Текст книги "Очерки о Вселенной"
Автор книги: Борис Воронцов-Вельяминов
сообщить о нарушении
Текущая страница: 16 (всего у книги 36 страниц)
Метеоры являются невольными разведчиками стратосферы, и наша задача – научиться их опрашивать. Вот к чему приводят результаты такого опроса, начатого всего лишь лет тридцать назад.
Метеорные тела вторгаются в атмосферу со скоростью, примерно в сотню раз большей скорости ружейной пули в начале ее пути. Как известно, кинетическая энергия, т. е. энергия движения тела, равна половине произведения квадрата его скорости на его массу. Вся эта энергия метеора идет на излучение тепла и света, на раздробление тела на молекулы, на разрушение молекул тела и воздуха на атомы и на ионизацию этих атомов.
Молекулы и атомы твердого тела, и метеора в том числе, часто расположены в некотором определенном порядке, образуя так называемую кристаллическую решетку. С чудовищной скоростью метеор врезается в воздух, и молекулы, из которых состоит воздух, с силой втискиваются в молекулярную решетку метеорного тела. Чем дальше влетает метеор в земную атмосферу, тем плотнее там воздух и тем больше и больше молекулярная решетка метеорного тела подвергается ожесточенной бомбардировке молекулами воздуха.
Лобовая часть метеора в конце концов получает ливень таких ударов, при которых молекулы воздуха вонзаются в метеор, проникают внутрь него, как снаряд в железобетонный дот. Этот «обстрел» передней поверхности нарушает связи между молекулами и атомами тела, ломает кристаллические решетки и вырывает из них отдельные молекулы вещества метеора, накапливающиеся уже в беспорядке на его лобовой поверхности. Часть молекул расщепляется на атомы, из которых они состоят. Некоторые атомы от ударов даже теряют входящие в их состав электроны, т. е. ионизуются, приобретая электрический заряд. Отколотые электроны, время от времени скользя слишком близко к ионам, захватываются ими на «вакантные места» и при этом, в соответствии с законами физики, излучают свет. Каждый атом излучает свои длины волн, отчего спектр метеора и есть ярко-линейчатый спектр, характерный для свечения разреженных газов.
Чем глубже в атмосферу, тем быстрее идет разрушение метеора и сильнее его свечение. На высоте ниже 130 км над Землей оно уже достаточно, чтобы сделать метеор видимым для нас.
Молекулы воздуха тоже страдают при ударах, но они прочнее молекул и атомов метеора и реже ионизуются, кроме того, они не так сильно сконцентрированы и потому дают столь слабое свечение, что линии газов, составляющих атмосферу (в основном кислорода и азота), мы в спектре метеора не замечаем.
Ниже в атмосфере воздух перед лобовой поверхностью метеора образует «шапку», состоящую из сжатых газов, в которые превращается метеор, и отчасти – из газов сжимаемого им перед собою воздуха. Струи сжатого и горячего газа обтекают метеорное тело с боков, отрывая от него новые частицы и ускоряя разрушение камешка.
Более крупные метеорные тела проникают глубоко в атмосферу, не успев целиком превратиться в газ. Для них торможение приводит к потере их космической скорости на высоте 20-25 км. Из этой «точки задержки», как ее называют, они падают уже почти отвесно, как бомбы с пикирующего самолета.
В низких слоях атмосферы обилие твердых частиц, сорванных с боков метеорного тела и отставших от него, образует за ним «дымный» черный или белый пылевой след, часто видимый при полете ярких болидов. Когда такое тело достаточно велико, то в разрежение, образующееся за ним, устремляется воздух. Это, а также сжатие и разрежение воздуха на пути большого метеорного тела вызывают звуковые волны. Поэтому полет ярких болидов сопровождается звуками, похожими иногда на выстрелы и на раскаты грома.
Как яркость, так и цвет метеоров и болидов создается не накаливающейся твердой поверхностью, которая ничтожно мала, а частицами вещества, обращенными в газ. Поэтому цвет их зависит не столько от температуры, сколько от того, какие из светлых линий в его видимом спектре являются наиболее яркими. Последнее зависит от химического состава тела и от условий его свечения, определяемых его скоростью. В общем все-таки красноватый цвет сопровождает меньшую скорость движения.
Такова в кратких чертах картина свечения метеорных тел в атмосфере, которую рисует современная наука.
Остановимся на некоторых подробностях этих явлений, изученных совсем недавно и связанных с изучением стратосферы. Например, исследование торможения метеоров проливает свет на изменения плотности воздуха с высотой. Чем больше плотность воздуха, тем сильнее, конечно, торможение, но торможение зависит и от скорости движения и от формы тела, отчего самолетам, автомобилям и даже локомотивам стремятся придать «обтекаемую форму». Тело «обтекаемой» формы лишено острых углов и рассчитано так, чтобы при быстром движении воздух обтекал его, встречая как можно меньше помех, сопротивления, и потому меньше тормозил движение.
Артиллерийские снаряды испытывают в полете огромное сопротивление воздуха. Метеорные же тела летят в воздухе со скоростью, в десятки раз превышающей скорость снаряда, и для них сопротивление воздуха еще больше. По снимку метеора, полученному однажды в Москве любителями астрономии, членами Астрономо-геодезического общества, фотокамерой с сектором, вращающимся перед объективом, для одного метеора нашли торможение (которое часто называют отрицательным ускорением) около 40 км/сек2. Это в 400 раз превосходит ускорение свободного падения тел под действием силы тяжести! И это на высоте 40 км над Землей, где воздух так разрежен, что человек там немедленно погиб бы от удушья.
Для того чтобы звук был слышен, воздух должен иметь определенную плотность. В безвоздушном пространстве звуков нет, и как колокольчик в вакууме под колпаком воздушного насоса на лекции по физике старается напрасно, так и в безвоздушном межпланетном пространстве мировые катастрофы происходят беззвучно. Грандиозный взрыв «новой звезды» или столкновения звезд (впрочем, почти невероятные) происходят так бесшумно, что, находясь вблизи от них в момент катастрофы, мы бы даже не обернулись, если бы это произошло у нас «за спиной».
Рис. 95. Строение земной атмосферы
Характер звуков при полете болидов говорит нам многое о плотности верхних слоев атмосферы.
Хорошую возможность изучения воздушных течений в высоких слоях атмосферы нам доставляют следы, остающиеся в небе после полета ярких метеоров и болидов; 20-80 км – вот их высота над нашими головами.
Сколько времени видны пылевые следы, зависит от условий освещения и от количества вещества, превращенного в мельчайшую взвешенную в воздухе пыль. Играют тут роль и воздушные течения, разносящие пылинки в стороны и «заметающие» след болида. В исключительных случаях след болида бывает видим в течение 5-6 часов.
Серебристые следы, видимые ночью после пролета быстрых и ярких метеоров, имеют другую природу, – они газовые и лежат всегда выше 80 км. При огромной скорости соударяющихся молекул вдоль пути метеора происходит сильная ионизация молекул воздуха, чему помогает и ультрафиолетовое излучение метеора. В образовавшемся за метеором цилиндре ионизованного воздуха медленно происходит воссоединение ионов с электронами, медленно потому, что при большой разреженности воздуха на такой высоте наэлектризованные частички далеки друг от друга и проходят длинный путь, прежде чем воссоединятся снова. Процесс их воссоединения, как всегда, сопровождается излучением линий спектра. В то же время ионизованные молекулы разлетаются в стороны, и ширина следа растет. От этого яркость следа, конечно, ослабевает, ко иные следы (видимые обычно только несколько секунд) остаются на небе среди звезд иногда даже в продолжение часа.
Непрестанная ионизация воздуха метеорами способствует поддержанию на высотах от 80 до 300-350 км над Землей ионизованных слоев. Основная причина их возникновения – ионизация воздуха солнечными световыми (ультрафиолетовыми) и корпускулярными лучами (потоками наэлектризованных частиц).
Может быть, не все знают, что именно этим слоям мы обязаны тем, что на коротких волнах можно переговариваться с любителями-коротковолновиками, живущими на Малайском Архипелаге или в Южной Африке. Радиоволны, излучаемые передатчиком и падающие на эти слои под определенным углом, благодаря его электропроводности отражаются как от зеркала. Они не уходят в мировое пространство, а, отразившись вниз, почти с полной силой принимаются где-либо очень далеко от передающей радиостанции.
Это явление отражения радиоволн связано и с длиной радиоволны. Можно изучить плотность ионов в электропроводящем атмосферном слое, меняя длину волны и определяя, когда радиопередача прекратится, т. е. когда радиоволны не отразятся, а ускользнут из земной атмосферы. Другие радионаблюдения позволяют следить за высотой слоев, которая несколько колеблется.
Как и можно было ожидать, обнаружено, что изменение числа метеоров, влетающих в атмосферу, и даже появление отдельных ярких болидов меняет силу радиоприема на коротких волнах, вызывая быстрые, кратковременные изменения электропроводности воздуха благодаря его ионизации на высотах 50-130 км. Большие возмущения в силе радиоприема далеких станций были, например, отмечены на Слуцкой обсерватории под Ленинградом в часы метеорного дождя Драконид 9 октября 1933 г.
Так радиосвязь неожиданным образом реагирует на появление бренных остатков комет, светил, казалось бы, таких безразличных для повседневных дел на нашей Земле!
Девяносто лет назад известный московский астроном В. К. Цераский случайно заметил летом необычные серебристые облака, светившиеся на ночном небе в северной его части. Это не могли быть обычные облака, плавающие не выше 8, в крайнем случае 12 км над Землей. Если б это были они, то Солнце, находящееся под горизонтом, не могло бы достать их своими лучами и заставить так ярко светиться. Это должны были быть необыкновенно высокие облака. И действительно, сравнение зарисовок их положения на фоне звезд, сделанное одновременно с двух разных мест (В. К. Цераским и А. А. Белопольским), позволило первому из них впервые доказать, что эти облака разгуливают на высоте 80-85 км. С тех пор их наблюдали не раз всегда летом и в северной части неба, вблизи горизонта, так как даже на такой большой высоте и только при этих условиях солнечные лучи могут их осветить из-под горизонта.
Эти ночные «светящиеся» или «серебристые» облака, как их называют, упорно держатся всегда на высоте 82 км. Быть может, эти облака, лежащие близ нижней границы погасания метеоров, образованы кристалликами льда, намерзшими на пылинки.
Рис. 96. Светящиеся, или серебристые облака, находясь на большой высоте, освещаются лучами Солнца, находящегося под горизонтом. (Фотография сделана в Свердловске в 1928 г.)
Что в воздухе на высоте 80 км, где он, казалось бы, должен быть так «чист» (вспомните чистоту воздуха хотя бы в горах!), есть пыль, это еще, казалось бы, куда ни шло. Но что бы вы подумали, если бы вам кто-либо сказал о металлической атмосфере над нашей головой!
Мы справедливо отвергли наивные представления древности о «небесной тверди», о «хрустальных небесах» над нашей головой и вдруг признаем... чуть ли не металлическое небо!
В самом деле, в 1938 г. спектроскоп в руках французских астрофизиков Кабанна, Дюфэ и Гозй с убийственным хладнокровием показал, что в спектре ночного неба постоянно есть известная желтая линия натрия и линии кальция. Кроме этих металлов, ученые надеются обнаружить в атмосфере еще алюминий и даже железо! (Кстати сказать, чтобы получить спектр света ночного неба, которое и так-то кажется почти черным, т. е. почти не испускающим света, приходится делать многочасовые экспозиции.) Металлы, найденные в атмосфере, относятся к высоте 130 км над Землей и, конечно, никакого твердого купола не образуют. Отдельные атомы названных металлов единицами насчитываются среди многочисленных молекул крайне разреженного воздуха на этой высоте. По-видимому, атомы металлов рассеиваются в атмосфере при испарении метеоров и светятся при соударении с другими частичками. В самом деле, так или иначе, а продукты испарения метеоров, т. е. по преимуществу атомы тяжелых элементов, должны не только оставаться, но и накапливаться в атмосфере. Будут ли они там светиться или нет – это вопрос особый, но нет никаких причин, чтобы, рассеиваясь на высоте порядка сотни километров, они могли тотчас же опуститься на землю.
Рис. 97. Две фотографии яркого метеорного следа, полученные с перерывом в несколько минут Д. Дебабовым на Чукотке (1941 г.)
Итак, метеорное вещество есть везде, оно лежит у нас под ногами, оно непрерывно путешествует в пространстве, оно висит у нас над головой.
Изучение метеорных явлений дало много ценного для познания стратосферы. Не все из этих выводов, как, например, первые выводы зарубежных ученых Линдемана и Добсона, являются бесспорными в очень молодой науке о движении метеоров в атмосфере, но они все же иллюстрируют, какие возможности тут открываются перед нами. А выводы эти вот какие. Исходя из своей теории свечения метеорных тел в атмосфере, рассматривающей взаимодействие с воздухом летящего метеорного тела, упомянутые авторы в 1923 г. объяснили особенности в распределении по высоте точек погасания метеоров и заключили, что на высоте около 60 км воздух сильно нагрет. Они вычислили там температуру, и она оказалась равной +30°, а позднейшие вычисления привели даже к температуре 110°. (Не будем говорить, что на этой высоте температура оказалась выше точки кипения воды, потому что при тех малых давлениях воздуха, какие имеют место в стратосфере, температура кипения воды много ниже, чем 100° С.)
Рис. 97. Две фотографии яркого метеорного следа, полученные с перерывом в несколько минут Д. Дебабовым на Чукотке (1941 г.)
Это открытие явилось сюрпризом, потому что непосредственные промеры температуры до высоты в 30 км показывали сначала быстрое падение температуры с высотой, а с 11 км (нижней границы стратосферы) начинался слой с почти постоянной температурой в 50° мороза, независимо от времени года и климатического пояса местности. Вернее говоря, стратосфера ведет себя даже «шиворот навыворот»: зимой, даже в полярных странах, ее температура около -45°, а летом и в тропиках около -90°. Тропосфера, или нижний слой земной атмосферы, характеризуется падением температуры с высотой и над экватором распространяется выше (до 15-16 км), чем у полюсов Земли (9-10 км). Эта верхняя ее граница – конец изменения температуры – и определяет начало стратосферы, до известной степени объясняя неожиданное распределение температуры стратосферы по климатическим поясам, так как температура стратосферы равна температуре верхней границы тропосферы. Сезонные же и неожиданные изменения ее температуры тоже связаны с сезонным изменением в высоте границы тропосферы, так как воздух нагревается преимущественно снизу, землей, а зимой земля менее нагрета и прогревает атмосферу до меньшей высоты.
Изучение метеоров неожиданно открыло существование нового повышения температуры с высотой, как говорят, верхней температурной инверсии в стратосфере. Стратонавту, поднявшемуся в меховом костюме в стратосферу, если он сможет подняться выше 40 км, будет, пожалуй, труднее защищаться от жары, которая сменит там 50-градусный мороз, господствующий ниже.
Существование верхней температурной инверсии подтверждается изучением торможения метеоров по фотографиям с вращающимся сектором. Это торможение уменьшается в той самой области, где предположено повышение температуры, как и должно быть. В последнее время температура +50° С на высоте 60 км найдена и прямыми измерениями при помощи приборов, установленных на ракетах, запускавшихся в стратосферу.
С точки зрения изучения стратосферы интересно также, что скорость расползания газовых светящихся метеорных следов связана с давлением и температурой окружающих слоев воздуха и позволяет оценить их величину.
Раньше стратосферу считали областью невозмущенного покоя, застывшего в неподвижности воздушного океана, относя всякие ветры и перемещения воздушных масс к области тропосферы. Поэтому полной неожиданностью явш4ьсь обнаружение советскими учеными И. С. Астаповичем, В. В. Федынским и другими воздушных течений на высоте 80 км над Землей, со скоростями, доходящими до 120 м/сек, относящих метеорные следы преимущественно к востоку, но иногда и в другую сторону; встречаются даже и вертикальные течения.
Изучение метеоров в связи со свойствами стратосферы только что началось, и приведенные данные являются лишь первым его даром, могущим убедить в пользе этой отрасли астрономии даже наиболее скептически настроенных людей.
Новые методы изучения метеорных тел
В атмосфере Земли был обнаружен ряд электропроводящих слоев, состоящих из ионизованных молекул воздуха. Роль этих слоев велика – они действуют на радиоволны, как зеркало, отражая их вниз. Благодаря им возможна радиосвязь вокруг земного шара. Отражаясь по многу раз, радиоволны обегают земной шар между его поверхностью и электропроводящими слоями.
Отражение радиоволн электропроводящими слоями атмосферы сделало возможным определение высоты этих слоев. Оказалось, что они находятся на разных высотах, начиная с 50 км над Землей, с максимумом ионизации на высоте 250-300 км, и возникают под ионизующим действием ультрафиолетовых солнечных лучей и частичек (корпускул), выбрасываемых с поверхности Солнца. С изменениями в излучении Солнца, сопровождающими изменения на его поверхности, меняются также высота и толщина электропроводящих слоев земной атмосферы.
Некоторую роль в ионизации воздуха играют и проникающие в него метеоритные частички. Испаряясь при нагревании вследствие торможения, частицы метеорного тела, дающие картину «падающей звезды», сталкиваются с частицами воздуха, ионизуя их и ионизуясь сами. Область таких частичек, остающихся на пути полета метеора, видна нам в виде метеорного следа в течение долей секунды, а иногда даже нескольких минут.
Наэлектризованные частицы в метеорном следе должны отражать радиоволны.
В ночь с 9 на 10 октября 1946 г. многие астрономы подстерегали новое появление дождя падающих звезд – Драконид, обрушившегося на ленинградское небо в эти же дни в 1933 г. Эти метеоры – осколки ядра кометы Джакобини – Циннера, имевшей период обращения около Солнца в 6 1/2 лет. Впервые ее метеоры встретились с Землей еще в 1926 г., но тогда их было мало. 9-10 октября Земля сближается с орбитой кометы, вдоль которой рассеялись осколки ее ядра. В 1946 г. Земля должна была встретиться с метеорами, отставшими от своего ядра на 230 млн. км, т. е. находящимся ближе к ядру, чем те, с которыми она встретилась в 1933 г.
Но обстоятельства сложились неблагоприятно. В это время свет яркой Луны мешал видеть не очень яркие метеоры. Число метеоров, видимых вечером, было очень мало и очень медленно нарастало к утру. Очевидно, максимум их приходился на светлое время суток, когда на ярком утреннем небе метеоры невозможно было видеть.
Рис. 98. Метеоры на экране радиолокатора (схема и фотографии)
Однако их «увидели» радиолокаторы, которые 9 октября 1946 г. впервые пришли на помощь охотникам за метеорами. Быстро посылая радиоизлучение в разные стороны неба, радиолокаторы в то же время ловили и регистрировали каждое отражение его от ионизованного следа метеора. Погода почти всюду была ясная, но если бы небо было закрыто тучами и шел проливной дождь, радиолокаторы делали бы свое дело с таким же успехом – для посылаемых ими радиоволн тучи столь же прозрачны, как чисто протертое стекло для лучей прожектора.
Так радиолокаторы дали знать, что в 6 час. 10 мин. по московскому времени по небу пролетало 150 метеоров за минуту – это был максимум. К 9 час. утра число метеоров сошло на нет. Как мы видим, слой метеоров был очень тонок, Земля прошла его практически за 2-3 часа, а главную его часть – за 40 минут, чему соответствует толщина 35 000 км, т. е. всего лишь в три раза большая поперечника самой Земли...
Рис. 98. Метеоры на экране радиолокатора (схема и фотографии)
Наблюдения метеоров с помощью радиолокаторов проводятся теперь все шире и шире. Передатчик мощностью до нескольких тысяч киловатт посылает направленные волны, вращая свой луч. Радиоволна, попадая на след метеора, отражается обратно и отмечается время прохождения сигнала, дающее расстояние до метеора. Расстояние от летящего метеора до наблюдателя меняется; меняется также время прохождения сигнала от разных точек пути метеора. На верхнем рис. 98 схематически показаны пути метеоров (I, III) и соответствующая картина на экране радиолокатора (IV). Форма кривой позволяет определить быстроту полета. Легко понять, что чем быстрее полет, тем быстрее меняется расстояние до метеора и тем круче кривая на экране II, направленная вершиной книзу. На рисунке приведены кривые, соответствующие двум различным скоростям движения. Нижняя точка кривой отмечает время Т0, когда метеор проходит на кратчайшем расстоянии от наблюдателя. В виде кривой получается запись с экрана полета головной части метеора, а запись остающегося и расплывающегося следа его – в виде широкой полосы (IV). Примеры таких записей даны на схеме IV внизу, правее записи от трех метеоров, из которых только метеор б миновал наблюдателя и удалился. Метеоры айв оставили за собой следы, постепенно таявшие. Фактический вид экрана радиолокатора показан на нижних фотографиях.
Наблюдения с мощными радиолокаторами позволяют наблюдать метеоры гораздо более слабые, чем те, которые видны невооруженным глазом, а тем более на фотографиях. На карточках, идущих затем в математическую обработку на автоматические машины, зарегистрированы уже многие миллионы метеоров. Сотни тысяч их наблюдались также и визуально.
Исследование метеорных тел стало теперь доступно также при помощи искусственных спутников Земли и межпланетных автоматических станций.
Мы можем на ракетах регистрировать удары метеоритов. С разными, но большими скоростями эти, чаще всего мелкие, частицы вещества бороздят Солнечную систему. Мы можем теперь определять частоту встреч с ними ракеты, их размеры, массы и их пробивную способность.
В межпланетном безвоздушном пространстве даже довольно мелкие частицы могут пробить космический корабль. Тогда они лишат его герметичности, повредят аппаратуру, могут погубить экипаж. В результате исследований на советских искусственных спутниках и космических аппаратах впервые было установлено, что эта метеорная опасность не так велика, как опасались. Спутники и станции подавали свои радиосигналы на Землю без помех в течение очень долгого времени, т. е. не были повреждены ударагли метеоритов.
Для изучения межпланетных метеорных частиц применяли разные методы. Одни аппараты накапливали энергию ударов метеорных тел. Посредством запоминающих устройств и телеметрии они сообщали на Землю суммарную мощность этих ударов. Другие приборы регистрировали отдельно каждый удар или их частоту и т. д. Как и ожидали, оказалось, что чем мельче метеоры, тем их больше.
Иногда автоматические станции встречали потоки метеорных тел, циркулирующих вокруг Солнца по определенной орбите. Число их в единице объема менялось со временем. За тысячу секунд на квадратный метр отмечалось два удара частиц со средней массой около 5•10-9 г, а частиц более крупных было раз в пять меньше. Однажды частота ударов возросла в 10 000 раз.
Эти мелкие и многочисленные удары регистрировались чувствительными приборами, но они не вредили межпланетной лаборатории. С более же крупными метеорными телами межпланетные станции, видимо, не сталкивались и опасность с их стороны не так уж велика. Впрочем, возможно, что сигналы межпланетной станции, запущенной в СССР в 1962 г. к Венере, прекратились досрочно вследствие столкновения ее с метеоритом.
До последнего времени энергию и массу метеорных тел приходилось рассчитывать только теоретически, исходя из определения скорости и яркости метеоров. Расчеты были очень неуверенными и разноречивыми. За пределами земной атмосферы даже крупные метеорные тела остаются невидимыми. Они там недоступны для изучения. Теперь же их энергия движения измеряется непосредственно космическими станциями.
16-18 ноября 1959 г. станция «Авангард-3» (США) отметила резкое увеличение числа метеоритных ударов, иногда до 200 за шестиминутный интервал, хотя за один из двухчасовых оборотов этого искусственного спутника Земли не было отмечено ни одного удара. Это указывает на то, что данные метеорные тела, по-видимому, принадлежавшие ежегодному потоку Леонид, мало еще рассеялись поперек орбиты породившей их кометы. Всего за трое суток ударов было отмечено 2800, почти столько же, сколько за остальные 75 суток «работы» этого спутника. При относительной скорости частиц 70 км/сек и плотности, как у льда, их диаметр был около 7 микрон. Все эти частицы по размеру и массе были меньше тех, которые производят в атмосфере явление падающих звезд, видимых невооруженным глазом и даже в телескоп. Лучшую возможность изучить распределение по размерам и по скорости метеорных частиц в пространстве представит изучение их с поверхности Луны, где нет атмосферы. Их падения на Луну еще ни разу не причинили неприятности космонавтам, находившимся на ней длительное время. К изучению же более редких, но и более крупных метеоритных тел мы перейдем в следующей главе.
Глава 5. Небесные камни и пыль
Одно из заседаний Парижской Академии наук в 1790 г. было особенно забавным, и академики на заседании долго смеялись. Еще бы! – муниципалитет города Жульяка в Гасконии прислал в Академию протокол, будто бы 24 июля в 9 часов вечера к ним с неба упал большой камень. Добро бы еще один мэр, – по-видимому, сумасшедший, – подписал подобную нелепость, но под протоколом стоят подписи еще 300 наивных гасконцев, жителей города! «Ну, да, впрочем гасконцы известны во Франции как прирожденные хвастуны», – решили академики и в конце заседания по предложению Бертолона вынесли постановление с выражением сожаления, что население в Жульяке имеет такого глупого мэра и что следует впредь энергичнее бороться с такими суевериями. В самом деле, материализм успешно и энергично боролся в XVIII веке с религиозным суеверием и с мистическим отношением к небу; к чему же, как не к знахарству или к невежеству следовало тогда отнести нелепые басни о падении камней с неба?
Даже известный французский химик Лавуазье, впоследствии казненный как враг народа, в 1772 г. соглашался с мнениями своих коллег, что «падения камней с неба физически невозможны».
Были, правда, случаи, когда приходилось признавать подобные события за действительные факты. Так, епископская консистория составила протокол о падении с неба двух кусков железа в Грашине (на территории современной Югославии) 26 мая 1751 г. – первый протокол о таком событии.
Русские ученые в изучении данного вопроса оказались в первых рядах и очень рано приступили к научному исследованию камней, падающих с неба, собирая их, изучая их строение и обстоятельства падения.
Рис. 99. Яркий болид (по рисунку очевидца)
В 1772 г. петербургский академик Паллас, путешествуя по Сибири, нашел в Красноярске удивительную глыбу, в которой камень и железо переплелись в причудливых сочетаниях и которую местные жители считали за святыню, упавшую с неба. Его поднял на вершине сопки, поросшей соснами, казак-кузнец Медведев еще в 1743 или 1749 г. В 1794 г. член-корреспондент Петербургской Академии наук, немецкий ученый Э. Ф. Хладный, узнав об этой находке, привезенной в Петербург, смело выступил с признанием возможности падения камней с неба. Об этом русском метеорите, одном из первых, привлекших внимание ученых, Э. Ф. Хладный выпустил в Риге сочинение: «О происхождении куска железа, открытого Палласом, и о некоторых, находящихся в связи с этим явлениях природы». Он доказывал, что такие камни действительно падают и могут быть только космического происхождения. Позднее он развил эти мысли и даже связывал метеориты с кометами.
В 1794 г. упал камень в Сиене (Италия), а на следующий год в Йоркшире (Англия), что способствовало признанию взглядов Хладного большинством ученых этих стран. Во Франции лее еще долго продолжали относиться к возможности такого явления с недоверием. Только в 1803 г., после падения целого дождя метеоритов в Эгле, Парижская Академия наук с двухмесячным опозданием собралась командировать на место падения физика Био, который представил обстоятельный доклад, устранивший все сомнения в том, что подобные события действительно происходят.
В 1807 г. профессор Харьковского университета А. Стойкович уже выпустил книгу с подробным научным описанием всех известных тогда метеоритов и с теоретическим обсуждением возможного их происхождения. Так с начала XIX века началось научное изучение метеоритов, задержанное тем, что никому из ученых не приходилось быть самому свидетелем таких неожиданных и редких явлений.
С распространением научных знаний наблюдения и описания падений метеоритов стали множиться.
Вот описание характерной картины падения метеорита в 1930 г., сделанное одним из очевидцев.
«20 апреля 1930 г. жители селения Старое Борискино (Поволжье) около 1 часа дня по местному времени случайно заметили летевший по небу круглый, немного меньше Луны, «огонек», летевший на высоте градусов двадцати над горизонтом. За огоньком тянулась как бы «огненная веревочка». Полет болида продолжался секунд пять, и после его исчезновения в том месте, где он исчез, образовалось облачко дыма, постепенно сгущавшееся и видимое в продолжение пяти минут. Вскоре после исчезновения облачка в западной стороне раздался сильный удар, наподобие орудийного выстрела. Следом за ним послышался гул, а секунды через три после удара раздался второй, затем третий, и всего было слышно около десяти ударов, следовавших один после другого секунды через три. Удары сначала усиливались, а потом стали постепенно слабее; они как бы перемещались с западной стороны на восток, последний удар был явственнo слышен из того места, где исчезли «огонек» и облачко дыма. Гул последнего удара продолжался секунд пять и утих постепенно. Секунд через 25-30 после того как утих гул, они снова услышали звук, сначала очень тихий, похожий на ветер, а потом становившийся все громче и громче; при этом он был как бы с дребезжанием (неровный) и напоминал звук от падения шрапнели. Этот звук продолжался в течение 20-25 секунд, и, наконец, словно что-то «ухнуло» – упало, раздался звук, который можно было изобразить, как «ууух».
Рис. 100. Падение метеорита
Сотрясения или дрожания земли очевидцы при этом не заметили, но явственно почувствовали, что что-то недалеко от них упало на огород; они подумали, что это упала бомба. Вместе с подбежавшими к ним взрослыми и детьми, всего человек пятьдесят, они цепью пошли на огород, ища упавшую «бомбу». В 12 метрах от двора они заметили темное, с полметра шириною, округлое пятно. Так как перед этим дождей уже давно не было, то паханая на огороде черноземная почва сверху подсохла и посерела, и на этом сером фоне темное пятно взрыхленной влажной земли выделялось очень отчетливо. Углубления на месте пятна не было; оно было вровень с общей поверхностью. Один из свидетелей подошел вместе со всеми остальными к этому месту и стал рукой разрывать землю: земля была рыхлая. На глубине 10-12 сантиметров он почувствовал какой-то твердый предмет. Он попробовал было вынуть (выковырнуть пальцем) этот твердый предмет, но земля была плотная, и предмет не поддался. Только после того как свидетелю дали кол, он, воткнув его в землю, вытащил этот предмет. Все бывшие здесь заметили, что это был камень, а не бомба и не осколок от снаряда; это был метеорит. Он был величиною как определяют свидетели, «с овечью голову» и напоминал последнюю своей продолговатой формой. Метеорит из земли был вынут «теплым», однако его «можно было свободно держать в руках», с момента же падения прошло не больше 20 минут. Никто из бывших при раскопке метеорита и из опрошенных свидетелей не заметил возле метеорита ничего опаленного или обожженного.