![](/files/books/160/oblozhka-knigi-kniga-po-himii-dlya-domashnego-chteniya-248168.jpg)
Текст книги "Книга по химии для домашнего чтения"
Автор книги: Борис Степин
Соавторы: Людмила Аликберова
сообщить о нарушении
Текущая страница: 12 (всего у книги 27 страниц)
СН4 + ŌН = Н2О + ĊН3, СO + ŌH = СO2 + Ĥ.
3.54. НЕ ОШИБАЙТЕСЬ: СОЛИ РАЗНЫЕ!
Хлорид и хлорит, сульфид и сульфит часто путают друг с другом, особенно на слух. Как избежать подобных ошибок?
Хлорид – соль хлороводородной кислоты HCl (например, хлорид натрия NaCl). Хлорит – соль хлористой кислоты HClO2 (например, хлорит натрия NaClO2).
Сульфид – соль сероводородной кислоты H2S (например, сульфид натрия Na2S). Сульфит – соль полигидрата диоксида серы SO2∙nH2O (например, сульфит натрия Na2SO3).
Чтобы избежать ошибок, лучше использовать современные названия диоксохлорат(III) натрия (для NaClO2) и триоксосульфат(IV) натрия (для Na2SO3).
3.55. «МУМИЯ» И «МУМИЁ»
Мумия – природный красный пигмент, содержащий триоксид дижелеза Fe2O3 (см. 1.8 и 10.48). Мумиё – черные лоснящиеся кусочки или темно-коричневые канифолеподобные образования высохших на воздухе до мумифицированного состояния смесей некоторых видов лишайника и экскрементов некоторых животных – архаров, мышей-полевок, пищух (грызунов, похожих на миниатюрного зайчика, питающихся ягодами и хвоей можжевельника).
«Мумиё» – греческое слово, происходящее от слова «мумия»: когда-то это вещество добывалось из мумий – высохших трупов.
Но древние лекари и жрецы рекомендовали мумиё только для наружного употребления.
Состав мумиё очень сложен: в него входят фосфаты, карбонат кальция CaCO3, органические вещества высокой биологической активности и микроэлементы, смолы и т. п. Раствор или настой мумиё в воде имеет коричневый цвет и своеобразный запах смеси битума, навоза и шоколада; на вкус горьковатый.
Мумиё находят, как правило, в высокогорных пещерах, для которых характерны сухость, недостаток кислорода, резкие колебания суточных температур. В этих пещерах обычно живут полевки и пищухи. Поэтому некоторые считают, что мумиё – продукт переработки можжевельника, прошедшего через желудочно-кишечный тракт маленьких грызунов. Самые древние образцы найденного мумиё имеют возраст до 15000 лет.
О целебных свойствах этого вещества сообщали еще Аристотель (см. 4.2) и Авиценна (см. 1.2). Последний сказал так: «Мумиё обостряет чувства, укрепляет желудок, облегчает дыхание и является наиболее совершенным сложным лекарством». Мумиё подавляет воспаления, ускоряет заживление ран, повышает общую устойчивость организма к заболеваниям, восстанавливает силы при общем истощении. Шекспир упоминал, что мать Отелло, провожая сына на войну, одарила его платком, пропитанным настоем мумиё, помогающим, как она считала, сращивать кости и заживлять раны.
В последнее время было установлено, что отстоявшаяся морская пена, земля под старыми пнями, экстракт из осенних листьев клена обладают высокой биологической активностью, сравнимой с активностью мумиё. То же относится и к пчелиному клею – прополису.
3.56. «РЫБНЫЙ ГАЗ»
В 1851 г. один из химиков, перегоняя селедочный рассол, к которому он добавил известковую воду [раствор гидроксида кальция Ca(OH)2, см. 3.23], получил триметиламин N(CH3)3 – газ с характерным запахом протухшей рыбы, превращающийся в жидкость при температуре ниже + 2° С.
Триметиламин является продуктом анаэробного (без участия кислорода) дыхания морских организмов. Его удалось выделить из слез человека и желудочного сока. У людей с нарушением функции печени сильно пахнут «разлагающейся рыбой» дыхание, пот и моча из-за выделения «рыбного газа».
4. КАК ОТКРЫВАЛИСЬ ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ И СОЗДАВАЛАСЬ ПЕРИОДИЧЕСКАЯ СИСТЕМА
В этом разделе читатель узнает об истории открытия химических элементов, происхождении их названий, о спорах, связанных с приоритетом открытия, о ложно открытых элементах, о формировании принципов построения системы химических элементов и других интересных исторических фактах, связанных с понятием «элемент».
4.1. ЭЛЕМЕНТ И ПРОСТОЕ ВЕЩЕСТВО
Элемент в обычном понимании – составная часть чего-нибудь. Уже в древности считали, что как слова состоят из букв, так и тела – из элементов. Французский химик А. Лавуазье (см. 2.28) применял термины «элемент» и «простое тело» как равнозначные. Д.И. Менделеев начал разделять эти термины. Он писал: «Понятия и слова простое тело и элемент нередко смешивают между собою… Простое тело есть вещество… с рядом физических признаков и химических реакций… Под именем элементов должно подразумевать те материальные составные части простых и сложных тел? которые придают им известную совокупность физических и химических свойств… Углерод есть элемент, а уголь, графит и алмаз суть тела простые».
Простое вещество – это форма существования конкретного химического элемента в том или ином агрегатном состоянии. Химический же элемент – это один атом или их разрозненная совокупность с одним и тем же зарядом ядра, с одним и тем же числом протонов в ядре. Когда между атомами одного и того же химического элемента появляются химические связи, то совокупность химически связанных атомов – уже простое вещество.
4.2. ЭЛЕМЕНТЫ ПО АРИСТОТЕЛЮ
Аристотель (384–322 гг. до н.э.) был почти 20 лет учеником знаменитого философа и математика Платона (см. 1.6) и только в возрасте 37 лет покинул стены платоновской школы, чтобы стать учителем Александра Македонского. В 335 г. до н.э. он основал в Афинах свою философскую школу – Ликей. В то время философы не имели никакого понятия о химических элементах, хотя им были известны семь металлов (см. 3.1) и два неметалла – уголь и сера.
Рис. 1. Элементы или стихии Аристотеля
Аристотель создал первую картину мира. Он был уверен, что первоосновой всего существующего является какая-то единая первоматерия, находящаяся в разных состояниях, появляющихся при комбинациях четырех стихий или элементов: земли, воды, воздуха и огня (рис. 1). Стихия земли может находиться в сухом и холодном состояниях, стихия воды – в холодном и влажном состояниях, и т. д. К четырем элементам Аристотель позднее присоединил пятый – эфир, из которого, как он полагал, состоят небеса, звезды и планеты. По его мнению, все шесть металлов образовались из ртути путем присоединения к ней того или иного элемента – земли, воды, воздуха или огня.
4.3. ПЕРВЫЙ МЕТАЛЛ ЧЕЛОВЕКА
Знаете ли вы:
C каким первым металлом познакомился человек еще в эпоху каменного века? Что из ртути можно получить золото?
Считают, что золото и железо были первыми металлами, знакомыми человеку еще в каменном веке. Золото встречается в природе в самородном состоянии, а железо было металлом, «упавшим с неба», метеоритным железом. В Древнем Египте железо называли «бе-нипет», что означало в буквальном переводе «небесный металл» (см. 1.55 и 5.27). За три тысячелетия до нашей эры человечеству уже были известны семь металлов, получивших название «семь металлов древности»: золото Au, железо Fe, серебро Ag, медь Cu, свинец Pb, олово Sn и ртуть Hg.
В IV в. до н.э. в Индии и Египте ртуть Hg и сера S были, по древним представлениям, как бы «родительской парой», порождавшей все металлы и минералы. Ртуть рассматривалась как символ металличности, как «душа металла» и «корень всех веществ». Поэтому ртуть называли в то время Меркурием по имени ближайшей к Солнцу – золоту – планеты Меркурий (см. 3.1). Отсюда и произошло название сложных соединений ртути – меркураты (например, тетраиодомеркурат калия K2(HgI4]).
Уже в нашем столетии выяснилось, что природная ртуть и ртуть, получаемая из минерала киновари, сульфида ртути HgS (см. 1.13), всегда содержит примесь золота в большем или меньшем количестве. Ртуть образует с золотом ряд соединений: Au3Hg, Au2Hg, AuHg2 и др. Некоторые из этих соединений способны переходить вместе с ртутью в пар и затем в ее конденсат. Поэтому от примеси золота ртуть не освобождается даже после многократной повторной перегонки. Только при длительном электрическом разряде в парах ртути можно выделить на стенках реакционной трубки черный налет мелкораздробленного золота. Это явление послужило причиной возрождения 60–70 лет тому назад старой алхимической версии о возможности превращения ртути в золото. Увы, золото было только примесью в ртути. Золото Au в исчезающе малых количествах можно получить из ртути Hg только в ядерных реакциях. Например, из радиоактивного изотопа ртути-197 в ядерной реакции
19780Hg(K, e-, γ) → 19779Au,
в которой в результате захвата ядром электрона (K-захват) один из протонов ядра превращается в нейтрон n0 с излучением фотона γ:
p+ + е- = n0 + γ.
4.4. ПОРЯДКОВЫЙ ИЛИ АТОМНЫЙ НОМЕР?
Порядковый номер и атомный номер химического элемента – синонимы, совпадающие понятия. В Периодической системе Менделеева (см. 2.13) элементы располагаются в порядке возрастания их номеров, начиная с водорода H, порядковый или атомный номер которого равен единице. Порядковый номер элемента равен заряду ядер его атомов в единицах элементарного электрического заряда или числу протонов в ядре, а для нейтрального атома – числу электронов в нем.
Термин «порядковый номер элемента» впервые ввел в употребление английский химик Ньюлендс в 1875 г. без какого-либо физического смысла (см. 2.16). Этот термин вначале не имел никакого отношения к Периодической системе Менделеева. Термин «атомный номер элемента» ввел в употребление английский физик Эрнст Резерфорд в 1913 г. вместо термина «порядковый номер элемента» и настойчиво его внедрял. Так как Периодическая система Менделеева – это система химических элементов, а не атомов, их составляющих, то в настоящее время предпочтение отдается термину «порядковый номер элемента».
Если символ элемента Э, то порядковый номер элемента Z обозначается подстрочным индексом слева от символа, а массовое число А, или число нуклонов в ядрах элемента (см. 4.60) – надстрочным индексом слева, например AZЭ. Для изотопа золота-157 обозначение будет таким: 19779Au, где 197 – массовое число А, 79 – порядковый номер Z.
Примечание. Эрнст Резерфорд (1871–1937) – английский физик, член Лондонского королевского общества, его президент, лауреат Нобелевской премии.
4.5. «ВЫМИРАЮТ» ЛИ ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ?
Все вещества Земли образовались преимущественно из устойчивых атомов химических элементов. Но кроме них в земной коре, гидросфере и атмосфере присутствуют исчезающе малые количества радиоактивных элементов, таких как франций Fr, актиний Ac, технеций Tc (см. 4.42), радон Rn (см. 4.31), астат At (см. 4.40), полоний Po и некоторых других, которые относят к «вымершим» элементам. На ранних этапах формирования Земли их было много, но вследствие радиоактивного распада они постепенно превратились в устойчивые атомы ныне существующих элементов. В частности, технеций, элемент VIIB группы Периодической системы, существовавший около 4 млрд., лет тому назад, исчез в результате радиоактивного распада: Тс-99 (e-) Ru-99. Обнаруживаемые в некоторых минералах следы технеция порядка 10-9 г/кг – результат радиоактивного распада урана U и воздействия космических нейтронов n0 на минералы, содержащие молибден Mo, ниобий Nb и рений Re (см. 4.43).
Свои последние дни доживают в современную эпоху атомы калия-40, урана-235, актиния-235, астата-211 и некоторых других радиоактивных элементов.
В частности, было подсчитано, что в каждом килограмме урана через 100 млн. лет образуется 13 г свинца Pb и 2 г гелия He. А через 4 млрд., лет урана на Земле не останется. В бывших месторождениях его минералов найдут только соединения свинца, а атмосфера станет богаче гелием.
4.6. ЧТО В АТМОСФЕРЕ ВЕНЕРЫ, ЗЕМЛИ И МАРСА?
Атмосфера Венеры и Марса содержит преимущественно углерод в виде его диоксида CO2, а атмосфера Земли – азот N2. В атмосфере Венеры кроме диоксида углерода находятся в небольших количествах еще азот и аргон Ar. В атмосфере Марса после диоксида углерода наиболее распространенными являются диоксид серы SO2 и азот. В атмосфере Земли кроме азота содержатся кислород O2 и в очень небольших количествах аргон и диоксид углерода. Считают, что атмосфера Земли в начале ее эволюции состояла из диоксида углерода, а затем стала азотно-кислородной. Практически весь аргон атмосферы Земли образовался в результате радиоактивного распада ядер химического элемента калия-40.
4.7. «СЫРЬЕ» ДЛЯ ОБРАЗОВАНИЯ ЭЛЕМЕНТОВ
Звезды – водородно-гелиевая смесь. Не эта ли смесь – основное «сырье» для образования остальных химических элементов?
Все химические элементы образовались из ядер водорода Н, который вместе с гелием He является главной частью космического вещества. Остальные химические элементы могут рассматриваться как малая примесь. Большинство всех звезд, в том числе и наше Солнце, представляют собой водородно-гелиевую смесь. Только в звездах, называемых «белыми карликами», водород в результате ядерных реакций весь «выгорел» и вместо него появились более тяжелые элементы.
«Выгорание» водорода с превращением его в гелий происходит в основном у центра звезды, где температура выше. При этом ядро звезды сжимается, а оболочка расширяется. Температура поверхности звезды падает, и она становится «красным гигантом». В «выгоревшем» и сильно сжавшемся ядре и начинаются ядерные реакции, приводящие к образованию новых химических элементов. Прежде всего с участием ядер бериллия Be образуются атомы углерода C:
84Ве + 42Не → 126C.
Новые ядра легких элементов служат исходным материалом для последующего образования всех тяжелых ядер в процессах нейтронного захвата. Например, образование ядер азота N происходит при захвате нейтронов n0 ядрами углерода с выбросом электронов e-:
126C + 10n = 136C = 137N + e-
Непрерывно действующими источниками нейтронов служат ядерные реакции типа:
136C + 42He = 138O + 10n.
Некоторые химические элементы, видимо, образовались при помощи ядерных частиц, ускоренных переменными электромагнитными полями в атмосферах звезд.
4.8. ЭЛЕМЕНТЫ ВО ВСЕЛЕННОЙ
На Земле по убывающей распространенности химические элементы составляют ряд: О, Si, Al, Fe, Ca, …, H (9-е место), …, C (13-е место), …, Не (78-е место). Распространенность же элементов во Вселенной убывает в ряду: H>He>O>C>Ne>N>Si>S>…
В космосе было обнаружено присутствие аммиака NH3, воды H2O, циановодорода HCN, метанола CH3OH, муравьиной кислоты HCOOH и даже аминокислот. Среди метеоритов, падающих на Землю, встречаются так называемые углеродистые хондриты, в состав которых входит от 0,5 до 7,0% органических соединений. В частности, в метеорите «Мэрчисон» (Австралия, 1969 г.) было обнаружено 18 различных аминокислот. Поэтому считают, что образование органических и неорганических соединений – распространенный космический процесс.
4.9. ТРИАДЫ ДЁБЕРЕЙНЕРА
Иоганн-Вольфганг Дёберейнер (1780–1849), немецкий химик-технолог, свое химическое образование получил, работая помощником аптекаря в ряде городов Германии. Затем он стал владельцем небольшой фабрики медикаментов, но быстро разорился. Скопив капитал, Дёберейнер снова приобрел фабрику по отбеливанию тканей хлором, но в 1808 г. предприятие обанкротилось. Его спас от нищеты друг и покровитель, поэт и философ И.-В. Гёте, возглавлявший в то время правительство одного из герцогств Германии. Гёте предложил Дёберейнеру занять должность профессора химии и фармации в Иенском университете.
В 1817 г. Дёберейнер обнаружил, что некоторые элементы, обладавшие общностью химических свойств, можно расположить по возрастанию их атомных масс так, что атомная масса среднего из трех элементов окажется равной примерно среднему арифметическому из суммы атомных масс соседних элементов (правило триад). Он назвал такие семейства элементов триадами. Дёберейнер составил из известных в то время элементов четыре триады: литий Li—натрий Na—калий К; кальций Ca—стронций Sr—барий Ba; сера S – селен Se—теллур Те; хлор Cl—бром Br—иод I.
Работы Дёберейнера послужили началом в создании будущей Периодической системы, хотя взаимная связь триад так и осталась до Менделеева нераскрытой. Правило триад было использовано Менделеевым для классификации химических элементов.
4.10. МЕНДЕЛЕЕВ И МЕЙЕР
До сих пор в ряде зарубежных стран оспаривается приоритет открытия Периодического закона Менделеевым и преувеличивается роль Мейера в этом открытии. Первооткрывателями Периодического закона называют Мейера и Менделеева.
Лотар-Юлиус Мейер (1830–1895) – немецкий профессор химии, член-корреспондент Берлинской академии наук, иностранный член– корреспондент Петербургской академии наук с 1890 г., занимался проблемами физиологии, историей химических теорий и отчасти физической химией.
Одно время он пытался расположить химические элементы по возрастанию их степеней окисления. В 1864 г. в книге «Современные теории химии» Мейер предложил располагать элементы по группам, но дальше этого предложения не пошел и понятие «группа элементов» не раскрыл. Только в 1870 г., после опубликования Менделеевым Периодического закона, появилась статья Мейера, в которой он рассмотрел общую систему химических элементов, расположив их по возрастанию атомных масс, что сделал до него еще Ньюлендс (см. 2.16).
Сам Мейер признавал приоритет Менделеева в открытии Периодического закона. В одной из своих статей, опубликованных после 1870 г., он писал: «В 1869 г., раньше, чем я высказал свои мысли о периодичности свойств элементов, появился реферат статьи Менделеева…» о Периодической системе и Периодическом законе, позволявшем предсказывать свойства еще не открытых химических элементов.
Однако позднее, в 1880 г., Мейер опубликовал статью с претензией на приоритет открытия Периодического закона. Менделеев по этому поводу написал, что «… Лотар Мейер раньше меня не имел в виду периодического закона, а после меня нового ничего к нему не прибавил». Следует добавить, что Мейер считал долгое время основным свойством простых веществ степень окисления, а не атомную массу.
4.11. ЛЕГЧЕ ВОДОРОДА?
Менделеев считал, что легче водорода H могут быть два химических элемента, пока не обнаруженных в природе: элемент x, названный им ньютонием, и элемент y, которому он дал имя короний. Для ньютония Менделеев ввел в свою систему нулевой период, а элемент короний он поместил в I-й период до водорода. Оба элемента, по его мнению, должны находиться в нулевой группе Периодической системы.
Менделеев полагал, что ньютоний не только наилегчайший, но и химически наиболее инертный химический элемент, обладающий высочайшей проникающей способностью. После Менделеева отдельные исследователи пытались представить в качестве такого химического элемента нейтральную ядерную частицу нейтрон n0. Теперь мы знаем, что в Периодической системе элементов не может быть химических элементов легче водорода.
4.12. ФЕНОМЕН ПОЗИТРОНИЯ
Получены атомы позитрония, химический символ Ps, и атомы мюония, химический символ Mu. В атомах позитрония вообще нет ядра. Они состоят из электрона e- и позитрона e+ , перемещающихся вокруг некоторого геометрического центра.
Время жизни позитрония невелико, всего 10-6 с. Электрон и позитрон рано или поздно сталкиваются и исчезают, превращаясь в фотоны, кванты энергии. Позитроний может участвовать в различных химических реакциях. Он восстанавливает катионы железа Fe3+ до Fe2+ :
замещает иод в его молекуле:
Ps + I2 = PsI + I,
может присоединяться к атому водорода:
Ps + H = PsH.
Последнее соединение является не двухатомной молекулой, а атомом, в котором в поле действия протона p+ находятся два электрона e- и позитрон е+ .
Синтезированы атомы, состоящие из положительно заряженного мюона Mu+ и электрона, получившие название атомов мюония. Эти атомы напоминают атомы водорода, только вместо протона в ядре находится мюон с массой покоя в 200 раз большей массы электрона. Мюоний, как и позитроний, нестабилен и существует около 10-6 с. Позитроний и мюоний не относятся к атомам химических элементов Периодической системы Менделеева.
4.13. КАКОЕ НАЗВАНИЕ ХИМИЧЕСКОГО ЭЛЕМЕНТА САМОЕ КУРЬЕЗНОЕ?
Наверное, все согласятся, что это название элемента № 33 – мышьяка, символ As. Русское название произошло от слова «мышь». Ядовитые препараты мышьяка использовали в старину для истребления мышей и крыс. Не следует думать, что русское название этого элемента является каким-то исключительным. Сербы и хорваты называют элемент № 33 «мишомором», азербайджанцы и узбеки – «маргумушем»: «мушь» – мышь, а «мар» – убить. А арабское название «арса наки» означает «глубоко проникающий яд». Это слово созвучно латинскому названию элемента № 33 – «арсеникум» и греческому – «арсен и кон». Любопытно, что слово «арсен» по-гречески означает «мужественный, сильный». Поэтому в XIX в. выдвигалось предположение, что русское имя элемента происходит не от слова «мышь», а от слова «муж», будто бы существовал на Руси в древние времена термин «мужьяк», и лишь впоследствии он «переродился» в название мышьяк (см. 4.23).
4.14. ВПЕЧАТЛИТЕЛЬНЫЕ ХИМИКИ
Что больше отражено в названиях химических элементов: цвет простых веществ, их запах или вкус?
Если судить по названиям химических элементов, открытых химиками, то последних больше всего впечатлял цвет простых веществ и цвет спектральных линий в спектрах излучения соединений новых элементов. Так, хлор Cl в переводе с греческого слова «хлорос» означает желто-зеленый (см. 4.37). Иод I получил свое название по цвету своего пара. В переводе с греческого «иодес» означает – фиолетовый (см. 4.39). Твердой сере S8 дали имя, производное от древнеиндийского слова «сира» – светло-желтый цвет. Название элемента родия Rh произошло от греческого слова «родон» – роза, по розовому цвету ряда соединений родия, а иридия Ir – от греческого слова «ирис» – радуга, из-за разнообразия окраски солей иридия. Элемент хром Cr получил свое имя от греческого слова «хрома» – окраска, цвет. Соли хрома почти всегда окрашены.
После изобретения спектроскопа стало возможным устанавливать присутствие элемента по набору цветных линий в спектре излучения его соединений. Элемент таллий Tl назван по ярко– зеленой линии с длиной волны 535 нм. Греческое слово «таллос» означает молодую зеленую ветку. Элемент рубидий Rb получил название по двум темно-красным линиям 780 и 795 нм в спектре его солей. Латинское слово «рубидус» означает темно-красный. Название элемента цезия Cs произошло от слова «цезиум», что у древних римлян означало голубой цвет верхней части «небесного свода». В спектре излучения солей цезия обнаружены две голубые линии с длиной волны 455 и 459 нм. Название индий элемент № 49, символ In, получил по цвету синей линии в спектре излучения его солей, имеющей длину волны 451 нм, цвет которой был очень похож на цвет древней синей краски индиго.
Только два элемента названы по запаху их простых веществ: это бром Br, греческое слово «бромос» означает зловоние (см. 4.38), и элемент осмий Os, греческое слово «осме» в переводе означает запах (см. 4.48). Тетраоксид осмия OsO4 имеет резкий запах.
По вкусу простого вещества не назван ни один химический элемент.
4.15. СОБСТВЕННЫЕ ИМЕНА ИЗОТОПОВ
Изотопы (см. 4.60) всех химических элементов, кроме изотопов водорода, названий не имеют. Для изотопов же водорода AZH приняты следующие наименования: 11H – протий 21H = D – дейтерий, 31H = Т – тритий. Только четвертый изотоп 41H, неизвестный в природе, не получил специального названия и символа.
Ядра первых трех изотопов также носят специальные названия: протон p+ , дейтрон d и тритон t. Тритий, в отличие от протия и дейтерия, радиоактивен, он испускает мягкие β-лучи с периодом полураспада 12,3 года, превращаясь в атомы гелия 32He. В обычной воде один атом трития приходится на 1018 атомов протия. Это означает, что во всей гидросфере Земли находится не более 100 кг трития.
Земной тритий – космического происхождения: нейтроны космоса превращают атомы азота в атомы углерода и трития:
147N + 10n = 126C + 31H(T).
Искусственный тритий получают в ядерных реакторах при взаимодействии атомов лития Li с нейтронами:
63Li + 10n = 73Li = 42He + Т.
4.16. ЕСТЕСТВЕННО РАДИОАКТИВНЫЕ
Это калий K и рубидий Rb, создающие ту фоновую радиацию, в которой человечество жило тысячелетиями.
Элемент K (порядковый номер 19), встречающийся в природе в значительном количестве (2,5%), имеет три изотопа (см. 4.60): 39K (93,26%), 41K (6,73%), 40K (0,01%). Только последний изотоп радиоактивен. Половина атомов изотопа распадается за 1,3∙109 лет. Такое время называют периодом полураспада:
4019K = 4020Ca + e-↑; 4019Ca + e- = 4018Ar.
При распаде ядра 40K в 88% случаев испускается электрон e- и образуется изотоп кальция 4020Ca, а в 12% – происходит захват ядром электрона с нижнего энергетического уровня (K-захват) и появляется изотоп аргона 4018Ar. При захвате ядром электрона протон ядра превращается в нейтрон, в результате чего атомный номер (см. 4.4) элемента уменьшается на единицу, т. е. ядро калия превращается в ядро аргона. Ежегодно из 1 г калия образуется около 4∙10-12 мл аргона, поступающего в атмосферу (см. 4.6, 4.29). Миллиарды лет назад изотоп 40K был одним из главных генераторов теплоты в земной коре. Его тогда было много, примерно 2%.
Рассеянный; природе элемент Rb (порядковый номер 37) обнаружен во всех минералах и водах, содержащих калий. Рубидий является тенью калия. У нею есть два изотопа: 85Rb (72,2%) и 87Rb (27,8%). Последний изотоп радиоактивен:
8737Rb = 8738Sr + е-↑.
Период полураспада этого изотопа равен 5∙1010 лет. Найдено, что 1% всего земного стронция Sr образовался в результате распада ядер 87Rb, который, кстати, помог установить, что Земля «живет на свете» уже приблизительно 4,5 млрд. лет.
4.17. ИМЕНА ЭЛЕМЕНТОВ – ОТ НАЗВАНИЙ МИНЕРАЛОВ
Так, элемент цирконий Zr был назван по имени минерала циркона ZrSiO4, ортосиликата циркония. В русской химической литературе до начала XX в. элемент Zr называли цирконь и циркон.
Элемент бериллий Be получил свое имя от имени минерала берилла состава Be3Al2(Si6O13). Драгоценная разновидность берилла – изумруд (см. 10.22) известная всем, хотя имеют и видели его немногие. Имя элемента марганца Mn произошло от немецкого слова «манганерд» – марганцевая руда.
Элемент бор B назван по имени минерала буры, латинское название которого «боракс».
Элемент натрий Na получил свое имя от арабского слова «натрун», означающего соду, карбонат натрия Na2CO3, а вот элемент литий Li был назван с использованием греческого слова «литое», что означает камень. От древних названий, встречающихся в природе веществ, происходят имена элементов калия K и кальция Ca. Первое является производным от арабского названия поташа, карбоната калия K2CO3 – «аль-кали», а второе – от латинского названия извести, карбоната кальция CaCO3 – «кальке» (см. 3.23).
4.18. «БОЛОНСКИЙ ФОСФОР»
В 1602 г. болонский сапожник и алхимик В. Касциароло нашел в горах около г. Болонья (Италия) очень тяжелый плотный камень серого цвета. Алхимик заподозрил в нем наличие золота. Чтобы выделить его, он прокаливал камень вместе с углем и олифой. К удивлению Касциароло, охлажденный продукт реакции стал светиться в темноте красным светом. Алхимик дал найденному камню название «ляпис соларис» – солнечный камень. Известие о светящемся камне произвело сенсацию среди алхимиков (см. 1.2). Камень стали называть «болонским самоцветом», «болонским фосфором».
Впоследствии выяснилось, что Касциароло нашел минерал барит, или сульфат бария, BaSO4. При взаимодействии BaSO4 с углем образуется сульфид бария BaS:
BaSO4 + 2С = BaS + 2СО2↑,
который обладает способностью светиться после того, как его подержат на солнце. Фосфоресценция присуща не самому сульфиду бария, а его смеси с сульфидами других металлов (см. 9.25).
В 1774 г. шведский химик Шееле (см. 2.7) и его друг Юхан-Готлиб Ган (1745–1818), шведский химик и минералог, установили, что в найденном алхимиком камне содержится новый химический элемент, который они назвали баритом, что в переводе с греческого означает «тяжелый». Однако шведские химики открыли не новый элемент, а его оксид BaO. В XIX в. название барит осталось за минералом, а новый элемент получил имя барий. Впервые барий в виде металла удалось получить только в 1808 г. английскому химику Дэви (см. 2.44) путем электролиза увлажненного гидроксида бария Ba(OH)2.
Барий химически очень активен. Он легко самовоспламеняется на воздухе, окрашивая пламя в зеленый цвет, энергично взаимодействует с водой. Поэтому приходится его хранить под слоем безводного керосина.
4.19. ЭКАСИЛИЦИЙ ИЛИ ГЕРМАНИЙ?
В письме Менделеева немецкому профессору химии Винклеру, открывшему новый элемент германий, содержались такие слова: «Вы отец открытия, Вам одному и принадлежит право дать имя своему детищу».
В Периодической системе элементов в IVA группе между кремнием Si и оловом Sn пустовала клетка неизвестного элемента, которому Менделеев дал временное название «экасилиций». Клеменс-Александр Винклер (1838–1904), анализируя редкий, недавно найденный в Саксонии минерал аргиродит, обнаружил в нем в 1886 г. присутствие нового элемента. Винклер выделил элемент в виде простого вещества и получил его соли. Он назвал открытый им элемент германием Ge в честь своей родины. Это название вызвало резкие возражения со стороны некоторых химиков. Одни стали обвинять Винклера в национализме, другие – в присвоении приоритета, принадлежавшего Менделееву, предсказавшему существование этого элемента. Вот тогда растерявшийся Винклер и обратился за советом к Менделееву. Менделеев решительно поддержал Винклера.
Позднее был установлен состав минерала аргиродита. Это оказался двойной сульфид серебра и германия 4Ag2S∙GeS2.
Для получения германия Винклер сначала прокаливал минерал на воздухе; при этом сульфиды превращались в оксиды серебра и германия Ag2O и GeO2. Затем смесь оксидов он обрабатывал водным раствором аммиака NH3, который переводил в раствор только оксид дисеребра в виде гидроксида диамминсеребра:
Ag2O + 4NH3 + H2O = 2[Ag(NH3)2]OH.
Остаток (а это был диоксид германия) Винклер отфильтровывал и нагревал в атмосфере водорода:
GeO2 + 2Н2 = Ge + 2Н2O↑.
4.20. САМОЕ НЕУДАЧНОЕ НАЗВАНИЕ
Это азот – элемент № 7 (символ N). Название дал элементу французский химик Лавуазье (см. 2.53), произведя его от греческих слов «альфа» – отрицание и «зоэ» – жизнь: «а-зоос» означает «безжизненный», «непригодный для дыхания». Лавуазье было известно, что слово «азот» употребляли еще алхимики, вкладывая в это слово совсем другой смысл, отвечающий больше «жизненной силе», исцеляющей больных и делающей некрасивых красивыми. В библейской мифологии также применялось слово «азот», означающее начало и конец всего сущего, суть жизни, первое и последнее деяние. Таким образом, получалось, что азот в одно и то же время элемент «безжизненный» и «исцеляющий», «жизнь утверждающий» и «жизнь отрицающий». Неудачное название элемента привело к попыткам дать ему другое название. Так появилось второе имя у азота – «нитрогениум» и «нитроген», означающее «рождающий селитру», нитрат калия KNO3 (см. 1.33, 1.34).