355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Борис Степин » Книга по химии для домашнего чтения » Текст книги (страница 4)
Книга по химии для домашнего чтения
  • Текст добавлен: 5 апреля 2017, 00:00

Текст книги "Книга по химии для домашнего чтения"


Автор книги: Борис Степин


Соавторы: Людмила Аликберова

Жанры:

   

Научпоп

,
   

Химия


сообщить о нарушении

Текущая страница: 4 (всего у книги 27 страниц)

Термин «купоросы» относился к сульфатам цинка ZnSO4∙7Н2O, меди CuSO4∙5Н2O и железа FeSO4∙7Н2O. Первый химический завод по производству купоросов в России был пущен при Петре I в 1718 г. Железный купорос производился в России уже в конце XV в., раньше, чем в европейских странах, а упоминания о нем датируются XIII в. Техника производства железного купороса из железного колчедана (пирита FeS2, или дисульфида железа, см. 10.47) изложена в 1763 г. М. В. Ломоносовым: «Прежде его на огне отжигают, а потом несколько недель на вольный воздух под дождь и солнце рассыпают. И когда рыхл и ржав будет, то, размельчав, вымывают его в чистой воде… воду вываривают, пока верьху перепонка появится». Это описание технологии включает следующие реакции:

FeS2 = FeS + S (отжиг),

FeS + 2O2 + 7Н2O = FeSO4∙7Н2O (окисление на воздухе под дождем).

Появление ржавчины – метагидроксида железа FeO(OH) – свидетельствует о начале окисления сульфата железа:

12FeSO4 + 3O2 + 2Н2О = 4FeO(OH) + 4Fe2(SO4)3.

Современный способ получения FeSO4∙7Н2O и ZnSO4∙7Н2O основан на взаимодействии железных или цинковых стружек с разбавленной серной кислотой:

Fe + H2SO4 = FeSO4 + H2↑; Zn +H2SO4 = ZnSO4 + H2↑.

1.47. «ТУРЕЦКИЙ КУПОРОС»

В одной из московских торговых книг 1725 г. было записано о покупке «турецкого купороса» по цене один фунт за гривну.

«Турецким», «турским», «синим» или «медным» купоросом называли пентагидрат сульфата меди CuSO4∙5Н2O. До 1725 г. его ввозили в Россию из-за границы. А в 1725 г. его производство было организовано на медеплавильных заводах Урала. Сульфат меди получали прокаливанием на воздухе смеси кусков меди Cu и серы S:

Cu + S + 2O2 = CuSO4.

Белый продукт реакции CuSO4 обрабатывали водой, а полученный голубой раствор упаривали в котлах и затем охлаждали в деревянных корытах для кристаллизации CuSO4∙5Н2O. Продукт выделялся в виде крупных темно-синих кристаллов.

Медный купорос уже в 1679 г. применяли в медицине для составления мазей. Как считали в те времена, он «нечисть скорее объедает». Позднее медный купорос стали использовать для протравы семян и в борьбе с вредителями и болезнями сельскохозяйственных культур.

Алхимики, не зная состава сульфата меди, считали, что его водный раствор может превращать железо в медь. Если полоску железа опустить в раствор CuSO4, то почти немедленно медь отлагается на поверхности железа в результате реакции:

CuSO4 + Fe = Cu↓ + FeSO4.

Железо не превращается в медь, а вытесняет медь из ее сульфата.

Современная технология производства сульфата меди состоит из стадий получения медных гранул (пустотелых шариков), окисления их паровоздушной смесью в специальных керамических башнях, орошаемых разбавленной серной кислотой, и кристаллизации CuSO4∙5Н2O из полученных растворов:

2Cu + O2 = 2CuO; CuO + H2SO4 = CuSO4 + H2O.

1.48. «КРЕПКАЯ ВОДКА»

В одной старинной русской книге, датированной 1675 г., было сказано, что на изготовление «крепкой водки» было дано полпуда железного купороса и десять фунтов селитры. Позднее в работах Ломоносова мы встречаем название «селитряная дымистая водка».

«Крепкой водкой», «селитряной дымистой водкой», «зияющей красным гасом кислотой» называли в России XVII и XVIII вв. азотную кислоту HNO3 (см. 5–50). Название «крепкая водка» произошло от алхимического «аква фортис» – «крепкая, сильная вода». До 1700 г. получение HNO3 осуществляли только в аптеках путем взаимодействия при нагревании железного купороса FeSO4 *7Н2O (см. 1.46) с селитрой KNO3 (см. 1.33, 1.34):

2(FeSO4∙7H2O) + 4KNO3 = 2HNO3↑ + Fe2O3 + 2K2SO4 + 2NO2↑ +13Н2O.

C 1720 г. для производства азотной кислоты начали строить заводы, а вместо железного купороса стали применять серную кислоту:

2KNO3 + H2SO4 = 2HNO3↑ +K2SO4.

Сведения об этой реакции нашли в записках Петра I: «Фунт истертой селитры положит в стекляной реторт и взлить на то по малу фунт самого чистого масла купоросного…». Впервые такую реакцию для получения азотной кислоты предложил немецкий алхимик Глаубер (см. 2.25). Если применять концентрированную серную кислоту («купоросное масло») и чистую селитру (нитрат калия KNO3), то «водка» получалась «крепкой» – 96–98% HNO3.

Первое промышленное производство синтетической азотной кислоты в России (и одно из первых в мире) было создано в Юзовке (ныне г. Донецк) в 1916 г. под руководством русского инженера-технолога Ивана Ивановича Андреева (1880–1919). Сырьем служил аммиак (см. 1.44) – побочный продукт производства кокса. Процесс включал три стадии: окисление аммиака до монооксида азота NO в присутствии катализатора – сплава платины и родия:

4NH3 + 5O2 = 4NO + 6Н2O;

окисление монооксида азота путем смешения его с воздухом:

2NO + O2 = 2NO2;

поглощение диоксида азота водой с возвратом NO на вторую стадию процесса:

3NO2 + H2O = 2HNO3 + NO.

По технологии Андреева работают сейчас все заводы мира.

1.49. КАК ПОЛУЧИТЬ «КУПОРОСНЫЙ СПИРТ»?

Русский химик и минералог Василий Михайлович Севергин (1765–1826) в 1804 г. писал: «Имея железный купорос, можно бы приготовлять в России и купоросную кислоту».

Термины «купоросная кислота», «купоросное масло», «серное масло», «купоросный спирт» встречаются в России уже в XVII в. Так называли концентрированную серную кислоту H2SO4, которую получали нагреванием железного купороса (см. 1.46) в глиняных ретортах:

FeSO4∙7Н2O = H2SO4↑ + FeO + 6Н2O↑.

При Петре I серную кислоту в Россию привозили из-за границы. Но уже в 1798 г. купец Муромцев «выварил» 125 пудов (около двух тонн) «купоросной кислоты» нагреванием железного купороса. Позже в России серную кислоту стали получать другим способом, сжигая смесь селитры (нитрата калия KNO3) и серы S во влажных камерах:

KNO3 + S + O2 = KNO2 + SO3; SO3+ H2O = H2SO4.

Так производили серную кислоту до начала XX в.

Сведения, когда впервые в мире была получена серная кислота, до нас не дошли. Видимо, это случилось не раньше XIII в. Взаимодействие селитры и серы для производства H2SO4 уже использовали Дреббел (см. 4.36) в Англии и Василий Валентин в Германии (см. 152).

Первое современное промышленное производство серной кислоты контактным методом – окислением диоксида серы SO2 в триоксид SO3 в присутствии катализатора (губчатой платины Pt) – было создано в России на Тентелевском химическом заводе в Санкт-Петербурге в 1903 г. (ныне завод «Красный химик»).

1.50. «КИСЛАЯ ВЛАЖНОСТЬ»

В 1793 г. А. А. Нартов сообщил, что «кислая влажность из дровяных куч в уголь пережигаемых» может быть использована для травления меди и железа.

«Кислой влажностью», или «древесной кислотой», называли в России в те времена уксусную кислоту CH3COOH (см. 3.32). Ее получали при сухой перегонке древесины лиственных пород, прежде всего березы. Продукты конденсации подвергали отстаиванию. Смола и деготь садились на дно, а сверху оказывался водный раствор темно-бурого цвета, содержащий уксусную кислоту, метиловый спирт CH3OH, ацетон (CH3)2CO и другие примеси. Для выделения уксусной кислоты водный раствор сливали и добавляли к нему мел CaCO3:

2СН3СООН + CaCO3 = Ca(CH3COO)2 + H2O + CO2↑.

Ацетат кальция Ca(CH3COO)2, или, как его называли, «пригорело-древесную соль», «древесно-кислую соду», разлагали серной кислотой и отгоняли уксусную кислоту:

Ca(CH3COO)2 + H2SO4 = 2СН3СООН↑ + CaSO4↓.

Вот как в 1800–1830 гг. определяли уксусную кислоту: «Древесный уксус есть не что иное, как произведенная от сгущения дыма и газов, отделяющихся от дерева при жжении угля».

Этот старый способ сохранил свое значение и в наше время. Однако большую часть уксусной кислоты теперь производят методом окисления ацетальдегида CH3CHO кислородом в присутствии катализатора ацетата марганца Mn(CH3COO)2:

2СН3СНО + O2 = 2СН3СООН.

Остается добавить, что А.А. Нартов (1736–1813), сын механика, учителя Петра I, был президентом Российской академии наук.

1.51. ЛЕКАРСТВО СРЕДНЕВЕКОВОЙ РУСИ

В 1547 г. Иван Грозный поручил немцу Шлитте, проживавшему в России, ехать посланником в Немецкую землю и вывезти оттуда одного «мастера для варения квасцов». Но это сделать не удалось: Шлитте был схвачен Ливонским орденом и заключен в тюрьму. Для чего в то время были нужны квасцы и как их получали?

Квасцы – групповое название соединений состава МЭ(SO4)2∙12Н2O, где М – калий К, рубидий Rb, цезий Cs, аммоний NH4, Э – алюминий Al, хром Cr, железо Fe, марганец Mn и др. Во времена Ивана Грозного квасцами называли только сульфат алюминия-калия KAl(SO4)2∙12Н2O (см. 3.21). Квасцы в России начали применять с давних пор в красильном и кожевенном деле, в иконописи, а также в медицине (они входили в состав мазей для лечения огнестрельных ран, венерических болезней, опухолей и др.). Вот как Ломоносов описывает квасцы: «Квасцы от своего кислого воздуха на Российском языке и имя себе весьма правильно имеют, ибо кроме того, что оне очень кислы, еще и через перегонку из реторты дают весьма кислый спирт, который… с купоросной кислотой одной натуры и те же свойства имеет».

Для получения квасцов использовали «квасцовые земли» – минерал алунит KAl3(OH)6(SO4)2. «Квасцовую землю» после удаления пустой породы сначала обжигали, а затем обрабатывали водой в «вымачивательных ямах» или чанах, отфильтровывали от нерастворимого остатка, раствор упаривали до начала кристаллизации KAl(SO4)2∙12H2O. Чтобы удалить примеси, прежде всего сульфат железа Fe2(SO4)3, квасцы перекристаллизовывали. При обработке алунита водой протекает реакция

KAl3(OH)6(SO4)2 = KAl(SO4)2 + 2Аl(ОН)3↓.

В раствор переходят квасцы, а в осадок выпадает гидроксид алюминия Al(OH)3. Этим способом только один Бондюжский завод К.Я. Ушкова в Вятской губернии в 1890 г. выработал 1600 т квасцов. Описанный способ получения квасцов сохранил свое значение и в наше время. Кроме него применяют еще метод разложения нефелина KAlSiO4 серной кислотой H2SO4:

KAlSiO4 + 2H2SO4 = KAl(SO4)2 + SiO2↓ + 2Н2O.

1.52. «ДУХ ИЗ СОЛЕЙ»

В ассортименте лекарств одной из московских аптек в 1644 г. находилось вещество под названием «дух из солей».

Так называли в то время хлороводородную кислоту НСl, традиционное название которой – соляная кислота. В России в XVII в. хлороводородную кислоту получали при прокаливании хлорида натрия NaCl с железным купоросом FeSO4∙7Н2O, гептагидратом сульфата железа(II) (см. 1.46):

2NaCl + 2(FeSO4∙7Н2O) = 2НСl↑ + Fe2O3 + Na2SO4 + SO2↑ + 13Н2O↑.

Этот способ был впервые предложен немецким монахом-алхимиком Василием Валентином в XV в. Василий Валентин (см. 4.24) называл хлороводородную кислоту «кислым спиртом». Кислота поражала воображение алхимиков и алхимистов (см. 1.4): «кислый спирт» дымил на воздухе, вызывал кашель, обжигал язык и нёбо, разъедал металлы и разрушал ткани. Позднее (в 1658 г.) аптекарь-алхимик Глаубер (см. 1.48) предложил для получения хлороводородной кислоты нагревать смесь хлорида натрия NaCl и серной кислоты H2SO4 (см. 1.49):

2NaCl + H2SO4 = 2HCl↑ + Na2SO4.

Он называл получаемую в этой реакции кислоту «спиритус салис» (см. 3.12). Остаток от реакции – сульфат натрия Na2SO4 – стали называть позднее «саль глаубери», или глауберовой солью. Метод Глаубера стали применять в России с 1790 г. Он сохранился до 1960–1965 гг. Современный способ получения хлороводородной кислоты основан на использовании водородно-хлорного пламени. После первоначального поджигания смесь хлора с водородом горит спокойным пламенем:

Н2 + Сl2 = 2НСl.

Избыток водорода позволяет получить хлороводород, свободный от примеси хлора. Хлороводород затем поглощается водой, и получается хлороводородная кислота.

1.53. «ЯPЬ-МЕДЯНКА»

В старой (1672 г.) рукописной книге «Прохладный вертоград» содержится такая запись: «Ярь такову силу имеет, что сушит и огнь из очей выводит… язвы огные и гнилые десна заживляет и от опухоли охраняет».

«Ярь», или «ярь-медянка», имеет ориентировочный состав CuO∙Cu(CH3COO)2. В зависимости от способа получения это кристаллы зеленого или голубого цвета. «Ярь» получали в русских аптеках уже в 1620 г., еще раньше ее привозили из других стран. «Ярь» применяли не только в медицине, но и в иконописи, и в стенной живописи как зеленую краску. В частности, ею были окрашены стены царских палат в Коломенском в Москве. Производили и покупали еще и «ярь венецийскую» – димер ацетата меди [Cu(СН3СOO)2]2∙2Н2O (зеленовато-голубые кристаллы).

«Ярь» получали со времен Плиния Старшего (см. 1.14) из меди и уксуса (см. 1.50). Русские мастера, не имея уксуса, для получения «яри» использовали кислое молоко, но в этом случае образовывался не ацетат меди, а а-гидроксопропионат меди состава Cu[СН3СН(ОН)СОО]2, к тому же с примесью казеина.

Реакция меди с уксусной кислотой протекает только при доступе воздуха:

2Cu + 4СН3СООН + O2 = 2Cu(СН3СОО)2 + 2Н2O.

При кипячении полученного раствора и выделяется (за счет гидролиза ацетата меди) «ярь-медянка»:

2Cu(CH3COO)2 + H2O = CuO∙Cu(CH3COO)2 + 2СН3СООН.

1.54. ВСЯКИЙ ЛИ САХАР – ПИЩЕВОЙ ПРОДУКТ?

Нет: известен «свинцовый сахар», или «сахар-сатурн» (алхимики называли свинец «Сатурном»), – это ацетат свинца Pb(CH3COO)2∙3Н2O. «Свинцовый сахар» имеет сладкий вкус, но это сильный яд.

Ацетат свинца хорошо растворяется в воде, легко плавится (при 60° С), его водные растворы могут взаимодействовать с оксидом свинца PbO с образованием основного ацетата свинца Pb(OH)(CH3COO). Пропитанная ацетатом свинца бумага после поджигания продолжает тлеть как трут. Более 600 лет тому назад 0,2–0,5%-е водные растворы ацетата свинца стали применять для охлаждающих компрессов – «свинцовых примочек». Еще раньше ацетат свинца в больших количествах использовали для производства белил (см. 1.14).

Получают ацетат свинца, как и 1000 лет тому назад, обработкой оксида свинца PbO строго определенным количеством уксусной кислоты:

PbO + 2СН3СООН = Pb(CH3COO)2 + H2O.

1.55. «НЕБЕСНЫЙ МЕТАЛЛ»

Считают, что первым металлом человека было метеоритное железо. Древнейшие железные предметы, найденные археологами, относятся к IV тысячелетию до н.э. У древних греков и египтян железо называли «небесным металлом». Древнегреческое название железа «сидерос» означает «звездный», а древнеармянское название железа «еркат» переводится как «капнувший с неба». Из метеоритного железа, если оно содержит примесь никеля – а она встречалась часто, отковать что-либо можно только на холоду: при горячей ковке металл становится хрупким.

Самородное железо на Земле – редкость (см. 5.27; 10.48). До сих пор оно было найдено только на берегу острова Диско вблизи Гренландии и содержало 2% никеля и 0,1% платины. В 1905 г. у острова Русский на Дальнем Востоке обнаружен самородный чугун с содержанием 3,2% углерода.

Производство железа из руд, таких как гематит Fe2O3∙nH2O, сидерит FeCO3 и др., началось лишь в конце I тысячелетия до н.э. Металлическое железо выплавляли путем нагревания руды с древесным углем при температуре около 700° С:

2Fe2O3 + 3С = 4Fe + 3СO2.

Металл при этом получался в виде губчатой массы, так называемого «кричного железа». Ковать такое железо древние металлурги не умели (нужна была горячая ковка). Плавку железа изобрели африканцы в 600–400 гг. до н.э. В бассейне реки Замбези, на территории Северного Судана и в других местах обнаружены глиняные домны, заброшенные железорудные шахты, груды шлака… В Африке железные руды выходят на поверхность земли, их обнаруживали в речных наносах. Поэтому народы одного из богатых железными рудами районов Земли – Замбии – перешли из века каменного прямо в век железа. Они перешагнули энеолит – медно-каменный и бронзовый века.

1.56. ЗОЛОТОЕ ОРУЖИЕ И СВИНЦОВЫЕ ДЕНЬГИ

Первое оружие было изготовлено в конце V – начале IV тысячелетий до н.э. из природного золота (см. 10.9–10.13), содержавшего до 18% серебра и других металлов. Серебро стало известно людям позже, чем золото. Затем, в III тысячелетии до н.э., стала известна и медь. Древнейшее оружие из самородной меди обладало большей твердостью и с течением времени полностью вытеснило из употребления золотое оружие. После медного наступил бронзовый век (2000 лет до н.э.). Оружие из бронзы распространилось повсеместно, хотя месторождения медных и оловянных руд рядом не встречались. Например, из Египта за оловом снаряжались экспедиции на Кавказ, Пиренейский полуостров и даже на Британские острова, которые финикийцы так и называли «Оловянными островами». Напомним, что бронза – сплав меди и олова. В древней бронзе, из которой делали более твердые и прочные оружие и посуду, чем из золота и меди, содержалось 2–16% олова.

Первые «деньги» также были из золота. Но затем в денежное обращение пошли и другие металлы: медь, серебро, свинец. В частности, на территории теперешней Турции за 1900 лет до н.э. в ходу были свинцовые монеты. А обмен свинца на серебро велся из расчета 180 к одному. Вообще же серебро в те времена было всеобщим эквивалентом. Серебро отмеряли четырьмя весовыми единицами: «талант» (30 кг), «мина» (0,5 кг), «сикль» (8 г) и «зернышко» (1/180 доля сикля). «Зернышко» равнялось одному сиклю «черного» – свинца.

1.57. РАДИЙ РОССИИ

«Радиоактивными рудами начинается новая страница в истории рудного дела, и трудно сейчас предвидеть, что сулит нам в этой области будущее, может быть, не очень отрадное…».

(Академик В. И. Вернадский, 1911 г.)

Переработку уранорадиевых руд в России начали с выделения из них металла радия Ra-сильно радиоактивного элемента, открытого в 1898 г. супругами Кюри (см. 2.46). C 1909 по 1912 г. общая мировая добыча радия составила всего 6 граммов. Собственных минералов у радия нет. В конце XIX в. в Ферганской области, в 30 км от г. Ош, в горном массиве Туя-Муюн был найден зеленовато-желтый минерал, названный впоследствии тю– ямунитом. Он имеет состав Ca(UO2)2(VO4)2∙8H2O и является октагидратом ортованадата кальцияуранила, содержащим примесь радия. Этот минерал сильно радиоактивен: в урановых рудах в результате радиоактивного распада из каждых трех тонн урана образуется 1 грамм радия.

В 1919 г. началась организация первого в России завода по выпуску солей радия из этого минерала. Заведующим заводом стал студент последнего курса металлургического факультета Петроградского политехнического института Иван Яковлевич Башилов (1892–1953). Впоследствии профессор Башилов организовал в Московском институте тонкой химической технологии им. М. В. Ломоносова кафедру технологии редких и рассеянных элементов. В 1938 г. он был необоснованно арестован, а в 1953 г. умер от инфаркта.

По технологии, разработанной Башиловым, в 1921 г. началась переработка тюямунита на Бондюжском заводе, расположенном на реке Каме. Завод стал производить 2 грамма радия в год в виде его бромида RaBr2. Для извлечения радия размолотую руду обрабатывали смесью хлороводородной (HCl) и серной (H2SO4) кислот и затем в реакционную массу добавляли водный раствор хлорида бария BaCl2. В результате реакции

BaCl2 + H2SO4 = BaSO4↓ +2НСl

выпадающий осадок малорастворимого сульфата бария захватывал примесь сульфата радия RaSO4. В одной тонне осадка при такой операции концентрировалось до 50–60 мг радия. Потом осадок для удаления примесей превращали сначала в карбонат бария BaCO3, а затем з бромид бария BaBr2. Бромид бария подвергали дробной кристаллизации до получения бромида радия RaBr2.

1.58. ИОД РОССИИ

Иод – редкий и очень рассеянный в природе элемент, в виде примеси он присутствует буквально везде (см. 4.39; 9.8). До 1914 г. Россия своего иода не производила, а покупала его в Чили. Во время войны 1914–1918 гг. из-за блокады Германией морских путей все запасы иода иссякли, а лазареты, госпитали и больницы требовали его во все возрастающих количествах. Вот тогда и вспомнили о некоторых водорослях, содержащих до 0,5% иода. Первый в России йодный завод был пущен в 1915 г. в Екатеринославе (ныне Днепропетровск). Он дал стране 200 кг иода, полученного из золы черноморской водоросли филлофоры. Биомасса гигантского скопления филлофоры (настоящие джунгли) в Черном море исчисляется миллионами тонн. Филлофора способна извлекать из морской воды и концентрировать в своих тканях иод. В каждой тонне водорослей содержится до 3 кг иода.

Водоросли высушивали, сжигали, золу обрабатывали водой, извлекая иодид натрия NaI, а затем на раствор действовали либо концентрированной серной кислотой H2SO4:

2NaI + 2H2SO4 = I2↓ + SO2↑ + Na2SO4 + 2Н2O,

либо раствор только подкисляли серной кислотой и добавляли к нему водный раствор нитрита натрия NaNO2:

2NaI + 2NaNO2 + 2H2SO4 = I2↓ + 2NO↑ + 2Na2SO4 + 2H2O.

В 1917 г. в Архангельске построили еще один завод по получению иода из водорослей Белого моря – ламинарии, или морской капусты. Этот завод был закрыт в 1923 г. из-за убыточности. C 1923 г. стал выпускать иод Сакский завод, где иод извлекали из воды некоторых крымских озер и солевых рассолов Сивашского залива. Содержание иодида натрия в солевых рассолах невелико. После отделения из рассола основной части солей на оставшийся раствор действовали либо хлором CI2:

2NaI + Cl2 = I2↓+ 2NaCl,

либо нитритом натрия в сернокислотной среде.

В 1882 г. русский химик Алексей Лаврентьевич Потылицын (1845–1905) обнаружил иод в нефтяных водах Кубани. Уже в нашем столетии установили, что в буровых водах нефтяных и газовых месторождений содержание иода в виде иодида натрия может доходить до 0,005%. Для извлечения иода из таких вод применяют самые различные методы, в том числе и описанные выше.

1.59. ВОДОРОСЛИ – АГАР – МАРМЕЛАД

Агар – ценнейший природный продукт, небольшие количества которого придают раствору свойства студня. Разбавленный (примерно 1%-й) нагретый водный раствор агара при охлаждении до 32–39° C уже превращается в студень. Напомним, что желатин образует студень лишь при +5° С. Агар имеет сложный состав. Это вещество полисахаридной природы включает длинные цепи, состоящие из фрагментов моносахарида галактозы СН2ОНСОСОН(СНОН)3. Молярная масса агара достигает 20 000–150 000 г/моль.

Агар получают из водоросли филлофоры, той же самой, из которой одно время выделяли иод (см. 1.58). Содержится агар и в красной водоросли анфельции, растущей в Белом море и на Дальнем Востоке. Подсушенные водоросли промывают водой и обрабатывают хлороводородной кислотой НСl, а затем полученную смесь нейтрализуют гидроксидом натрия NaOH и вываривают в специальных котлах несколько часов. Жидкость отфильтровывают, а остаток (агар) сушат и измельчают.

Пищевая промышленность не может без агара выпускать ни мармелад, ни желе, ни многие сорта конфет. Агар предохраняет джемы и варенья от засахаривания, увеличивает сроки хранения хлеба, не дает крошиться мороженому. Он идет на изготовление косметических кремов и зубных паст.

Агар совершенно безвреден, человеческий организм его не усваивает из-за отсутствия соответствующих ферментов.

1.60. «МЕФИЛЬ»

В одной из старинных рукописей есть упоминание о том, как арабский алхимик, попробовав на вкус бесцветную жидкость, полученную им при нагревании сухой древесины в реторте, мгновенно ослеп.

Алхимик получил древесный, или метиловый, спирт – метанол CH3OH. Метиловый спирт по внешнему виду и запаху почти неотличим от этилового (винного) спирта C2H5OH. Метанол – очень сильный яд. Прием внутрь всего 10–20 мл его приводит к потере зрения, а 30–50 мл – смертельная доза. Если этанол был известен с глубокой древности, то с метанолом человек познакомился намного позже. В России метанол получали в XVI в. под названием «мефиль», «камфин», «мефиловый спирт» и использовали для освещения домов, изготовления лаков и политур. Его извлекали из надсмольной воды – продукта сухой перегонки дерева (см. 1.50). Надсмольную воду обрабатывали известью (карбонатом кальция CaCO3), которая превращала уксусную кислоту CH3COOH в ацетат кальция:

2СН3СООН + CaCO3 = Ca(CH3COO)2 + CO2↑ + H2O↓

Смесь нагревали до кипения, отгоняя воду, метиловый спирт и ацетон. Конденсируя пары этих веществ, получали «сырой метиловый спирт» с примесью ацетона и других органических веществ. Затем «сырой спирт» еще раз подвергали перегонке и получали более или менее чистый продукт.

В наши дни метанол получают либо гидрированием монооксида углерода СО:

СО + 2Н2 ↔ CH3OH,

либо окислением метана CH4, содержащегося в природном газе.

2СН4 + O2 ↔ 2СН3ОН.

И в том, и в другом случае необходимо присутствие катализатора; процессы идут при высоком давлении и повышенной температуре.

1.61. КАКОЙ САХАР ЛЮДИ УЗНАЛИ РАНЬШЕ – СВЕКЛОВИЧНЫЙ ИЛИ ТРОСТНИКОВЫЙ?

Люди еще до начала новой эры использовали сахар, полученный из сахарного тростника. Сахарный тростник раздавливали каменными валами и добытый сок упаривали до кристаллизации сахара. Для очистки сахар растворяли в воде, добавляли молоко, упаривали, снимали пену и, охлаждая раствор, выделяли уже чистый сахар.

Только в 1747 г. немецкий химик и металлург Андреас-Сигизмунд Маргграф (1709–1782) обнаружил присутствие сахара в свекловичном соке. Но это открытие не использовалось до 1801 г., когда ученик Маргграфа, немецкий химик и физик Франц-Карл Ахард (1753–1821) организовал в Силезии небольшой завод по извлечению сахара из свеклы. Однако это производство не получило развития из-за технических трудностей, вызвавших высокую себестоимость сахара. Только в период наполеоновских войн из-за континентальной блокады, закрывшей ввоз в Европу тростникового сахара из Индии и Америки, приступили к созданию свеклосахарных заводов в России, Германии и Франции.

Сахар, полученный из сахарного тростника и сахарной свеклы, имеет один и тот же состав – это сахароза C12H22O11. Сахароза содержится во всех частях зеленых растений, но больше всего ее в соке сахарного тростника и сахарной свеклы (см. 6.16).

Сахароза – дисахарид, включающий шестичленное кольцо глюкозы C6H12O6 и пятичленное кольцо фруктозы C6H12O6, связанных химической связью. Если к раствору сахарозы добавить фермент инвертазу, то ее молекула расщепляется и образуется раствор, содержащий равные количества глюкозы и фруктозы.

1.62. «ЦЕЛОВАЛЬНИКИ БУМАЖНОГО ДЕЛА»

На Руси бумага впервые была использована для изготовления «Договорной грамоты» великого князя Симеона Гордого (1340 г.) и старейшей рукописной книги «Поучения Исаака Сирина» (1381 г.).

Бумага – тонковолокнистый листовой материал, один квадратный метр которого имеет массу не более 250 г. При большей массе материал называют картоном. Честь изобретения бумаги приписывают Цай Луню, жившему в Китае во времена Второй Ханьской династии – около 105 г. н.э. Сначала бумагу готовили из волокон молодого бамбука. В XIII–XIV вв. Самарканд, расположенный на торговых путях из Китая в Европу, превратился в мировой центр распространения технологии производства бумаги. Сырьем для производства бумаги стала древесина. Первая бумажная фабрика в России была построена на реке Пахре под Москвой в 1655 г. Специалистов по производству бумаги называли «целовальниками бумажного дела» и «подьячими азбучного дела».

Как же производится бумага? Основной компонент бумаги – целлюлоза – вещество оболочек растительных клеток, высокомолекулярный полисахарид (см. 1.36). Больше всего ее в древесине хвойных пород, меньше – в древесине лиственных пород, соломе и тростнике. Для извлечения целлюлозы древесную щепу подвергают варке либо в водном растворе гидросульфита кальция Ca(HSO3)2 (и других гидросульфитов), либо в водном растворе, содержащем гидроксид натрия NaOH и сульфид натрия Na2S, под давлением; температура при этом достигает 170° С. Щепа распадается на мелкие пучки волокон целлюлозы, а примеси переходят в раствор. В этой операции стараются наиболее полно удалить из целлюлозы лигнин, из-за присутствия которого бумага под действием света желтеет и становится ломкой. Затем целлюлозу промывают водой, удаляя все реагенты и примеси, и отбеливают при помощи хлора Cl2 или оксохлората кальция Ca(ClO)2, размалывают, смешивают с проклеивающими и наполняющими веществами – казеиновый клей, латекс, каолин, крахмал, краски и т. п. Образовавшуюся бумажную массу направляют в бумагоделательную машину, где она растекается на бесконечном сетчатом полотне. Из бумажной массы удаляется вода, масса спрессовывается и высушивается. Полученное таким образом бумажное полотно проходит валки каландра, делающие бумагу гладкой. А затем остается только смотать бумагу в рулоны и разрезать.

1.63. ИЗ ЧЕГО ДЕЛАЮТ БУМАГУ?

Бумагу производят из вискозных, асбестовых, найлоновых, полиэфирных, полиацетиленовых и акриловых волокон. Уникальны свойства бумаги из стекловолокна: она не горит, не поглощает влаги, устойчива к действию многих кислот. Началось производство бумаги из металлических и керамических волокон. «Керамическая» бумага выдерживает температуру до 2000° С, не взаимодействует с концентрированной серной кислотой H2SO4 и концентрированными водными растворами гидроксидов натрия и калия NaOH и КОН. Эти сорта бумаги требуются для медицины, космоса и электротехники. А бумага из найлоновых волокон идет на производство денег и географических карт.

1.64. ЗНАМЕНИТЫЙ КОНФЛИКТ ФРАНЦУЗСКИХ ХИМИКОВ БЕРТОЛЛЕ И ПРУСТА

Спор между Бертолле (см. 2.41) и Жозефом-Луи Прустом (1754–1826), членом Парижской академии наук, шел о возможности существования соединений переменного состава (нестехиометрических соединений). Спор длился почти восемь лет – с 1801 до 1808 г. Все химики разделились на два лагеря. В конце концов победу в этом споре одержал Пруст. Суть спора была в следующем. Бертолле во время похода в Египет (1798 г.), куда он сопровождал Наполеона, обнаружил, что кристаллизация соды, карбоната натрия Na2CO3, в одном из египетских озер в естественных условиях вызывает либо появление десятиводного соединения Na2CO3∙10H2O, либо безводного Na2CO3. Это и другие наблюдения за природными процессами дали Бертолле повод утверждать, что вещества взаимодействуют друг с другом в различных соотношениях в зависимости от их исходного количества, и поэтому продукты реакций не имеют постоянного состава. Если же взять одинаковые соотношения исходных веществ и соблюдать условия, в которых протекает реакция, неизменными, то можно получить соединения определенного постоянного состава.

Пруст считал выводы Бертолле несостоятельными. Он показал, что если один химический элемент образует несколько соединений со вторым, то их состав изменяется скачком, а не постепенно, как утверждал Бертолле. Он писал: «Свойства истинных соединений неизменны, как и соотношения их составных частей… Японская киноварь имеет такой же относительный состав, как и испанская» (киноварь – сульфид ртути состава HgS).


    Ваша оценка произведения:

Популярные книги за неделю