355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Борис Воронцов-Вельяминов » Очерки о Вселенной » Текст книги (страница 7)
Очерки о Вселенной
  • Текст добавлен: 5 октября 2016, 01:34

Текст книги "Очерки о Вселенной"


Автор книги: Борис Воронцов-Вельяминов



сообщить о нарушении

Текущая страница: 7 (всего у книги 36 страниц)

В октябре 1975 г. спускаемые аппараты советских автоматических станций «Венера-9» и «Венера-10» впервые передали на Землю телевизионные панорамы поверхности Венеры. Сами станции стали искусственными спутнршами планеты.

Так были разрешены некоторые из основных загадок Венеры. Мы намеренно, в краткой форме, привели историю исследования атмосферы Венеры, чтобы читатели на этом примере видели, как длительно и упорно приходится изучать планеты, как постепенно уточняются и подтверждаются космонавтикой выводы, сделанные из наблюдений с Земли.

В заключение вернемся к облакам Венеры. Состав облаков Венеры все еще не разгадан. Теперь сомнительно, чтобы это были капельки или кристаллы воды. В последнее время серьезно обсуждается предположение, что это – капельки водного раствора серной кислоты. Такое предположение помогает объяснить удивительно малое содержание водяного пара в атмосфере и согласуется с наблюдаемыми оптическими свойствами облаков Венеры.

В облаках Венеры на фотоснимках, сделанных в ультрафиолетовых лучах еще в 20-х годах были обнаружены и в дальнейшем наблюдались крупные пятна в виде слабых потемнений. Сопоставляя снимки, полученные в разное время, астрономы заподозрили наличие ретроградного (в необычном направлении) осевого вращения планеты, скорость которого, по лучшим оценкам, соответствовала четырехсуточному периоду. Этот вывод подтвердился данными с автоматической межпланетной станции «Маринер-10», которая в 1974 г. передала на Землю по космическому телевидению изображения Венеры в ультрафиолетовых лучах, полученные с близкого расстояния.

На рис. 49 вы видите слева снимок, сделанный с Земли, при разрешении деталей до 500 км размером, а справа – с «Маринера-10» с разрешением, в десять раз большим. Благодаря этому отчетливо стали видны облака и потоки в них – циркуляция верхней атмосферы. На трех снимках (рис. 50), охватывающих 8 суток, видно квазиустойчивое темное пятно, смещение светлых и темных деталей. Это смещение согласуется с 4-дневным периодом вращения в направлении восток – запад. Y-образное пятно, может быть, постоянно рассасывается и опять восстанавливается. Но, как мы видели, по данным радиолокации, период осевого вращения твердой поверхности Венеры значительно больше! За четверо суток делает один полный оборот только верхний слой облаков, что соответствует скорости ветра около 100м/сек на экваторе планеты. Такая скорость ветра наблюдается только на большой высоте., а у самой поверхности Венеры, по данным советских станций, – полный штиль, то есть нет никакого движения.

Еще в 6-м издании этой книги я писал о мечте прощупывать радиолокатором рельеф планет сквозь облачный покров, каким, например, окутана Венера. Но не прошло и пяти лет, как это уже сбылось. По измерениям мощности радиосигнала, отраженного от разных мест поверхности Венеры, сначала составлялись карты, на которых обозначены постоянно существующие на Венере детали с повышенным коэффициентом отражения радиоволн. В дальнейшем американские ученые с помощью радиолокационных установок смогли установить разности высот на поверхности Венеры с точностью до 150 м и различать их на пространствах в несколько сотен километров. Найдена обширная область, находящаяся на 3 км выше среднего уровня. Еще поразительнее было обнаружение впоследствии более десяти кратеров (!) размером от 35 до 160 км. (Конечно, там должно быть множество более мелких.) Однако они неглубоки (даже наибольший из них имеет глубину только 400 м). Вероятно, это результат выветривания. Надо думать, что происхождение их скорее вулканическое, так как метеоритам пробить плотную атмосферу Венеры труднее, чем пробивать атмосферу Земли.

Кроме того, радиолокация позволила измерить экваториальный радиус Венеры под облачным слоем: 6052 ± 5 км.

Тайны Венеры постепенно раскрываются...

Марс издали и вблизи

О Марс! Интереснейшая из планет.

Расстояние от Земли до этого нашего небесного соседа меняется в больших пределах. Наименьшее расстояние до него бывает в так называемом противостоянии, когда обе планеты, двигаясь по своим орбитам, сближаются и находятся по одну сторону от Солнца. Противостояния происходят каждые два года. Но и это расстояние зависит от того, в каком месте своих орбит они сближаются, так как орбиты обеих планет, а особенно Марса, заметно эллиптичны. Это наименьшее расстояние колеблется от 100 до 55 млн. км. В последнем случае противостояние называется великим и повторяется через 15 или 17 лет. Ближайшее великое противостояние произойдет в 1988 г. К сожалению, в этих противостояниях Марс для средних широт северного полушария Земли, где расположено большинство обсерваторий, бывает невысоко над горизонтом. Его приходится наблюдать через значительную толщу атмосферы – постоянного врага астрономических наблюдений. Много ли можно увидеть на Марсе в телескоп с таких громадных расстояний? А между тем Марс – самая интересная из планет, так как больше всего сходна с Землей.

Он в полтора раза дальше от Солнца, чем Земля, и получает тепла только в два с лишним раза меньше. Его год составляет 687 наших суток или 668 марсианских суток, которые длиннее земных на 37 минут. Ось вращения Марса наклонена к его орбите почти так же, как земная, так что на нем происходит смена времен года. Наконец, Марс по диаметру вдвое меньше Земли и вследствие меньшей массы сила тяжести на нем в два раза меньше, чем земная. Поэтому с Марса легче, чем у нас, запускать космические ракеты.

Рис. 51. Сезонные изменения на Марсе по фотографиям с Земли. Заметны изменения размеров полярной шапки и видимости темных пятен

С Земли из-за волнения воздуха нельзя различить на поверхности Марса даже в сильнейший телескоп детали менее чем 0,5-1", т. е. менее чем 150-300 км. Кроме того, сам Марс обладает атмосферой,

хотя и разреженной, и она накладывает дымку на диск Марса, особенно на его краях. Поэтому сразу на Марсе можно увидеть немногое, и только терпеливые наблюдения в лучшие ночи от года к году дают некоторое суммарное представление о поверхности этой загадочной планеты.

Что же можно непосредственно видеть на Марсе? Прежде всего мы замечаем, что большая часть его поверхности имеет красновато-желтый цвет, отчего эта планета в целом и была в древности посвящена кровавому богу войны. Эти места раньше считали пустынями, ровными и возвышенными. Во вторую очередь бывает заметна белая полярная шапка на том или другом полюсе Марса.

Белые полярные шапки – это тонкий снеговой покров, над которым часто стоит туман. Такой вывод о полярных шапках сделал русский ученый Г. А. Тихов в 1909 г. Он впервые фотографировал Марс через разные светофильтры. О том, что это сезонный покров, догадывались и потому, что когда на соответствующем полушарии Марса зима, полярная шапка велика. К лету, дробясь по краям, она уменьшается и иногда даже исчезает.

В последние годы установлено, что, кроме снега из замерзшей воды, в полярных шапках Марса находится (и, по-видимому, преобладает) снег из замерзшего углекислого газа, который в условиях Марса затвердевает при температуре около -130 °С.

Рис. 52. Фотография участка марсианской поверхности, полученная 'Маринером-4'

Труднее заметить на Марсе темные пятна вследствие их малой контрастности. Их сразу же назвали морями, но это, безусловно, не моря. В них никогда не наблюдалось отражение Солнца. Очертания их несколько меняются и от года к году и при смене времен года. Так, с таянием полярной шапки начинается потемнение этих пятен, идущее от полюса к экватору. Кроме того, Скиапарелли в Италии в 1877 г. увидел на Марсе сеть тонких линий, которые он назвал каналами. Эти линии пересекают не только оранжевые «материки», соединяя темные пятна, но также и эти пятна, чего не могло бы быть в случае, если эти пятна – моря. Долгое время многие думали, что темные пятна – низменности, где только и есть на Марсе влага. Полярные шапки тают весной, и освободившаяся вода стекает к экватору по низинам, оживляя растительность, которая и придает пятнам темные цвета. Ловелл в США верил, что каналы – искусственные сооружения гипотетических марсиан, свидетельство их высокой техники. Он рисовал геометрически правильную сеть сотен каналов, но после работ Антониади и других выяснилось, что каналы не такие уже тонкие линии: они должны иметь сотни километров в толщину и чаще всего представляют собой цепи неправильных пятнышек. Тогда стали предполагать, что «каналы» – это растительность, окаймляющая узкие водные русла, сами по себе не видимые в телескоп. Наблюдатели отмечали сезонные изменения в окраске темных пятен, но зеленоватый для глаза цвет этих пятен летом и побурение осенью объясняются теперь физиологическим эффектом контраста с соседними оранжевыми областями. По точным измерениям цвет «морей» почти не отличается от цвета «материков», – он тоже красноват.

Рис. 53. Гигантский 'Большой Каньон' на Марсе, тянущийся на тысячи километров

Основные темные пятна можно узнать на всех картах. В последние годы в США под руководством Вокулера была составлена карта Марса, основанная на фотографиях и сотнях наилучших зарисовок Марса, сделанных за последние 90 лет двумястами наблюдателей. На отдельных лучших рисунках положение деталей Марса определялось с ошибками до 5° (600 км). Названия деталям на карте Марса даются латинские. Эти карты содержат вовсе не детали рельефа, а только темные и светлые области, да и то лишь очень крупные – размером не менее 150 км.

Оранжевые материки считались ровными пустынями. Горы, как полагали, есть только там, где изредка наблюдаются светлые пятнышки, – быть может, снег, выпадающий на горах. Наши представления о поверхности Марса (но не о температуре на нем, не о его безводии или атмосфере) очень изменились после пролета мимо него АМС «Маринер-4» в 1965 г. Восемь месяцев длилось ее приближение к Марсу и с расстояния 12 000 км она получила и передала на Землю 20 весьма еще несовершенных фотографий поверхности. Они охватили лишь 1% поверхности Марса вдоль дуги, проходящей через светлые и темные области Марса, но, к изумлению астрономов, снимки показали, что и те и другие области усыпаны кольцевыми горами, кратерами подобно Луне. (Кратеры на Меркурии были обнаружены на 9 лет позднее.) В 1969 г. съемка была продолжена на пролетных космических кораблях «Маринер-6» и «Маринер-7».

Рис. 54. Часть Большого Каньона и его профиль: ширина около 100 км, а глубина до 4 км. Правее каньона параллельная ему цепочка из десятка слившихся кратеров одинакового размера

В последующие годы, до конца 1974 г. были запущены несколько АМС в направлении Марса: советские «Марс-2, 3, 4, 5, 6 и 7» и американская «Маринер-9», которые стали спутниками Марса и позволили длительное время наблюдать поверхность планеты с довольно близкого расстояния, хотя этому иногда мешали пылевые бури на самом Марсе. Длящиеся месяцами, они заволакивают его поверхность, насыщая атмосферу мелкой пылью. Иногда вся атмосфера Марса в течение месяцев остается настолько запыленной, что сквозь нее видно очень мало. Существование бурь было одним из признаков присутствия атмосферы на Марсе еще до космических полетов к нему. Ведь для распространения пыли нужны ветры. Переносом песков сезонными ветрами можно в принципе объяснить сезонные и годовые изменения очертаний темных пятен Марса, давно наблюдаемые с Земли. Желтые облака пыли хорошо увязывались с представлением о том, что желтые «равнины» Марса – плоскогория, песчаные пустыни, а темные– низменности, которые, может быть, имеют влагу и растительность. Теперь установлено, что на Марсе существуют разности высот более 20 км (сходно с тем, что есть на Земле). Однако первые определения разности высот больших участков показали, что высоты и низины не совпадают с оранжевыми «пустынями» и «морями», т. е. с темными пятнами. Границы темных пятен не всегда совпадают с границами различных форм рельефа, найденных на снимках Марса с советских и американских космических аппаратов.

Рис. 55. Олимпийский пик, величайший щитовидный вулкан на Марсе. Диаметр его кратера 40 км, а его основания 500 км

Среди многочисленных кратеров, найденных на снимках, более сотни имеют диаметр свыше 120 км. Кратеров меньшего размера значительно больше, но не так много, как на Луне или Меркурии. Склоны их более пологи, наклоны их чаще всего около 10°. Центральные горки и кратеры на валах редки. Все это должно быть следствием эрозии в результате действия нынешних ветров, ударов мелких метеоритов и песчаных бурь, а в прошлом, по-видимому, и воды. Извилистых речных долин с притоками найдено несколько и, я бы сказал, удивительно, что их все еще не занесло песком.

Рис. 56. Русло высохшей реки (?) на Марсе

Единственна в своем роде рифтовая долина (или Большой каньон). Она тянется на тысячи километров при ширине в 100 км и глубиной в несколько километров. На Земле или Луне подобного образования нет. Таким же уникальным образованием является «Нике Олимпика». Это громадный вулканический конус, иначе «щит» типа Гавайских островов, но больше. Диаметр его основания 500 км, а наверху находится, по-видимому, застывшее, лавовое озеро – кальдера, как на Гавайских островах.

В этом районе концентрируется еще несколько вулканических щитов такого вида, но поменьше.

Рис. 57. Долина или русло высохшей реки на Марсе крупным планом

Обнаружение всех этих разновидностей топографических деталей не противоречит прежним представлениям о природных условиях на Марсе, а лишь в большой мере дополняет и уточняет эти представления. Но никто не мог ожидать, что там существуют (и не маленькие!) извилистые ложбины с притоками, которые приходится признать руслами рек, некогда протекавших на Марсе (на планете, где сейчас водяной пар обнаруживается с трудом!). По-видимому, когда-то Марс был настолько богат водой, что она могла течь по нему! Почему это было и почему этого не стало? К надежному ответу на это мы еще не подготовлены. Интересную гипотезу высказал В. Д. Давыдов. Он допускает, что на Марсе и сейчас есть водоемы, замерзшие снаружи и засыпанные песком. Где? – Например, под гладкой поверхностью в некоторых участках одной низменной равнины в умеренных широтах южного полушария планеты.

Температурные условия на Марсе исследованы еще недостаточно, но в общем там, бр-р-р, как холодно. По измерению болометрами и термоэлементами теплового, инфракрасного излучения планеты найдено было следующее. В связи с изменением расстояния Марса от Солнца днем температура в экваториальной области поднимается до +25°С, но уже к заходу Солнца спускается ниже нуля, а ночью падает до -70° и ниже. Температура темных пятен несколько выше, чем у светлых областей (на 10°), так как они лучше поглощают солнечные лучи. Средняя суточная температура там такая же, как на Земле в областях вечной мерзлоты: -25° (для Земли в целом среднегодовая температура +15°). Летом температура на Марсе на обращенных к Солнцу склонах бывает днем выше нуля иногда даже в полярных областях, где зимой отмечался мороз до – 100°С. Измерения теплового радиоизлучения показали температуру около -70° для планеты в целом. По-видимому, эта низкая температура относится к слоям, лежащим под поверхностью, так как она почти не меняется от того, освещен ли Марс Солнцем-полностью или частично обращен к нам своей ночной стороной.

На основании достижения геофизики, теоретически установлено, что температура марсианского грунта с ростом глубины должна повышаться, приблизительно как и на Земле, где это повышение составляет приблизительно 30°С на каждый километр глубины.

На температуру поверхности Марса некоторое влияние оказывает атмосфера.

Атмосфера Марса, как и Венеры, состоит в основном из углекислого газа. Во время снижения спускаемого аппарата «Марс-6» неожиданно были обнаружены признаки присутствия в марсианской атмосфере какого-то инертного газа, вероятно, аргона, причем в очень большом количестве (около 35 %, хотя этот результат нуждается в уточнении и может быть пересмотрен после новых экспериментов). В то же время азот, который в земной атмосфере является главной составной частью, на Марсе пока не обнаружен. Это – тоже загадка. Поскольку земной кислород считается продуктом его накопления в итоге миллионов лет деятельности растений, бедность Марса кислородом – не в пользу гипотезы о богатстве его растительностью хотя бы в прошлом.

Изучение оптических особенностей атмосферы Марса позволяет сделать выводы о ее свойствах. С увеличением точности измерений и расчетов приходилось с течением времени принимать все меньшие и меньшие значения для плотности атмосферы Марса. Неточность оценок плотности была вызвана неизвестностью содержания в марсианском воздухе мельчайшей пыли. Теперь установлено, что давление атмосферы у поверхности около 6 миллибар (1 миллибар=0,75 мм ртутного столба). В земной атмосфере такое давление мы встречаем на высоте около 50 км. Давление на горах и в низинах различно и меняется в связи с погодой, с временами года и даже в зависимости от времени суток. То же касается и температуры.

Только в 1963 г. удалось, наконец, окончательно установить, сколько же водяных паров в марсианской атмосфере. Если бы эти водяные пары мы превратили в жидкость, то она составила бы слой всего лишь 10-20 микрон толщиной. В Антарктиде в морозную погоду водяного пара примерно столько же, так как при морозе пар вымерзает и выпадает из воздуха. По спектру в атмосфере Марса найдены кислород и углекислый газ в количестве около 0,1%.

Приборы искусственных спутников Марса показали существование ионосферы в верхних слоях атмосферы Марса. Как и на Земле, этот слой, содержащий много ионов (откуда и его название), состоит, собственно, из нескольких слоев. Главный слой находится на высоте 120 км. Днем плотность электронов в нем такая же, как в земном слое Е ночью (105 электронов/еж3), а ночью раз в 20 меньше.

В космических окрестностях Марса отсутствует радиационный пояс планеты, подобный имеющемуся вокруг Земли. Это объясняется слишком малой напряженностью магнитного поля Марса, обнаруженного магнитометрами станций «Марс-2» и «Марс-3». Магнитное поле Марса приблизительно в 500 раз слабее земного, но все же оно существует – вероятно, за счет конвекции вещества в недрах Марса, которая возможна при наличии в планете расплавленного жидкого ядра.

Слабое магнитное поле, как мыльный пузырь при дуновении, может сильно деформироваться под действием порывов «солнечного ветра», когда на планету налетают потоки электрически заряженных частиц, выброшенных из Солнца. Поэтому будущие космонавты на Марсе не смогут полагаться на показания компаса и будут вынуждены пользоваться более точными навигационными приборами. Кроме того, передвигаться на поверхности Марса, изрытой метеоритными воронками, будет почти так же трудно, как по Луне. Однако на Луне, как известно, с успехом работали и передвигались советские автоматические луноходы и вездеходы американских космонавтов. В США опубликованы данные о ведущихся разработках специальных электророботов, приспособленных для передвижения на поверхности планет в условиях вакуума и в запыленной атмосфере.

Для создания автоматических приборов для исследований Марса и для проектирования системы жизнеобеспечения космонавтов необходимо хорошо знать физические условия, в которых им придется работать. Кроме того, выяснение физических условий на Марсе позволяет более обоснованно обсуждать вопрос о жизни на нем (Вопросы об условиях, благоприятных для зарождения и развития жизни на планете, подробно освещены в книге С. Доула «Планеты для людей», «Наука», 1974)).

Еще раз о жизни на Марсе

Еще недавно знакомые при встрече с астрономом нередко с усмешкой спрашивали его: «Ну, как там у вас марсиане поживают?» Сколько романов, и хороших и плохих, написано о марсианах, не раз эту тему затрагивали и фантастические и бытовые кинофильмы. И мне неизбежно придется здесь поговорить об этом еще раз.

Вопрос о том, существует ли все-таки по соседству с нами жизнь в Солнечной системе, – это вопрос большого мировоззренческого значения. Горячая дискуссия о том, есть ли жизнь на Марсе и какой она может быть, около столетия волновала ученых разных специальностей и всех любителей науки о Вселенной, особенно в связи с открытием на Марсе «каналов». Их геометрическая правильность и искусственное происхождение, защищавшееся Ловеллом и другими, давно уже развенчаны. Мы об этом говорили выше. Сейчас такую точку зрения могут защищать только отставшие от науки люди или безответственные фантасты.

Ставятся собственно три вопроса: 1) могла ли на Марсе зародиться жизнь? 2) может ли она существовать там сейчас? 3) есть ли признаки ее существования?

Первые два вопроса при их научной постановке могут опираться лишь на представление о том, что, как и на Земле, жизнь возможна лишь на белковой основе, на углеводородных соединениях. Возможна ли жизнь на другой основе – неизвестно. Поэтому предположения о другой основе жизни беспочвенны, фантастичны и бесплодны. Не существует единых представлений о том, как жизнь возникла на Земле, и представления об условиях на Марсе, существовавших миллиарды лет назад, весьма гипотетичны. Поэтому здесь с уверенностью что-либо сказать нельзя, но в большинстве случаев выводы получаются отрицательные. При современных условиях возникновение жизни на Марсе невозможно. По-видимому, и в прошлом условия на Марсе были неблагоприятными для зарождения жизни. Перенос бактерий и спор с планеты на планету маловероятен и требует особых условий. Если он и есть, то эти организмы должны погибать под действием космических и рентгеновских лучей в мировом пространстве (Выносливость микроорганизмов рассмотрена в книгах «Проблемы устойчивости биологических систем» (серия «Проблемы космической биологии», том 19), «Наука», 1972; Аксенов С. И. и др., Марс как среда обитания, «Наука», 1976)).

И тем не менее ученые еще недавно считали, что в настоящее время жизнь на Марсе возможна и что даже есть ее признаки. Хотя условия на Марсе крайне суровы, ссылаются на огромную приспособляемость жизни, в частности, и к малой влажности и к низкой температуре, и к ее колебаниям. Конечно, жизнестойкость больше у низкоорганизованных организмов – у бактерий и низших растений.

Обнаружение животной жизни на Марсе пока невозможно, но можно было бы обнаружить растительные покровы, занимающие большие площади. Как мы уже говорили, основным и старейшим доводом в пользу того, что темные пятна Марса – это места, покрытые растительностью, являются их сезонные изменения. Говорили мы и о попытках объяснения этих изменений неорганическими процессами.

Известный русский физик Умов еще в прошлом веке указывал на то, что в случае наличия на планете растительности, в спектре солнечного света, отраженного ею, должна наблюдаться полоса поглощения хлорофилла. Хлорофилл – зеленое красящее вещество растений – поглощает инфракрасные лучи спектра в виде широкой полосы. В спектре темных марсианских пятен хлорофилл не обнаружен.

Защитники существования жизни на Марсе оживились, когда в 1956 г. Синтон (США) сообщил об открытии в инфракрасном спектре «морей» Марса трех полос поглощения, сходных с наблюдаемыми у органических веществ. Но в 1963 г. исследователи установили, что в этом же участке спектра встречаются полосы поглощения и неорганических веществ – карбонатов, например, известняка. В 1965 г. другие исследователи обнаружили, что полосы Синтона дает... и вода, но так называемая тяжелая вода, содержащая вместо обычного водорода тяжелый водород (дейтерий). Оценка количества такой воды, необходимого для возникновения полос Синтона, совпала с упоминавшейся нами выше оценкой количества водяного пара в марсианской атмосфере. Но тогда на Марсе водорода и дейтерия должно быть поровну, тогда как на Земле первого в 5000 раз больше! Попытки объяснить такое различие пока не убедительны. Некоторые ученые полагают, что полосы Синтона возникают... в земной атмосфере и принадлежат молекулам HDO (где D – дейтерий), когда в ней много водяного пара. Но почему эти полосы видны в спектре «морей» и не видны в спектре пустынь Марса? Впрочем, позднее, Синтон сообщил, что первые и вторые наблюдались в разные ночи и, следовательно, при различном состоянии земной атмосферы. Полосы Синтона требуют дальнейших исследований.

На Марсе трудно ожидать существования высших растений; вероятно, если там они вообще есть, то в форме мхов или лишайников. О развитой животной жизни на Марсе говорить еще труднее, тем более о разумной жизни, о высокой технике (О новых данных по планетам читайте в брошюре В. Д. Давыдова «Планеты Солнечной системы», «Знание», 1973. Однако и брошюры не поспевают за достижениями науки))..

Искусственны ли спутники Марса?

У Марса в 1877 г. были открыты два спутника и, как спутников «бога войны», их назвали Деймос и Фобос, что по-гречески означает «ужас» и «страх». Но Ужас– ужасно маленький, а Страх еще меньше, Величина первого из них не более 27 км, а второго – 16 км. По размерам они сравнимы с самыми мелкими из известных малых планет – астероидов. Возможно, что они и были астероидами, захваченными Марсом «в плен». Случайным образом их существование, без всяких к тому оснований, подозревалось дважды. Как мы увидим в рассказе о метеоритах кольца Сатурна, Кеплер неправильно объяснил фразу Галилея, в которой тот зашифровал свое открытие особенности планеты Сатурн, считая, что Галилей сообщает об открытии им двух спутников Марса. Это было в XVII в., а в XVIII в. английский писатель Свифт приписал сказочным астрономам своей Лапутии открытие у Марса двух спутников.

Рис. 58' Орбиты спутников Марса

Деймос вращается очень близко к своей планете, на расстоянии 23 500 км от ее поверхности, а Фобос на расстоянии всего лишь 9 400 км. Поэтому за сутки на Марсе Фобос успевает дважды взойти над горизонтом, пробегая все фазы, подобные лунным. При этом он восходит на западе и заходит на востоке – ведь его период обращения составляет всего лишь 7 час. 37 мин. (Так же ведут себя и близкие к Земле ее искусственные спутники.)

Наблюдая за движениями лун Марса, некоторые астрономы нашли, что период обращения Фобоса уменьшается на одну миллионную долю секунды за сутки, и он медленно приближается к планете. В 1960 г. И. С. Шкловский в поисках причины этого явления рассмотрел математически разные возможные гипотезы. Он заключил, что причиной должно быть сопротивление движению Фобоса, вызываемое атмосферой Марса. Известно, что искусственные спутники Земли, испытывая торможение в атмосфере, также приближаются к Земле и период их обращения уменьшается. Но атмосфера Марса на расстоянии Фобоса крайне разрежена. Чтобы торможение ею сказалось так, как наблюдается, масса Фобоса должна быть очень мала. Средняя плотность его получается тогда в тысячу раз меньше, чем у воды. Это невозможно, и если средняя плотность оценена верно, то при твердой поверхности Фобос должен быть пустым внутри! Но тогда он может быть только искусственным.

Рис. 59. Фотография Фобоса, сделанная с расстояния 5000 км искусственного спутника Марса 'Маринер-9'

Придавал ли этому выводу автор серьезное значение или ему было забавно смотреть, какую сенсацию это вызвало у журналистов? Идея в свете создания искусственных спутников Земли была модной.

Существуют варианты естественного объяснения движения лун Марса. Несколько ученых нашли, что если жесткость коры Марса меньше, чем у Земли, то приливы, производимые в ней Фобосом, могут тормозить движение последнего в согласии с наблюдениями. С другой стороны, В. В. Радзиевский с сотрудниками показал, что если форма спутников Марса сильно отличается от правильной шаровой, то давления солнечных лучей также более чем достаточно, чтобы вызвать ускорение Фобоса и замедление обращения Деймоса в согласии с наблюдениями. Для создания искусственных спутников требуется высокоразвитая техника, следы применения которой на Марсе не обнаружены.

И наконец, всего лишь через десяток лет после неосторожно поднятой шумихи о мнимой искусственности спутников Марса, поспешная гипотеза была «срублена под корень» фотографиями их, сделанными с близкого расстояния «Маринером-9». На снимках прекрасно видно, что оба спутника имеют совершенно неправильную форму – не лучшую, чем у обычных картофелин. Это обломочной формы каменные куски. Но самое важное и поразительное это то, что оба спутника Марса оказались изрыты кратерами! На Деймосе наибольший из кратеров диаметром около двух километров занимает почти 1/4 его «полушария».

Конечно, тут о вулканической природе кратеров не может быть и речи, а произвели их удары метеоритов, вероятно, в далеком прошлом. Гладкую же поверхность Фобос и Деймос приобрели от «обточки» ее ударами мелких метеорных тел.

Итак, у Марса нет искусственных спутников! Так ли? Нет. Ведь мы с вами чуть не забыли, что такие спутники, и в значительном числе, у него есть, но сделанные не воображаемыми марсианами, а жителями Земли. Не испытывая больших возмущений, они будут обращаться вокруг Марса сотни лет или даже сотни миллионов лет. Правда, они малы даже в сравнении с Фобосом и Деймосом. Но ведь сами Деймос с Фобосом ничтожны в сравнении с Ганимедом – спутником Юпитера, который побольше Меркурия...

В прошлом веке пылкие умы допускали, что светлые пятнышки, иногда появляющиеся в определенных местах поверхности Марса, – это световые сигналы марсиан, адресованные людям. Но это, несомненно, горы, на которых выпадает иней. Первые радиошумы, услышанные из Космоса, тоже пытались приписать сигналам жителей Марса. Я бы сказал, что если бы марсиане и были и пытались установить связи с жителями Земли, то давно махнули бы на нас рукой и перестали сигнализировать. Если они давно опередили нас в технике, то должны были бы разочароваться, так как даже двадцать лет назад с Земли им не могли ответить. Стоит ли тысячелетиями посылать сигналы, не получая ни ответа, ни привета...

Не было бы ничего угрожающего для философской идеи о жизни, если бы оказалось, что в Солнечной системе жизнь есть только на Земле. Ведь Солнечная система – это еще не Вселенная! В нашей (только в нашей!) звездной системе, называемой Галактикой, имеется более ста миллиардов звезд, и если только у одного из каждой тысячи солнц найдется по обитаемой планете, то это составит сто миллионов обитаемых планет. Умножьте это на бесконечно большое число звездных систем во Вселенной и вы получите бесконечно много обитаемых планет. Разрешите закончить стихами поэта А. Коваленкова:


    Ваша оценка произведения:

Популярные книги за неделю