер Жак-Анри Гассенфратц (1755–1827) и химик и врач Пьер-Огюст Аде (1763–1834). Они вместо алхимических символов веществ и семи металлов ввели обозначение известных химических элементов в виде дуг, черточек и кружочков, в которые помещали первую букву французского названия элемента. Из таких символов начали составлять химические формулы веществ. Затем Дальтон (см. 2.8) ввел в употг ребление свои символы химических элементов и также использовал их для обозначения состава веществ (табл. 2).
3.3. «СПИРИТУС НИТРИ» РАСТВОРЯЕТ «ВЕНЕРУ», «МАРС» И «ЛУНУ». ЧТО ЭТО ЗНАЧИТ?
Аптекари XVI в. в России концентрированную азотную кислоту HNO3 называли «спиритус нитри» (см. 1.48; 5.50). «Венера», «марс» и «луна» – это названия металлов (см. табл. 1) – меди Cu, железа Fe и серебра Ag.
Азотная кислота взаимодействует с этими металлами так:
Ag + 2HNO3 =AgNO3 + NO2↑ +H2O,
Cu + 4HNO3 = Cu(NO3)2 + 2NO2↑ + 2Н2O,
Fe + 6HNO3 = Fe(NO3)3 + 3NO2↑ + 3H2O.
В первой реакции образуется нитрат серебра AgNO3, во второй – нитрат меди Cu(NO3)2, в третьей – нитрат железа Fe(NO3)3. Во всех приведенных реакциях выделяется бурого цвета газ – диоксид азота NO2.
3.4. ХИМИЧЕСКИЕ ЗАПИСИ ПЕТРА I
В бумагах Петра I, датированных 1720 г., были обнаружены записи химических реакций и символов:

Петр I использовал алхимическую символику (см. 3.2) для обозначения следующих веществ соответственно слева направо: карбоната калия K2CO3, или поташа; хлорида аммония NH4Cl, или нашатыря; нитрата калия KNO3, или селитры; меди Си, мочи, воды H2O.
3.5. СИСТЕМА СИМВОЛОВ БЕРЦЕЛИУСА
Торнберн-Улаф Бергман (1735–1784) – шведский химик и минералог, член Шведской королевской академии наук – советовал в последние годы своей жизни французскому химику Гитону де Морво, инициатору создания первой номенклатуры химических веществ: «Не щадите ни одного неправильного наименования, знающие поймут всегда, незнающие поймут тем скорее».
Шведский химик Берцелиус (см. 2.19) использовал этот совет для разработки своей системы химических символов, которая сохранилась и в современной химии. Он предложил в качестве символов химических элементов принимать первую букву их латинских названий, а в случае совпадения первых букв – использовать и вторую букву. Так, для обозначения кислорода он взял символ «О» – первую букву от Oxygenium (оксигениум), для водорода – «Н» – от Hydrogenium (гидрогениум), для углерода – «С» – от Carboneum (карбонеум). Символ химического элемента кальция «Ca» уже содержит две первые буквы слова Calcium (кальциум) – во избежание совпадения с символом углерода. Две буквы нужны и для символа химического элемента меди: «Cu» от Cuprum (купрум) – по той же причине.
Если же кислород входит в состав сложного вещества, то Берцелиус рекомендовал пользоваться точками над символом элемента.
Например, Ċa – оксид кальция CaO;

– серная кислота H2SO4;

– азотная кислота с формулой HNO3. Если в составе вещества два атома одинакового вида, Берцелиус предлагал ставить поперечную черту на расстоянии 1/3 от нижней части символа:

Реакция получения аммиака NH3 взаимодействием хлорида аммония NH4Cl и оксида кальция CaO по Берцелиусу записывалась так:
NH4Cl + Ċa = CaCl + Ĥ + NH3
Современная запись этой реакции:
2NH4Cl + CaO = CaCl2 + H2O + 2NH3.
Уже после Берцелиуса число атомов в соединениях стали указывать цифрами справа вверху символа химического элемента. Например, K2SO4 – сульфат калия, NH3 – аммиак, Al2O3 – оксид алюминия. Надстрочные индексы в формулах соединений сохранились до конца XIX в. и использовались Менделеевым во всех восьми изданиях его знаменитого учебника «Основы химии». Принятое в настоящее время указание числа атомов в молекулах соединений подстрочной цифрой (K2SO4, NH3) было предложено еще в 1834 г. Либихом (см. 2.17).
3.6. СОЛИ ТАХЕНИЯ
Содержание понятия «соль» впервые раскрыл немецкий аптекарь Отто Тахений (1620–1699). В одном из своих сочинений он писал: «Все соли состоят из какой-либо кислоты и из какой-либо щелочи… из этих двух универсальных принципов составлены все тела мира».
Сейчас мы с вами знаем, что соли – продукты реакций замещения атомов водорода кислоты на металл или гидроксид-ионов OH-оснований на анионы кислот. При полном замещении атомов водорода образуются средние соли, например K2SO4 – сульфат калия, а при неполном – кислые, например KHSO4 – гидросульфат калия. При взаимодействии некоторых солей с водой (реакции гидролиза) образуются основные соли. В частности, в реакции сульфата меди CuSO4 с водой в растворе появляется основный сульфат меди (CuOH)2SO4:
2CuSO4 + 2H2O ↔ (CuOH)2SO4 + H2SO4.
Соли являются, как правило, кристаллическими веществами, состоящими из катионов и анионов.
3.7. ХИМИЯ БЕЗ ФОРМУЛ
Почему в работах таких выдающихся химиков XVIII–XIX вв., как Либих, Дэви, Фарадей, Бертло и др., нельзя найти ни одной химической формулы?
У химиков того времени еще не было общепринятого «химического языка» – формул. Вещества и реакции описывались только словами. Например: «Я растворил в пол-унции горячей азотной кислоты драхму серебра и налил туда две унции спирта», – так описывает Либих свой способ приготовления «гремучего серебра» (см. 3.26).
Теперь реакцию Либиха по получению фульмината серебра («гремучего серебра» AgCNO) записывают в виде уравнения
2Ag + 4HNO3 + 2С2Н5ОН = 2AgCNO + N2↑ + 2СО2↑ + 8Н2O.
Иногда химики пользовались символами собственного изобретения, которых не понимал никто, кроме их авторов. Например, в статье 1820 г. можно встретить такую формулу:
2L + (2S + O) (+) 4W.
C трудом удалось установить, что L – известь Ca(OH2), S – кремнезем SiO2, О – кислород, W – вода. Что означало все это вместе, сказать трудно.
Даже к концу XIX в. формулу, например, этанола C2H5OH изображали по-разному: Либих (C4H15)O, H2O; Дюма – C4H8 + H4O2; Берцелиус – (C2H6)O.
Вот еще одно описание химической реакции того времени: «Раствор адского камня действовал на поташ. Получился осадок, который отфильтровали и прокалили. Так выделили благородный металл. Этот же металл образуется и при прокаливании самого адского камня, при этом появляется лисий хвост». Химики установили, что «адский камень» – это нитрат серебра AgNO3, «поташ» – старое название карбоната калия K2CO3, «лисий хвост» – диоксид азота NO2 (бурый газ). Приведенное изложение взаимодействия веществ отвечает реакциям:
2AgNO3 + K2CO3 = Ag2CO3↓ + 2KNO3,
2Ag2CO3 = 4Ag + 2СO2↑ + O2↑,
2AgNO3 = 2Ag + 2NO2↑ + O2↑.
В первой реакции образуется малорастворимый карбонат серебра Ag2CO3, который при прокаливании полностью разлагается на серебро Ag, диоксид углерода CO2 и кислород O2. Разложение нитрата серебра при нагревании описывается последней реакцией (см. 6.28).
В табл. 3 представлена эволюция графических формул молекул аммиака и метана в учебниках химии XIX в.
Таблица 3.
Графические формулы молекул аммиака и метана в учебниках XIX в.

3.8. ИМЕНА КИСЛОТ
Современные названия кислот – серная H2SO4, фосфорная H3PO4 и угольная H2CO3 – впервые были предложены французскими химиками Лавуазье (см. 2.28), Бертолле (см. 2.41), Фуркруа и де Mop– во. В 1792 г. Лавуазье от имени всех этих химиков в своем докладе Парижской академии наук сказал: «Для названий различных кислот мы всегда брали производное от обозначений исходного элемента. Так, кислоту, полученную из серы, мы называли серной вместо купоросной; кислоту, полученную из фосфора, мы называли фосфорной, из угля – угольной вместо воздушной». Правда, ни Лавуазье, ни его соратники по созданию первой номенклатуры химических веществ полного состава кислот не знали. Лавуазье считал, что кислоты образуются при сгорании в кислороде большинства веществ: дословный перевод названия этого элемента с латыни – «рождающий кислоты». На самом деле процесс образования кислотных оксидов, получаемых при сгорании, например фосфора, сопровождался взаимодействием этих оксидов с водой (см. 3.40) – атмосферной влагой, всегда присутствующей в воздухе.
В России названия кислот, предложенные французскими химиками, стали широко использоваться только спустя 100 лет. Еще в 1870–1875 гг. в Петербургской академии наук обсуждалась возможность применения, например, для серной кислоты названия «водород серович четырехкислов» (см. 3.16).
Новая химическая номенклатура осваивалась химиками почти во всех странах очень медленно.
3.9. ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ И ХИМИЧЕСКИЕ СИМВОЛЫ

Все приведенные выше формулы и геометрические фигуры относятся к одному и тому же веществу – серной кислоте. Первой и второй формулами пользовались алхимики, третью предложил Дальтон (см. 2.8), четвертая введена Аде и Гассенфратцем (см. 3.2), пятая рекомендована в 1814 г. Берцелиусом (см. 2.19), а шестой пользовался Менделеев (см. 2.13), и ее можно встретить в его учебнике «Основы химии» издания 1903 г. Последняя, современная формула предложена в 1834 г. немецким химиком Либихом (см. 2.17).
3.10. СТРАННЫЕ СПИРТЫ
В 1807 г. русский химик Александр Иванович Шерер (1772–1824) в одной из дискуссий утверждал: «Свободному распространению химии в нашем отечестве по сию пору препятствовал недостаток в химических наименованиях в российском языке. Сей недостаток сделался весьма ощутительным как в публичном преподавании, так и в химических сочинениях». Например, всегда ли название «спирт» в XVIII–XIX вв. относилось действительно к спиртам?
Спирты – это органические вещества, содержащие в молекуле одну или несколько гидроксильных групп ОН, соединенных с атомом углерода – например, метиловый спирт CH3OH (метанол), этиловый спирт C2H5OH (этанол) и т. д. В старину эти вещества называли древесным (см. 1.60) и винным спиртами (см. 7.53). Кроме того, вплоть до конца XIX в. к «спиртам» относили целый ряд неорганических веществ – легколетучих жидкостей (от латинского «спиритус» – дух). Это концентрированные кислоты – хлороводородная HCl («соляный спирт», см. 1–52), азотная HNO3 («селитряной спирт», или «крепкая водка», см. 1.48), их смеси («царская водка», см. 3.13); разбавленная серная кислота H2SO4 («купоросный», или «серный спирт», см. 1.49); водный раствор аммиака NH3 («мочевой спирт», см. 1.44). А «спирт сулемы» – это тетрахлорид олова SnCl4, который был получен Андреасом Либавием (1540–1616) перегонкой амальгамы олова с сулемой – дихлоридом ртути HgCl2; впоследствии SnCl4 долго называли «дымящим спиртом Либавия».
В настоящее время бытуют названия «муравьиный», «борный», «камфарный» спирт и др. Это термины главным образом фармацевтические и обозначают спиртовые растворы. Так, муравьиный спирт – это 1,4%-й этанольный раствор муравьиной кислоты НСООН; борный спирт – это 3%-й этанольный раствор борной кислоты B(OH)3; камфарный спирт – 10%-й раствор камфары в водно-этанольной смеси. А «мыльный спирт» содержит 4,6% гидроксида калия KOH и 20% подсолнечного масла в водно-этанольном растворителе.
Этиловый спирт алхимики долгое время называли «пылающей водой», «водой жизни», так как он мог, по их мнению, растворять «философский камень» (см. 1.3) и превращаться в «эликсир жизни». Название «алкоголь» этиловому спирту впервые дал Парацельс (см. 2.6).
3.11. «МАГИЧЕСКИЕ», «ЖЕСТКИЕ», «МЯГКИЕ», «СВЕРХКИСЛОТЫ», «КИСЛОТЫ ЛЬЮИСА», «КИСЛОТЫ БРЁНСТЕДА» – ЧТО ЭТО ТАКОЕ?
Кислотой Льюиса, или «жесткой кислотой», называют частицу, ион или молекулу, обладающую способностью присоединять пару электронов. Такая частица имеет небольшой размер, низкую поляризуемость, высокую степень окисления одного из ее атомов. В числе кислот Льюиса – пентафторид сурьмы SbF5, трихлорид алюминия AlCl3, трифторид бора BF3 и другие частицы, разные по составу. В реакции

трифторид бора является кислотой Льюиса, а молекула аммиака NH3 – основанием Льюиса. Продукт реакции часто называют аддуктом Льюиса.
«Мягкая кислота» – частица, обладающая большим размером, высокой поляризуемостью, низкой степенью окисления одного из ее атомов. Например, катион золота Au + , трихлорид галлия GaCl3, иод I2, бром Br2 – все это «мягкие кислоты».
Кислота Брёнстеда – частица, способная отдавать протон основанию Брёнстеда. К таким кислотам принадлежат хлороводородная кислота HCl и другие кислоты, содержащие протоны, легко удаляемые при взаимодействии с растворителем (водой, например): катион аммония NH4+ , ион оксония H3O+ , гидросульфат-анион HSO4- и даже аквакатионы металлов типа [Al(H2O)6]3+ , [Zn(H2O)4]2+ и др. Пример поведения кислоты Брёнстеда в водном растворе:
«Сверхкислоты», или «суперкислоты», – это жидкости, являющиеся во много раз более сильными (в 106–1010 раз), чем общепризнанные сильные кислоты – азотная HNO3, серная H2SO4, хлороводородная НСl. Сверхкислоты не терпят присутствия растворителей, служащих источниками гидроксид-ионов (таких как вода, спирты и т. п.). К сверхкислотам относят фторотриоксосульфат(VI) водорода HSO3F, полисерные кислоты – дисерную H2S2O7, трисерную H2S3O10, гексафторостибат(V) водорода H[SbF6], а также растворы сильных «кислот Льюиса» («жестких кислот») в подходящей кислоте Брёнстеда, например раствор пентафторида мышьяка AsF5 во фтороводороде HF или фторотриоксосульфате(VI) водорода.
«Магическая кислота» – это одна из суперкислот, представляющая собой эквимолярную смесь HSO3F и пентафторида сурьмы SbF5.

Примечание: Гильберт-Ньютон Льюис (1875–1946) – американский физикохимик, член Национальной академии наук США. Йоханнес-Николаус Брёнстед (1879–1947) – датский физикохимик, член Датского королевского общества.
3.12. «СОЛЕНЫЙ СПИРТ»
Химики употребляли в XVIII–XIX вв. в России химические названия: «соленый» (или «соляной») спирт, «морская кислота», «водотворнохлорная кислота», «оводотворенная кислота», «водохлорная кислота». Есть ли между ними что-то общее?
Так называли одно и то же вещество – водный раствор хлороводорода НСl, или хлороводородную кислоту. А в 1790 г. русский академик Лаксман (см. 1.7) ввел для этого вещества название «соляная кислота»; правда, широкое применение этот термин нашел лишь в конце XIX в. Сейчас рекомендуют водные растворы хлороводорода называть не соляной, а хлороводородной кислотой.
3.13. «КОРОЛЕВСКАЯ ВОДКА»
Являются ли винным спиртом вещества, которые 100–200 лет тому назад называли «вторичной водой», «царской водкой», «королевской водкой»?
Под такими названиями известен один и тот же реактив – смесь концентрированных кислот: одного объема азотной кислоты HNO3 с тремя-четырьмя объемами хлороводородной кислоты НСl. В смеси этих двух кислот устанавливается равновесие
3HCl + HNO3 ↔ NOCl + Cl2 + 2Н2O,
причем хлор находится в растворенном состоянии.
Ломоносов (см. 2.1) называл этот реактив «королевской водкой», но чаще в литературе встречается термин «царская водка», причем первые упоминания на этот счет были уже в сочинениях арабских алхимиков VIII в. Свое название «царская водка» получила благодаря способности взаимодействовать с золотом – «царем металлов» (не проводите подобные опыты, не прочитав 5.39). Полагают, что эту способность впервые обнаружил в 1270 г. итальянский монах– францисканец, философ, алхимик и кардинал Джованни Фиданци – «Бонавентура» (1221–1274). Взаимодействие золота с «царской водкой» вызвано следующими реакциями:
2Au + 3Сl2 = 2AuCl3, AuCl3 + HCl ↔ H[AuCl4],
NOCl ↔ N + C, Au + 3Сl = AuCl3,
AuCl3 + NOCl ↔ NO[AuCl4].
В первой из этих реакций образуется трихлорид золота, во, второй – тетрахлороаурат водорода, в третьей при распаде хлорида нитрозила появляется в растворе атомарный хлор, также воздействующий на золото (четвертая реакция); в последней реакции образуется тетрахлороаурат нитрозилия.
От «царской водки» трагически погиб Александр Николаевич Радищев. В начале сентября 1802 г. он очень плохо себя чувствовал и принял лекарство, которое надо было запить водой. На столе стоял стакан с прозрачной бесцветной жидкостью, которую Радищев выпил залпом. Но это была не вода, а «царская водка», приготовленная его старшим сыном для чистки старых эполет. На следующий день Радищева не стало…
3.14. СТРАННАЯ ФОРМУЛА
Мы привыкли, что формулы кислот следует писать, начиная с атома водорода, например HNO3 (азотная кислота), H2SO4 (серная кислота). Почему же тогда формулу борной кислоты B(OH)3 записывают иначе?
Современная формула борной кислоты B(OH)3 отвечает поведению борной кислоты в водном растворе:

Борная кислота не выделяет протон, как все «обычные» кислоты, а отрывает от воды гидроксид-ион: она является кислотой Льюиса (см. 3.11).
Иначе, чем другие кислоты, взаимодействует борная кислота и с гидроксидами щелочных металлов:
B(OH)3 + KOH = К[В(ОН)4],
4В(ОН)3 + 2КОН = K2IB4(OH)4O5] + 5Н2O.
В этих реакциях образуются не простые соли типа K3BO3, а комплексные: в первой реакции – тетрагидроксоборат калия, во второй – пентаоксотетрагидроксотетраборат калия.
Интересно отметить, что современная химическая номенклатура предусматривает различное расположение в формулах символов атомов водорода, обладающих кислотной функцией (присоединенных к центральному атому молекулы кислоты через атом кислорода) и не обладающих кислотной функцией (присоединенных непосредственно). Например, в молекулах фосфорноватистой кислоты – диоксодигидрофосфата(I) водорода H(PH2O2) – и фосфористой кислоты – триоксогидрофосфата(III) водорода H2(PHO3) – отщепляться в водном растворе могут только соответственно один или два атома водорода. Соответственно фосфорноватистая кислота считается одноосновной, может образовывать соли состава, например, K(PH2O2), фосфористая – двухосновной, образующей соли типа K2(PHO3).
3.15. ГАС ГЕЛЬМОНТА
Долгое время в древнерусской литературе, начиная с X в., употребляли слово «гас».
Славянское слово «гас» означало газ – газообразное состояние вещества – и происходило от слова «гасить», т. е. «тушить». Например, гасить свечу, выдувая из легких «гас».
Понятие «газ» впервые в науку ввел голландский доктор медицины, алхимик и теолог Иоганн-Баптист ван-Гельмонт (1579–1644).
Ван-Гельмонт любил измерять массы и объемы продуктов химических реакций. Он сжег однажды 62 фунта (около 20 кг) угля и получил примерно один фунт золы. Тогда он сделал вывод: «Следовательно, остальные 61 фунт превратились в “лесной дух”… Этот дух я называю новым именем – газ». Ван-Гельмонт стал настойчиво искать газ в других реакциях. Он обнаружил, что газ выделяется при брожении молодого вина, при действии кислот на мел. Состава своею газа Ван-Гельмонт не знал. Только через 100 с лишним 1ет выяснили, что газ Ван-Гельмонта – диоксид углерода CO2, имевший еще два имени – «угольный газ» и «углекислый газ».
3.16. ВОДОРОД ХЛОРОВИЧ…
В одной из рукописей, относящихся к 1870 г., можно прочитать: «Водород хлорович взаимодействует с глиноземием с образованием глиноземия хлоровича». Что за странные имена?
В 1870–1875 гг. в Петербургской академии наук обсуждалась возможность использования для названий химических веществ таких сочетаний слов, которые напоминали бы русские фамилии и отчества. Например, для воды H2O предлагалось название «водород кислородович», для хлорида калия KCl – «калий хлорович» или «потассий хлорович», для хлороводородной кислоты HCl – «водород хлорович», для оксохлората калия KClO – «калий хлорович кислов», для триоксохлората калия KClO3 – «калий хлорович трехкислов» и т. п. В приведенных нами строках рукописи говорилось о взаимодействии алюминия («глиноземия») с хлороводородной кислотой HCl:
2Аl + 6HCl = 2АlСl3 + 3Н2↑.
В этой реакции образуется трихлорид алюминия («глиноземий хлорович») и выделяется водород.
3.17. «СЕРНОКИСЕНЬ»
В рекомендациях Второго съезда русских естествоиспытателей в Москве (1869 г.) можно было встретить такие названия, как «сернокисень», «охлор меди», «хлорнота» и т. п.
Во второй половине XIX в. русскими химиками предпринимались неоднократные попытки создания единой номенклатуры химических веществ, так как химики перестали понимать друг друга. Химической секцией съезда предлагалось вместо слова «сульфат» употреблять «сернокисень», взамен слова «кислота» – «киснота». Название «хлороводород» HCl в этой терминологии превратится в «хлорнота», а «карбонат калия» K2CO3 – в «углекисни потассий». Такие соединения, как дихлорид CuCl2 и монохлорид меди CuCl, получали названия соответственно «охлор меди» и «захлор меди». Соль состава FeSO4 предлагалось называть «сернокисень ожелезь», современное название этого вещества – сульфат железа(II). Однако рекомендованная номенклатура так и не была использована.
3.18. «МЕДНЫЙ ИДРАТ»
В учебнике Гизе «Всеобщая химия», изданном в Харькове в 1813 г., вы сможете прочитать:«При нагревании медный идрат разлагается на омедненный кислотвор и оводотворенный кислотвор». Как эту фразу перевести на современный химический язык?
Автор учебника Иван Иванович Гизе (1781–1821), русский химик и фармацевт, так описывает реакцию разложения гидроксида меди при нагревании:
Cu(OH)2 = CuO + H2O↑.
Гидроксид меди Cu(OH)2 в те времена называли «медным идратом», оксид меди CuO – «омедненным кислотвором», а воду H2O – «оводотворенным кислотвором».
3.19. «КУПОРОС ЗЕЛЕНЫЙ»
В делах Аптекарского приказа за 1644 г. встречается термин «купорос зеленый».
Купоросами называли в прошлые века сульфаты железа, меди, цинка и некоторых других металлов, содержащие химически связанную «кристаллизационную» воду. «Купорос зеленый», или «железный купорос», – вещество состава FeSO4∙7Н2O (см. 1.46), современное название его – гептагидрат сульфата железа(II). Слово «купорос» применительно к сульфату железа, вероятно, связано со способом получения его из рудничных вод, содержащих «медный купорос» (см. 1.47), обработкой их железной стружкой (англ, слово медь – «копэ»):
CuSO4 + Fe = Cu + FeSO4.
Вот какое определение всем «купоросам» давали в учебнике по химии в 1782 г.: «Купорос есть минералическая соль и в самом основании своем не что иное как серный спирт, одетой в металлическое или минералическое тело».
«Зеленый купорос» применяли для лечения венерических болезней, чесотки, гельминтоза, а также опухолей желез.
3.20. И СНОВА «ЯМЧУГ»…
Какой химический состав имели вещества, которые в XVII в. называли в России «ямчуг», «минеральный хрусталь», «азотно-кислый поташ», «селитра»?
Так называли одно и то же вещество – нитрат калия KNO3, соединение, крайне необходимое для производства дымного пороха (см. 1.33, 1.34).
3.21. ШАРАДЫ В РУКОПИСИ ЛОМОНОСОВА
Как расшифровать текст в рукописи Ломоносова «Первые основания горной науки»: «Квасцы… очень кислы, еще и через перегонку дают весьма кислый спирт… с купоросной кислотой одной натуры и те же свойства имеет»?
Термин «квасцы» употребляют в России с XV в., он происходит от корня «квас» (отсюда «квашение», «квасить»). «Кислота» по-украински и по-польски называется и теперь «квас» (например, серная кислота по-украински – «сернячий квас»).
Во времена Ломоносова квасцами называли сульфат алюминия-калия KAl(SO4)2∙12Н2O (см. 151). Квасцы при растворении в воде ведут себя как смесь сульфата калия K2SO4 и сульфата алюминия Al2(SO4)3; последний подвергается обратимому гидролизу:
Al2(SO4)3 + 12H2O↑ ↔ 2[Al(H2O)5OH]SO4 + H2SO4.
Образующаяся в небольшом количестве серная кислота и придает квасцам кислый вкус. При нагревании квасцов в реторте реакция гидролиза становится необратимой, так как происходит отгонка серной кислоты:







