355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Борис Степин » Книга по химии для домашнего чтения » Текст книги (страница 19)
Книга по химии для домашнего чтения
  • Текст добавлен: 5 апреля 2017, 00:00

Текст книги "Книга по химии для домашнего чтения"


Автор книги: Борис Степин


Соавторы: Людмила Аликберова

Жанры:

   

Научпоп

,
   

Химия


сообщить о нарушении

Текущая страница: 19 (всего у книги 27 страниц)

2Р + 3H[I(I)2] + 6Н2O = 2Н2(РНO3) + 9HI↑.

При температуре 125–127°C отгоняется 57%-я иодоводородная кислота. Вместо красного фосфора рекомендуется применять также диоксодигидрофосфат водорода H(PH2O2) или сероводород H2S:

H(PH2O2) + H(I(I)2) + H2O = H2(PHO3) + 3HI,

H2S + H(I(I)2) = S↓ + 3HI.

6.43. НЕУДАЧНАЯ ЭКСТРАКЦИЯ

Чтобы извлечь из реакционной смеси оксохлорат кальция Ca(ClO)2, один из студентов решил воспользоваться методом экстракции и добавил к оксохлоратухлориду кальция CaCl(ClO) (хлорной извести) этиловый спирт C2H5OH. Он начал перемешивать полученную суспензию и низко наклонился над стаканом со смесью, удивленный ее сладковатым запахом. Через несколько минут студент потерял сознание.

При взаимодействии этилового спирта с хлорной известью (см. 3.23) образуется хлороформ CHCl3 (трихлорметан) – бесцветная летучая жидкость, обладающая сильным наркотическим действием:

C2H5OH + 4Сl2 = 2СНСl3↑ + 2HCl + H2O.

Хлор, участвующий в реакции, всегда содержится в некотором количестве в хлорной извести. Выделяющийся в реакции хлороводород способствует дополнительному выделению хлора и дальнейшему образованию хлороформа:

CaCl(ClO) + 2HCl = Cl2 + CaCl2 + H2O.

Студент надышался хлороформа и поэтому потерял сознание.

6.44. БЕГАЮЩИЙ НАТРИЙ

Взаимодействие натрия с водой сопровождается щелчками. Почему?

При контакте с водой металлический натрий (как и другие щелочные металлы) окисляется; выделяется газообразный водород, а в растворе появляется гидроксид натрия:

2Na + 2Н2O = 2NaOH + H2↑.

Эта реакция сопровождается большим тепловыделением, так что натрий плавится. При этом плотность расплавленного металла меньше плотности воды, поэтому капелька расплавленного натрия бегает по поверхности воды: ее подталкивают пузырьки выделяющегося водорода то в одну, то в другую сторону; лопающиеся пузырьки водорода и создают звуковой эффект реакции.

6.45. РТУТЬ-ПОМОЩНИЦА

Можно ли получить металлический натрий при электролизе водного раствора хлорида натрия NaCl? Не спешите с ответом: натрий энергично взаимодействует с водой, выделяя из нее водород (см. 6.44)…

Получение натрия возможно, если катодом будет все время обновляемая ртуть Hg. Тогда выделяющийся на ртути натрий тотчас же будет в ней растворяться, образуя амальгаму (см. 5.44):

Na+ + e- = Na0; Na + Hg = Na(Hg).

Амальгама, вытекая из электролизера, попадает в перегонную установку, где ртуть отгоняется, конденсируется в жидкость и возвращается в электролизер. Натрий, температура кипения которого намного выше, чем ртути, остается в кубе перегонной установки, откуда и извлекается.

6.46. РАСТВОРИТЕ СЕРУ В ВОДЕ

При комнатной температуре сера практически нерастворима в чистой воде, однако при высокой температуре она взаимодействует с перегретым водяным паром:

3S + 2Н2O ↔ 2H2S↑ + SO2↑.

Если долго кипятить серу в растворе гидроксида натрия NaOH, то тоже происходит окислительно-восстановительная реакция диспропорционирования, в которой одни атомы серы отдают, а другие – принимают электроны:

3S + 6NaOH = Na2SO3 + 2Na2S + 3H2O.

Получаемые в результате реакции сульфит натрия Na2SO3 и сульфид натрия Na2S отлично растворяются в воде. Кипячение серы в водном растворе сульфида натрия или сульфита натрия тоже приводит к образованию растворимых веществ – дисульфида натрия Na2S2:

Na2S + S = Na2S2

или тиосульфата натрия Na2SO3S:

Na2SO3 + S = Na2SO3S.

Легкость образования этих соединений объясняется способностью серы к «катенации» – образованию цепочек атомов —S—…—S—.

6.47. КРАСНЫЙ СУЛЬФАТ БАРИЯ?

К фиолетовому водному раствору перманганата калия KMnO4, содержащему сульфат калия K2SO4, добавили водный раствор хлорида бария BaCl2. Ко всеобщему удивлению, из раствора выпал красный осадок, хотя известно, что сульфат бария белый.

При сливании растворов протекала реакция осаждения сульфата бария:

K2SO4 + BaCl2 = BaSO4↓ + 2КСl.

Присутствие KMnO4 вызвало равномерное распределение ионов этого вещества по всему объему каждого образовавшегося кристаллика осадка из-за изоморфизма KMnO4 и BaSO4. Осадок представлял собой не чистый BaSO4, а твердый раствор на его основе, где часть анионов SO42- замещена на анионы MnO4-, а часть катионов Ва2+ – на катионы K+ . Поэтому такой осадок не обесцвечивается даже при самой тщательной промывке.

6.48. УДОБНЫЙ СПОСОБ

Однажды на лекции демонстрировался опыт: плавление серы в пробирке. Вдруг все почувствовали отвратительный запах. Лекция была сорвана. «В чем дело?…» – недоумевал профессор.

Все оказалось просто: в пробирку с серой попали кусочки парафина с пробковой крышки склянки, в которой хранился порошок серы. Смесь парафина – предельного углеводорода с примерной формулой C20H42 – и серы при нагревании выделяет сероводород H2S:

C20H42 + 21S = 21H2S↑ + 20С.

Чем сильнее нагревается смесь, тем в больших количествах происходит выделение газа. Если прекратить нагревание, то реакция останавливается и сероводород не выделяется. Поэтому реакция очень удобна для получения сероводорода в учебных лабораториях.

6.49. АЦЕТОН ИЗ АЦЕТАТА

Студент решил побыстрее высушить ацетат кальция Ca(CH3COO)2. Фарфоровую чашку с веществом он поставил в нагретую муфельную печь, не погасив стоящую рядом газовую горелку. Произошла вспышка, и из муфеля выбросило язык пламени, опаливший лицо студента…

При сильном нагревании ацетата кальция образуется ацетон, который очень летуч и легко воспламеняется:

Ca(CH3COO)2 = (CH3)2CO↑ + CaCO3.

В чистом состоянии ацетон – бесцветная низкокипящая жидкость, имеющая своеобразный запах. По своему строению ацетон – простейший кетон. Приведенная здесь реакция использовалась раньше для получения ацетона (см. 1.50).

6.50. ОСТАНОВЛЕННЫЙ ЭКСПЕРИМЕНТ

Лаборанта попросили высушить для предстоящего синтеза этиловый спирт. Недолго думая, тот налил спирт в колбу и хотел добавить концентрированную серную кислоту: зная серную кислоту как обезвоживающее средство, лаборант решил, что она свяжет воду, а спирт из смеси можно будет без помехи отогнать и собрать уже «сухим». Почему коллеги не дали лаборанту осуществить его намерения?

Если бы лаборант выполнил задуманные операции, то был бы неизбежен несчастный случай из-за перегрева перегонной установки, что грозило взрывом; кроме того, существовала реальная угроза потери лаборантом сознания. Дело в том, что серная кислота действительно отнимает воду у спирта, причем не только присутствующую в его растворе как примесь, но и химически связанную; спирт превращается в диэтиловый эфир:

2Н5ОН = (C2H5)2O + H2O.

Диэтиловый эфир, в быту называемый просто эфиром, имеет температуру кипения около 35°C и легко воспламеняется. Он обладает также наркотическим действием, и поэтому раньше его применяли в качестве наркоза. Эфир нельзя долго хранить на свету при соприкосновении с воздухом: в нем образуются органические пероксидные соединения, способные взрываться.

6.51. «БЕССРЕБРЕНИКИ»

Известно, что главной составной частью фотоматериалов служат галогениды серебра. Существуют ли светочувствительные составы-«бессребреники»?

В процессах копирования, особенно в полиграфии для изготовления печатных форм, широко применяют бессеребряные светочувствительные материалы. Они чаще всего содержат дихроматы аммония, натрия или калия и органические клеящие вещества – желатин, альбумин, шеллак или коллаген. Правда, светочувствительность таких материалов невелика и хорошо проявляется только под действием синих, фиолетовых или ультрафиолетовых лучей. Суть процесса в том, что желатин или заменяющие его органические вещества теряют способность к набуханию на тех участках, где материал подвергался освещению. Причина этого в том, что, например, дихромат аммония (NH4)2Cr2O7 под действием света и только в присутствии перечисленных органических веществ переходит в соединение хрома (+III) – сульфат хрома Cr2(SO4)3:

(NH4)2Cr2O7 + 4H2SO4 =(hν)= Cr2(SO4)3 + 4Н2O + 3O↑ + (NH4)2SO4.

Выделяющийся при этом атомарный кислород [О] частично окисляет органическое клеящее вещество (например, желатин). Полученная соль – сульфат хрома – «задубливает» желатин так же, как хромокалиевые квасцы: желатин теряет способность к набуханию. А дальнейшее – дело техники: освещенную (экспонированную) пластинку проявляют в воде, в теплой воде незадубленный желатин растворяется, и получается бесцветное рельефное изображение. Если проявлять в холодной воде, то незадубленный желатин не растворяется, а набухает и остается на стекле. Теперь можно использовать полезное свойство полученного неоднородного слоя: задубленный слой хорошо окрашивается масляной краской (а незадубленный – нет), а водорастворимые краски, наоборот, хорошо окрашивают незадубленные участки. Это свойство светочувствительного материала и используют в полиграфии.

6.52. ОПАСНАЯ КИСЛОТА

Незадачливый химик, незнакомый еще со свойствами марганцовой кислоты HMnO4, решил получить ее из перманганата калия действием концентрированной серной кислоты H2SO4: выделение кислот действием сильной и малолетучей серной кислоты на соли этих кислот – обычный метод препаративной химии. Химик начал нагрев реакционной смеси KMnO4 и H2SO4, чтобы отогнать HMnO4, и тут раздался сильный взрыв, который едва не стоил химику жизни. В чем его ошибка?

При взаимодействии взятых химиком веществ протекает реакция:

2KMnO4 + H2SO4 = 2HMnO4 + K2SO4

с выделением очень неустойчивой марганцовой кислоты HMnO4 [современное название – тетраоксоманганат(VII) водорода]. Она легко распадается на гептаоксид димарганца Mn2O7 и воду:

2HMnO4 = Mn2O7 + H2O.

Оксид выделяется в виде зеленовато-черной маслянистой жидкости, устойчивой только при температуре ниже -10ºC и при полном отсутствии воды. При нагревании Mn2O7 взрывается, превращаясь в диоксид марганца MnO2 и кислород:

2Mn2O7 = 4MnO2 + 3O2↑.

Таким образом, при обычных условиях получение HMnO4 становится невыполнимой задачей, хотя на холоду (ниже 3°С) с величайшей осторожностью выделяют HMnO4∙2Н2O. Водные растворы марганцовой кислоты безопасно сконцентрировать только до 20%-го ее содержания, выше которого начинается ее разложение с образованием MnO2 и O2.

6.53. КАЗУСЫ СЕРЕБРЕНИЯ

На занятии химического кружка решено было получить «серебряное зеркало». Как и полагается по методике, были приготовлены растворы нитрата серебра AgNO3 и гидроксида калия КОН; затем к смеси этих реактивов добавили аммиак NH3. Подготовленный раствор поставили в темное место до следующего занятия. Через неделю оказалось, что на стенках колбы появился осадок, от которого решили избавиться фильтрованием. Однако при взбалтывании содержимого колбы произошел взрыв!

Хорошо еще, если взрыв обошелся без последствий! Вот почему для серебрения, в том числе и в производственных условиях, строго рекомендовано использовать только свежеприготовленные растворы: полученный в растворе комплекс серебра с аммиаком [Ag(NH3)2]OH при Хранении разрушается с образованием нитрида серебра Ag3N – «гремучего серебра» (см. 3.26). Соединение это весьма неустойчиво и при малейшем сотрясении, даже если оно находится под слоем жидкости, разлагается на азот и серебро:

2Ag3N = 6Ag↓ + N2↑.

Реакция идет настолько интенсивно, что происходит взрыв.

6.54. «ОРГАНИЧЕСКИЙ МЕТАЛЛ»

Как диэлектрический полимер полиацетилен сделать «органическим металлом»?

Полиацетилен – продукт полимеризации ацетилена – H2C2 представляет собой химически активный, легко поддающийся модификации («сшиванию» структуры) полимер с общей формулой (CH)x. Правда, чистый полиацетилен – хрупкий малостабильный материал, непригодный для технологической обработки. Легче иметь дело с сополимерами ацетилена и других мономеров либо наносить полиацетилен на поверхность более прочных материалов. Например, многослойная пленка полиацетилена получается на поверхности полиэтилена или сополимера этилена с бутадиеном (C2H4 и C4H6), на которую нанесен катализатор полимеризации ацетилена. Для придания полиацетилену металлической проводимости пленку обрабатывают газообразным иодом, что приводит к образованию комплексов:

2(СН)x + 3yI2 = 2[(СНxy+ (I3-)y].

Количество введенного иода служит инструментом для управления свойствами полимера: при концентрации иода в продукте около 1% материал становится полупроводником, около 10% – появляются металлические свойства: высокая электропроводность, парамагнитная восприимчивость. Эти качества – результат перестройки электронной структуры макромолекул. «Органический металл» из полиацетиленовой пленки применяют для создания токопроводящих слоев в электронике и электротехнике.

6.55. ПРЕВРАЩЕНИЯ ФОРМАЛИНА

Склянка с формалином была забыта на окне, а на следующий день все увидели, что раствор помутнел и выпал белый осадок. Почему он «испортился»?

Формалином называют водный раствор газообразного вещества формальдегида HCHO (муравьиного альдегида, или метаналя). При упаривании формалина, нагреве на свету, при длительном хранении происходит полимеризация формальдегида с образованием длинных цепей параформальдегида, или параформа:

Н(—CH2—O—CH2—О—CH2—)nOH,

где n варьируется от 8 до 100. При нагревании параформ снова превращается в формальдегид, который можно поглотить водой, опять получив формалин. Для предотвращения полимеризации к формалину часто добавляют метанол CH3OH.

6.56. ГАЗ СТАНОВИТСЯ ПОЛИМЕРОМ

Одна из важнейших пластмасс – винипласт, или поливинилхлорид. Насколько сложен ее синтез?

Вначале проводят гидрохлорирование (обработку хлороводородом HCl) ацетилена C2H2 в газовой фазе при температуре около 150–200°C в присутствии катализатора – активированного угля, пропитанного водным раствором хлорида ртути HgCl2:

C2H2 + HCl = CH2CHCl.

Продукт реакции винилхлорид (монохлорэтилен, хлорэтен) CH2CHCl – газ с эфирным запахом – затем пропускают через воду, содержащую катализатор и эмульгатор; при этом происходит эмульсионная полимеризация с образованием поливинилхлорида (—H2C—CHCl—)n, где n в пределах 1000–2000.

6.57. ЛЕГЧЕ ПРОБКИ

Какие твердые искусственные материалы в десять и более раз легче корковой пробки?

Это пенопласты. Рассмотрим, как ведут синтез одного из них – полиаминопласта. Если через водный раствор карбамида (NH2)2CO (мочевины, см. 6.5; 8.5; 9.19) пропустить формальдегид НСНО, то в результате взаимодействия этих веществ в растворе появляется карбамидоформальдегидная смола:

nНСНО + n(NH2)2CO = (—CH2—NH—CO—NH—CH2—)n + nН2O,

где n >100. К этому раствору добавляют хлороводородную кислоту HCl и пропускают воздух. При этом получается пористая белая масса – пеноаминопласт, плотность которого составляет всего 0,01 г/см3, что в 100 раз меньше плотности воды.

6.58. ОБМАНЩИК ТЕТРАХЛОРИД

Известно, что тетрахлоридом углерода CCl4 можно загасить огонь. Насколько химически инертно это вещество?

Действительно, если, например, к горящему этанолу C2H5OH прилить CCl4, то огонь погаснет. А если смешать несколько миллилитров CCl4 с цинковой пылью и добавить к этой смеси оксид магния MgO или оксид кальция CaO до получения пастообразной массы, то уже при нагревании всего до 200°C начнется бурная реакция с выделением густого дыма и повышением температуры выше 1000°C. В этом случае тетрахлорид углерода взаимодействует с цинком, образуя хлорид цинка ZnCl2, который испаряется и, образуя в воздухе кристаллы, поглощает влагу:

CCl4 + 2Zn = 2ZnCl2↑ + С.

Получается густой белый дым.

6.59. КОЛЬЦА ЛИЗЕГАНГА

В центр застывшего слоя желатины, содержащего дихромат калия, поместили большую каплю водного раствора нитрата серебра. Через сутки на слое желатины обнаружили странные концентрические кольца.

В застывшем слое желатины протекала обменная реакция между дихроматом калия K2Cr2O7 и нитратом серебра AgNO3 с образованием дихромата серебра Ag2Cr2O7 красно-бурого цвета:

K2Cr2O7 + 2AgNO3 = Ag2Cr2O7↓ + 2KNO3

с отложением его кристаллического осадка в виде концентрических колец. При диффузии (постепенном проникновении) нитрата серебра в студень на каком-то расстоянии от центра капли образуется пересыщенный раствор Ag2Cr2O7 и начинается кристаллизация этой малорастворимой соли. В процессе выпадения осадка к месту роста кристаллов подтягиваются находящиеся вблизи дихромат-ионы, благодаря чему вокруг кольца с осадком дихромата серебра образуется зона, свободная от дихромата калия. Диффузия AgNO3 сквозь кольцо осадка и зону, свободную от K2Cr2O7, продолжается до тех пор, пока ионы серебра Ag+ не подойдут к участкам желатины, содержащим дихромат-ионы. В этом месте начнется образование второго красно-бурого кольца Ag2Cr2O7. Затем все процессы повторяются вновь. Вся картина на желатине получила название колец Лизеганга по имени их первооткрывателя, немецкого физико-химика Р. Лизеганга.

6.60. КОЛЕБАНИЯ ЦВЕТА

Если смешать водные растворы триоксобромата калия и лимонной кислоты и добавить немного серной кислоты и сульфата церия, раствор начнет в строго определенные интервалы времени то принимать желтую окраску, то обесцвечиваться.

В растворе протекают «колебательные реакции», которые открыл и изучил советский химик Борис Павлович Белоусов (1893–1970). Вначале происходит окисление ионов Ce3+ сульфата церия Ce2(SO4)3 бромат-анионами BrO3-:

6Се3+ + BrO3- + 6Н+ = 6Се4+ + Br- + 3Н2O. (1)

Из-за появления ионов Ce4+ окраска раствора становится желтой. Затем катионы Ce4+ окисляют лимонную кислоту (СН2СООН)2С(ОН)СООН в ацетондикарбоновую кислоту (CH2COOH)2CO

(СН2СООН)2С(ОН)СООН + 2Се4+ = (CH2COOH)2CO + 2Се3+ + CO2↑ + 2Н+ … (2)

Эта реакция вызывает обесцвечивание раствора. Появившиеся ионы Br- тотчас же взаимодействуют с триоксоброматными ионами BrO3- с образованием брома Br2, который немедленно окисляет катионы Ce3+ :

5Br- + BrO3- + 6Н+ = 3Br2 + 3Н2O, (3)

2Се3+ + Br2 = 2Се4+ + 2Br-. (4)

Реакции (1), (3) и (4) протекают быстро и вызывают внезапное появление желтой окраски раствора, вызванной присутствием катионов Ce4+ . Ритм реакций можно ускорить или замедлить, изменяя концентрации взятых реагентов и температуру.

После реакций (3) и (4) опять вступает в дело реакция (2), и все они повторяются вновь, пока не будет израсходован один из реагентов – бромат калия KBrO3 или лимонная кислота.

Остается добавить, что катионы Ce3+ и Ce4+ участвуют в реакции в виде аквакатионов [Ce(H2O)6]3+ и [Ce(H2O)6]4+ .

6.61. ХИМИЧЕСКИЙ ФОТОМЕТР

Можно ли химическим методом измерить количество света?

Окислительно-восстановительная реакция взаимодействия хлорида ртути HgCl2 с оксалатом аммония (NH4)2C2O4 в водном растворе с выделением белого малорастворимого дихлорида диртути Hg2Cl2:

2HgCl2 + (NH4)2C2O4 = Hg2Cl2↓ + 2СO2↓ + 2NH4Cl

протекает только под действием видимого света. Количество света может быть установлено по массе выделившегося дихлорида диртути. Рассматриваемая реакция лежит в основе работы простейших химических фотометров.

6.62. КАТИОНЫ-НЕПОСЕДЫ

Если серебряную пластинку Ag изолировать от слоя расплавленной серы двумя пластинками твердого сульфида серебра Ag2S, положенными друг на друга, то по истечении одного часа масса серебра уменьшится почти на 0,1 г, а масса пластинки сульфида серебра, находящейся в контакте с расплавленной серой, увеличится в полном соответствии с реакцией

2Ag + S = Ag2S.

Масса же пластинки Ag2S, находящейся в контакте с пластинкой серебра, практически не изменится. Это означает, что реакция протекает на границе жидкой серы и слоя Ag2S за счет переноса катионов Ag+ и электронов от серебряной пластинки через два слоя сульфида серебра. На границе соприкосновения Ag2S с расплавом серы переместившиеся электроны превращают атомы серы, прилегающие к слою Ag2S, в сульфидные анионы S2-, а «пробежавшие» два слоя сульфида серебра катионы Ag+ присоединяют эти анионы, наращивая массу пластинки Ag2S.

6.63. РЕАКЦИЯ ПОДГОНЯЕТ САМА СЕБЯ

При изучении взаимодействия щавелевой кислоты с перманганатом калия в присутствии серной кислоты нетерпеливому экспериментатору может показаться, что реакция вовсе не идет.

Если к водному раствору щавелевой кислоты H2C2O4 (см. 3.31) добавить серную кислоту H2SO4 (см. 1.49) и затем немного разбавленного водного раствора перманганата калия KMnO4 розового цвета, то первая порция раствора перманганата калия будет обесцвечиваться оень медленно (см. 5.47). Но последующие порции добавляемого розового раствора KMnO4 обесцвечиваются все быстрее и быстрее, так как в растворе появляются катионы марганца [Mn(H2O)6]2+ , катализирующие реакцию. Такие реакции, продукты которых выступают в роли катализаторов, называют самоускоряющимися, или аутокаталитическими.

6.64. ОПЯТЬ САМОУСКОРЕНИЕ

К водному раствору диоксида серы SO2 добавили раствор триоксоиодата водорода HIO3 (иодноватой кислоты) и суспензию крахмала. Когда смесь станет синей?

В первый момент HIO3 окисляет SO2 до серной кислоты H2SO4:

Но как только в растворе появляется иодоводородная кислота III, начинается протекание еще двух реакций:

Скорость последней реакции (3) больше, чем реакции (2), и поэтому иод в растворе не появляется; раствор станет синим, когда весь SO2 будет окислен. Только в этом случае выделившийся иод сможет прореагировать с крахмалом с образованием продукта характерного синего цвета (см. 5.51).

Реакции (1), (2) и (3) являются цепными и аутокаталитическими, т. е. самоускоряющимися. Реакция (1) создает цепь, а реакции (2) и (3) ее развертывают. Если в первой реакции образуется 1 моль HI, то в третьей – уже 6 моль HI. Катализатором трех реакций является иодоводородная кислота. C ее появлением скорость реакций нарастает, достигает какого-то максимума, а затем уменьшается вследствие понижения концентраций исходных реагентов и продукта их взаимодействия HI.

HIO3 + 3SO2 + 3H2O = 3H2SO4 + HI. (1)

HIO3 + 5HI = 3I2 + 3H2O, (2)

I2 + SO2 + 2H2O = H2SO4 + 2HI. (3)

7. ХИМИЯ И БИОСФЕРА

Мы живем в мире простых и самых сложных химических веществ. Одни из них совершенно необходимы для жизни человека, а другие смертельно опасны, но без них нельзя создать лекарства и новые материалы. Есть и такие вещества, воздействие которых на живое определяется дозой: в малой дозе они полезны, а в большой – вредны. Этот раздел – попытка авторов вручить читателю компас в мире окружающих нас веществ.

7.1. ОТКУДА БЕРЕТСЯ КИСЛОРОД?

Ежегодно десятки миллиардов тонн кислорода расходуются на дыхание людей и животных, на нужды промышленности, которые все растут. А кислорода в воздухе пока практически не становится меньше.

Считают, что зеленые растения в результате фотосинтеза выделяют почти шесть тонн кислорода на каждую тонну кислорода, израсходованную на их дыхание. Причем 80% кислорода передают в атмосферу водоросли морей и океанов, так называемый фитопланктон, и лишь 20% – наземные растения. Поэтому-то океан часто и называют легкими Земли. В фитопланктоне, составной частью которого являются сине-зеленые водоросли, протекает реакция фотосинтеза:

6СO2 + 6Н2O = C6H12O6 + 6O2↑.

Из диоксида углерода CO2 и воды образуется глюкоза C6H12O6, а «нежелательный» кислород O2 выделяется в атмосферу. Энергия, необходимая для осуществления этого синтеза, передается фитопланктону солнечным светом (см. 5.1).

7.2. ПОЛЬЗА ПЕРОКСИДА

Пероксид водорода H2O2, вернее, его водный 3%-й раствор, известен как кровоостанавливающее средство при травмах кожи. Знаете ли вы, что его предлагают использовать и в более тяжелых случаях, как средство для лечения открытых ран?

При лечении открытых ран H2O2 служит для обогащения крови больного кислородом O2 непосредственно возле поврежденного места тела:

2O2 = 2Н2O + O2↑.

После хирургической обработки раны пациенту делают инъекции 0,01%-го водного раствора пероксида водорода, вводя его в артерии, снабжающие кровью поврежденный орган или участок тела (см. 6.23).

7.3. СМЕРТЕЛЬНЫЙ СМОГ

В 1952 г. в Лондоне погибло от смога в течение трех-четырех суток более 4000 человек. В 1963 г. смог, опустившийся на Нью-Йорк, убил 350 человек. Постепенно гибнет под подушкой коричневого смога мегаполис Мехико.

Термин «смог» – производное от английских слов «смоук» (дым) и «фог» (туман). Смог образуется преимущественно над большими городами в результате действия солнечного света на воздух, загрязненный выбросами углеводородов, оксидов азота и других продуктов сгорания топлив в автомобильных двигателях, на тепловых и силовых станциях. Смог представляет собой туман с голубоватой дымкой, содержащий вредные для человека вещества: диоксиды азота NO2 и серы SO2, монооксид углерода СО и альдегиды. Смог поражает прежде всего слизистые оболочки глаз и дыхательных путей человека и животных. При больших концентрациях он действует удушающе. Потери урожаев сельскохозяйственных культур и природной растительности при систематическом действии смога оцениваются более чем в 1 млрд. долларов ежегодно, и цифра эта с каждым годом возрастает.

7.4. СТРАШНЫЙ БЕНЗПИРЕН

В последние 10–15 лет число заболеваний раком легких приблизилось к числу заболеваний раком желудка.

Считают, что вероятность заболевания раком легких на 70–80% зависит от внешней среды, от увеличения в воздухе канцерогенных полициклических ароматических углеводородов, и прежде всего одного из наиболее опасных канцерогенов – бензпирена.

Бензпирен образует светло-желтые кристаллы. Попадание нескольких капель его спиртового раствора на кожу мыши вызывает в течение трех месяцев развитие раковой опухоли. Бензпирен присутствует в табачном дыме, в воздухе больших городов (см. 7.3). Главный его источник – автомобильный транспорт. Особенно много его выделяется с выхлопными газами автомобилей во время торможения, разгона, при работе двигателя на холостом ходу. Бензпирен содержится в дыме, образующемся при сжигании опавшей листвы. Во многих городах концентрация бензпирена в воздухе давно превысила в несколько раз предельно допустимые дозы, отсюда и рост пролонгированной смерти людей.

7.5. КАК ДЫШИТ ВОДОЛАЗ?

Известно, что водолазы-аквалангисты, выполняя работы на большой глубине, дышат не сжатым воздухом и не чистым кислородом, а кислородно-гелиевой смесью. Почему?

Газы, которые служат для обеспечения дыхания, при росте давления изменяют свою биологическую активность, причем каждый газ проявляет новые свойства, часто вредные для организма. Наш организм нуждается в постоянном притоке кислорода. Если содержание O2 при обычном давлении ниже 16%, то наступает явление кислородного голодания, вызывающего внезапную потерю сознания. Если же дышать чистым O2, то через двое-трое суток даже у совершенно здоровых людей наступает отек легких. При увеличении давления это явление наступает гораздо раньше: уже примерно через два часа на глубине 10–15 м при дыхании чистым кислородом могут наступить судороги, полная потеря сознания. Поэтому по мере увеличения глубины и, следовательно, степени сжатия вдыхаемого воздуха содержание в нем кислорода должно снижаться. Например, на глубине 100 м во вдыхаемой смеси допускается не более 2–6% O2, а на глубине 200 м – всего 1–3% O2. Весь остальной объем смеси занимает газ-разбавитель. В земной атмосфере таким газом-разбавителем служит азот. При нормальном давлении он инертен к нашему организму. Однако при погружении водолаза на глубину 40–60 м азот вызывает у человека «азотный наркоз», сходный с алкогольным опьянением (см. 7.9): нарушение критического мышления, беззаботное отношение к собственной безопасности, веселое настроение. Были случаи, когда подобное азотное опьянение приводило к гибели водолаза.

Хорошим разбавителем кислорода оказался гелий He – химически инертный газ, не имеющий ни вкуса, ни цвета, ни запаха. Гелий безвреден для человека и не вызывает при большом давлении наркотических явлений. Впрочем, есть у гелия один изъян: сжатый гелий делает человеческую речь неразборчивой, похожей на паническое утиное кряканье. Кроме того, гелий из-за высокой теплопроводности при резких движениях гидронавтов в подводном доме может вызвать переохлаждение тела (см. 5.83).

7.6. ВДОХ И ВЫДОХ

Мы более или менее точно знаем, что вдыхает человек. А что он выдыхает?

В составе выдыхаемого человеком воздуха кроме диоксида углерода CO2, азота N2 и неизрасходованного кислорода O2 присутствуют в небольшом количестве вещества, образовавшиеся в результате сложных биохимических реакций, протекающих в нашем организме: углеводороды, спирты, аммиак NH3, муравьиная HCOOH и уксусная CH3COOH кислоты, формальдегид HCHO и даже ацетон (CH3)2CO. На высоте 10 км в сильно разреженном воздухе в выдыхаемом газе резко возрастают концентрации аммиака, аминов, фенола C6H5OH, ацетона и даже появляется сероводород H2S.

7.7. КОГДА КИСЛОРОД ВРЕДЕН?

На живые организмы токсическое воздействие оказывает не молекулярный кислород O2, а его производные: озон O3, возбужденные молекулы кислорода O*2, радикал гидроксил ОН (см. 3.53), атомарный кислород О, радикал гидропероксид HO2, ион-радикал надпероксид O2-.

Все эти частицы образуются в результате тех или иных фотохимических реакций. Например, диоксид азота NO2, входящий в состав выхлопных газов автотранспорта и газовых выбросов заводов, разлагается под действием света (hν) на монооксид азота NO и атомарный кислород О, а последний с кислородом образует озон:

NO2 == NO + О; О + O2 = O3.

Диоксид азота, взаимодействуя с влагой воздуха, превращается в смесь двух кислот: азотной HNO3 и азотистой HNO2:

2NO2 + H2O = HNO3 + HNO2.

Азотистая кислота под действием света выделяет гидроксил:

HNO2 == NO + O*.

Активные формы кислорода действуют на живые организмы и их биологические формы разрушительно. Кстати, теперь объясняют возникновение лучевой болезни образованием активных форм кислорода при разложении воды организма под действием ионизирующих излучений:

H2O == O*H + H+ + e-; H2O + О*Н = H2O2 + H+ + e-,

H2O2 == HO*2 + H+ + е-.

Очевидно, что встреча живого организма с активными формами кислорода, входящими, между прочим, в состав смога (см. 7.3), не сулит ему ничего хорошего.

7.8. ХУДОЙ ЗОНТИК

«Вся твоя маскировка –

30 метров озона!

Твои миги сосчитаны

Наведенным патроном.

30 метров озона —

Вся броня и защита…»


(А. Вознесенский, поэма «Оза», гл. III)

Надежно ли защищает озоновая оболочка Земли от смертоносного ультрафиолетового излучения все живое?

Толщина слоя озона O3 в стратосфере в 30 м – гипербола. Его распределение по высоте неравномерно. Наибольшая концентрация озона наблюдается на высоте 15–25 км. На этой высоте солнечная радиация () «дробит» молекулы кислорода O2 на атомы, которые и образуют озон:


    Ваша оценка произведения:

Популярные книги за неделю