Текст книги "Очерки о Вселенной"
Автор книги: Борис Воронцов-Вельяминов
сообщить о нарушении
Текущая страница: 17 (всего у книги 36 страниц)
Метеорит со всех сторон был оплавлен и покрыт черной корой. Трещин на метеорите никто не заметил; когда его вынули из земли, он был чистый, земля к нему не пристала, от метеорита слышался дымный запах.
Есть множество замечательных случаев падения метеоритов, но ограничимся лишь немногими из них, в том числе теми, которые стали общеизвестны лишь значительно позднее самого падения.
Цветная фотография галактики в Андромеде, полученная Миллером 5-метровом телескопе Паломарской обсерватории (США). Хорошо заметна разница между голубоватым цветом спиральных ветвей и красновато-желтым цветом центральной части
Так, например, выпадение метеоритов не раз отмечалось даже до нашей эры в китайских летописях. Известны случаи падения и в античный период; например, знаменитый римский естествоиспытатель Плиний описал падение ноздреватого железного метеорита вблизи Неаполя в 79 г. нашей эры.
Неожиданный конфуз произошел с оружейниками хоросанского султана в 1009 г., когда их повелитель приказал выковать ему саблю из железного метеорита, упавшего в его владениях. Нагретое железо не поддалось ковке, что характерно для метеоритов, – оно куется только холодным, а в нагретом состоянии хрупко. Изготовить две сабли, кинжал и наконечник пики из метеоритного железа удалось, однако, в 1621 г. Джехангиру – властителю княжества Лахор в Индии.
Эскимосы в Гренландии, не имевшие понятия о железной руде, могли мастерить себе ножи из метеоритного железа, находимого ими на ледяных просторах Арктики.
Не раз выпавшие метеориты рассматривались как дар небес и были предметом религиозного культа. Для одного из таких священных камней в Риме императором Гелиогобалом был выстроен специальный храм. Черный камень в Мекке, вделанный в стену храма и являющийся величайшей мусульманской святыней, привлекающей множество паломников, по-видимому, является метеоритом, притом небольших размеров. Метеориты помещались в храмы, например, в Японии и в Эльзасе (в XV веке).
Метеорит, выпавший 7 ноября 1492 г. около города Энзисгейма на Верхнем Рейне, богомольные прихожане приковали цепями к стене церкви, чтобы дар небес не был взят обратно и не вернулся туда, откуда он был послан. Надпись, сделанная на нем современниками, замечательна по своей выразительности: «Об этом камне многие знают много, каждый что-нибудь, но никто не знает достаточно».
Туманность М 82, снятая через светофильтр, пропускающий только излучение красной линии азота
В известной мере такие надписи и в наши дни были бы справедливы для каждого из метеоритов, хранящихся в наших музеях.
Три описания метеоритов, содержащиеся среди других в древнерусских летописях, особенно интересны.
В 1290 г. в Северо-Двинском крае близ Великого Устюга наблюдалась уже известная нам картина падения метеорита, описанная в таких словах: «грому бо многу и страшну бывшу зело над градом Устюгом, яко же не слышати, что друг с другом глаголети; яко небо и земля оттого страшного труса непрестанно колебатися и трястися... Многими бесчисленным камением поломило лес и дебри овы древеса искорени избиша, а иныя вполы положиша».
Это был целый дождь, вернее, каменный град, какой бывает не часто.
В 6929 г. «от сотворения мира» (1421 г. по нашему календарю) знаменитая Никоновская летопись отметила: «В Великом Новгороде в полунощи бысть трус велий в воздухе, взыде туча с полудни темна, страшна зело, с громом страшным... и бысть дождь мног и град великий, и камение являшеся изо облака спадшее на землю... и едва людие в себе прии-доша от страха оного».
«Туча с полудни» в этом описании не является, конечно, противоречием тому, что «трус» был «в полунощи», а указывает, что метеорит прилетел с юга, «с полудни», как тогда говорили, – вспомните слова индийского гостя в опере «Садко» – «не счесть жемчужин в море полуденном».
В Кирилло-Белозерском монастыре в паперти были замурованы не найденные впоследствии камни, выпавшие неподалеку 29 ноября 1662 г. Это падение описано очевидцем словами: «звезда велика, долга скоро вышла,... земля тряслась, и хоромы тряслись, и многие люди от ужасти на землю падали. А скотина всякая в кучу металась и главы на небо подняли и брычат, коя как умеет. И потом камение падало с великою яростию, великое и малое». Это был опять метеоритный дождь.
Много преувеличений и даже вымысла связано с падением метеоритов, в особенности, когда данные устанавливаются по слухам, а не опросом свидетелей, тем более с опозданием, когда свежесть воспоминаний поблекла. Ученым, собирающим сведения о падении метеоритов, всегда поэтому приходится не забывать андерсеновскую сказку «о курочке, потерявшей перышко».
К таким фантазиям следует отнести рассказы о пожарах, причиненных метеоритами, и о людях, побитых камнями, хотя последние случаи в виде редчайшего исключения могли быть. Достоверных сведений об этом во всяком случае почти нет. Известны только случаи падения метеоритов на животных: в 1836 г. в Бразилии были побиты овцы, а в 1911 г. возле Нахла в Египте метеоритом убило собаку, – и на здания: в 1684 г. один метеорит пробил купол церкви в Тобольске, в XVIII веке метеорит упал на башню баварского монастыря в Вюрцбурге и разрушил ее. Можно привести еще два-три подобных случая – и все. Интересно, что иногда наблюдается весьма небольшая скорость падения метеоритов, не вызывающая поэтому разрушительных действий. Так, например, к удивлению одной прачки, метеорит угодил ей прямо в корыто, а другой, упавший в 1927 г. и весивший, правда, всего лишь несколько граммов, запутался в складках платья маленькой пленочки.
Камни на учете
Мы уже упоминали оугом, что многие метеориты были обнаружены через Много времени после их падения. К 1963 г. в СССР был собран 131 метеорит. Они находятся в основной своей массе в Академии наук в Москве. Одним из украшений коллекции является «Палласово железо», весившее первоначально 700 кг. Части его, сыгравшие большую роль в истории науки, были разосланы по заграничным музеям, и теперь от метеорита осталось только 514 кг. Вторым по величине в этой коллекции является метеорит, поднятый в 1937 г. близ Минска. Он уже гораздо меньше, весит 188 тег и принадлежит к тому же типу железокаменных метеоритов. Наибольший из каменных метеоритов упал в 1918 г. около Саратова. В этом городе он и находится. Куски, из которых он состоял, выпали на протяжении 120 км и имеют общий вес 221 кг, но наибольший осколок весит 130 кг.
Можно сказать, «хозяином» всех этих метеоритов является ученый секретарь комиссии по метеоритам Академии наук Е. Л. Кринов, за свою работу удостоенный Государственной премии. Он знает историю каждого кусочка этой коллекции и многие метеориты были найдены и доставлены сюда им самим. Думаю, что если бы фантастический вихрь разметал эту коллекцию в межпланетное пространство, то Евгений Леонидович среди миллиардов носящихся там осколков тотчас же узнал бы своих беглецов.
Рис. 101. Метеорит Гоба, найденный в Южной Африке,-наибольший из известных
Самый большой из известных метеоритов откопан в местности Гоба в юго-западной Африке, где он находится и доныне, так как весит 60 тонн, и его мудрено сдвинуть с места. Он железный и необычайно богат никелем, которого там 16%, отчего резать его крайне трудно. За два дня напряженного труда с трудом удалось отпилить от метеорита ножевками, все время меняя их полотна, кусок в 2 1/2 кг для химического анализа. Размер метеорита 2 1/2 Х 2 1/2 Х 2 м.
Второе место в мире занимает также железный метеорит Анигито (он же Тэнт или Кэп-Йорк) весом 33 m. Его подобрал в гренландских льдах известный путешественник Пири и в 1897 г. доставил его в Нью-Йорк, но открыт он был еще в 1815 г., а эскимосы знали о нем еще раньше,
Третье место занимает опять-таки железный метеорит Бакубирито, весом 24 1/2 m, находящийся поныне на месте своего падения в Мексике.
Рис. 102. Метеорит Вилламет. Полости в нем (в которых легко поместились два мальчика) образовались в результате выветривания
Чрезвычайно интересен четвертый метеорит – Вилламет в США, весом в 14 m. Атмосферные влияния разрушили и выкрошили из него часть его массы; до этого он весил 25 m.
В очереди за этими четырьмя выстраивается еще длинный ряд железных метеоритов и редко – железокаменных. Наибольший из чисто каменных метеоритов, Фёнес-Каунти, упавший 18 февраля 1948 г. в США, стоит в этой очереди весьма далеко, так как имеет вес «всего лишь» около тонны.
Иногда сразу выпадает много кусков, которые, по-видимому, являются частями одного тела, разрушившегося в земной атмосфере. Иногда такие части можно сложить вплотную друг с другом, иногда же метеориты и до встречи с Землей летели, по-видимому, отдельно, являясь лишь попутчиками. О целых дождях камней мы уже упоминали. Это, по-видимому, метеоритные рои, зачастую выпадающие на площади в сотни квадратных километров.
Нижеследующая таблица содержит список метеоритных дождей прошлого и текущего столетий, изученных учеными.
Если считать метеориты не поштучно, а по «падениям», то выходит, что ежедневно на Землю падает 5 или 6 (2000 в год), но наблюдаются только 2 – 3 в год, а иногда и ни одного, так как подавляющее большинство их падает в областях, не обитаемых людьми. Обширные арктические области и океаны занимают большую часть земной поверхности; населяющие их белые медведи, а тем более рыбы, славящиеся, как известно, своей немотой, являются частыми, но бесполезными для нас свидетелями падения метеоритов. Теперь учтите, что в пустынях, даже в степях и лесах, не так-то много людей бывает днем, да и, увидев болид, не так-то легко бывает потом найти метеорит. Ночью же даже вблизи селений выпадение метеоритов может остаться незамеченным. Вот почему из двухсот тонн метеоритов, «приземляющихся» ежегодно, мы находим только по нескольку килограммов (в среднем). Эта оценка, конечно, приблизительна, и некоторые, например, исчисляют ежегодный метеоритный приход Земли в 2000 m.
Добавка к массе Земли получается главным образом в виде каменистой массы, если считать по метеоритам, падение которых наблюдалось. Среди них железные метеориты составляют только 5%, а железокаменные – 1 1/2% – Это и есть, вероятно, действительное соотношение числа каменных и железных метеоритов в мировом пространстве.
Между тем среди найденных метеоритов, упавших неизвестно когда, 66% составляют именно железные. Причина этого несоответствия, конечно, в том, что железные метеориты больше привлекают к себе внимания, особенно в степи, в пустыне или в лесу. Да и установить, что данный камень не земной, а небесный, зачастую может лишь специалист, и то часто только после специального исследования.
Если посмотреть на карту распределения найденных метеоритов, то она выявит странную особенность: метеориты почему-то стремятся падать в культурно обжитых местностях, преимущественно вдоль железных дорог. Причина этого, конечно, та, что чем реже население и чем менее оно культурно, тем реже бывают замечены метеориты и тем более редко найденные метеориты передаются в научные центры, т. е. регистрируются наукой.
В СССР метеориты являются собственностью государства, но за находку и доставку метеорита в Академию наук выдается премия, тогда как в капиталистическом мире собственником метеорита является собственник земли, на которую он упал. Поэтому там метеориты являются предметом коммерции, их покупают и продают, а не заинтересованные в продаже своих метеоритов люди часто из праздного любопытства уродуют метеориты – дробят их на куски, высверливают в них дыры и т. п., отчего их ценность для науки утрачивается. Жюль Берн в романе «Золотой метеорит» мастерски описал ажиотаж, поднявшийся в капиталистическом мире в связи с фантастическим падением такого метеорита. Золотой метеорит на Землю никогда не падал, и совершенно невероятно, чтобы таковой вообще где-либо существовал. Из ценных веществ в некоторых метеоритах, как, например, в Ново-Урейском, находили алмазы, правда, микроскопические. Они были крайне ценны для науки, но по своему ничтожно малому весу никакой рыночной ценности не имели, и какой-либо тщеславной красавице бесполезно мечтать о серьгах, в которые вставлены бриллианты, упавшие с неба. Впрочем, о химическом составе метеоритов мы еще поговорим дальше, а пока что скажем немного об их внешнем виде, который помогает отличить метеориты от простых камней. К сожалению, мало кто знает об этих признаках, и автору этих строк не раз приходилось тратить впустую время на поездки и обследования, чтобы, удовлетворяя чей-либо похвальный энтузиазм, найти на том месте вместо гигантского метеорита простой валун ледниковой эпохи, а то и просто булыжник чуть ли не с мостовой.
Строение и возраст метеоритов
Железные метеориты, как уже говорилось, легче обнаруживаемые, легко ржавеют и приобретают бурый цвет. Форма их всегда неправильная, а поверхность, если она еще не успела окислиться, покрыта гладкой черной корой – окалиной. Эта тонкая корочка получается от плавления наружного слоя метеорита во время его падения в воздухе. Метеорит летит, однако, так быстро, что при сколько-нибудь значительной массе не успевает прогреться внутри, а расплавленная его поверхность застывает в тончайшую корочку уже на последней стадии его (замедленного) падения, даже до падения на землю. Температура метеорита при падении и полете почти та же, как и во время его движения мимо Земли. Это – температура тела, нагреваемого Солнцем на расстоянии Земли. Температура эта составляет около 4° выше нуля. Вопреки фантастическим рассказам, внутренность метеоритов не раскалена и не охлаждена до абсолютного нуля (т. е. до 273° мороза).
Полированная и протравленная слабой кислотой поверхность метеоритного железа покрывается рисунком, напоминающим изморозь на окнах и обусловленным особенностями кристаллической структуры этого железа. Этот рисунок называют видман-штеттеновыми фигурами, и он безошибочно помогает отличить метеоритное железо от самородного или от выплавленного из руды.
Каменные метеориты покрыты обычно черной же тонкой стекловидной корочкой, иногда матовой, иногда блестящей. Она выветривается и окисляется, если метеорит долго лежит на открытом воздухе или в земле, и тогда отличить метеорит от земного камня еще труднее. Внутри, на изломе, метеорит бывает разного вида. Чаще всего он серый, иногда с круглыми зернышками особого строения (их называют хондрами) и с металлическими блестками.
Рис. 103. Видманштеттеновы фигуры на полированной поверхности железного метеорита, протравленной кислотой
Полированная поверхность метеорита, рассматриваемая под микроскопом, представляет для специалиста особую характерную структуру, отличающую ее от земного камня, хотя не только химический, но и минералогический составы у них очень сходны. Таким специалистом является уже не астроном, а минералог, вернее, петрограф (От греческого слова «петрос», что значит камень)), и притом специально изучающий метеориты. При содействии академиков В. И. Вернадского и А. Е. Ферсмана в СССР образовалась целая школа таких специалистов по метеоритам: П. Л. Драверт, П. Н. Чирвин-ский, Л. А. Кулик и другие. В ведении астрономов метеорит находится собственно лишь до тех пор, пока он является небесным телом, т. е. находится вне Земли. Астроном еще может встретить такого гостя на пороге своего дома – Земли, т. е. он может определить его траекторию в атмосфере, но разбираться в подробностях структуры камней – для этого надо иметь другое специальное образование и большой опыт в изучении камней и минералов. Наука петрография в итоге детального изучения метеоритов делит их по структуре на множество классов, отличающихся разными особенностями.
Когда метеорит летит в воздухе, мощный «ветер» обдувает его спереди и с боков и, оплавляя поверхность, сдувает с нее в первую очередь легко плавящиеся вещества, а также вообще сглаживает резкие грани и углы. Поэтому очертания метеорита, если он не раскололся в самом конце своего пути, более округлые, чем они у него были в безвоздушном пространстве. Воздух как бы обтачивает метеорит, но результат такой обработки зависит от скорости метеорита, от его формы, от его вращения в полете. Часто метеорит по форме похож на кусок глины, мятый пальцами. На его поверхности видны ложбинки, вдавленности, а иногда и борозды, расходящиеся во все стороны от лобовой части метеорита. Тогда сам метеорит имеет коническую форму, как головка снаряда.
О среднем химическом составе метеоритов мы еще будем говорить подробно в следующем параграфе. Химическим анализом метеоритов И. Мухин в Петербурге занимался еще до 1819 г. За последнее время установлен весьма подробно уже не только качественный, но и количественный химический состав метеоритов. Увы! Эта необходимая любознательность обошлась нам весьма дорого, так как для целей такого химического анализа пришлось истребить, буквально стерев в порошок, большое количество метеоритов из музейных коллекций. Эти метеориты не могут быть подвергнуты теперь никакому другому научному изучению, и исследователи метеоритов – не химики поднимают крик: «довольно химических анализов, мы уже удовлетворены тем, что знаем о химии метеоритов! Оставьте нам что-нибудь для изучения размеров, формы и структуры метеоритов!».
Мы уже приводили средний химический состав каменных метеоритов, несколько меняющийся от метеорита к метеориту. В основном же они состоят из кислорода (36,3% по весу), железа (25,6%), кремния (18,0%) и магния (14,2%). Остальные химические элементы (всё те же, но не все те, какие нам известны на Земле) содержатся в количестве одного процента и долей процента. В общем их состав сходен с химическим составом земной коры, особенно если рассматривать глубинные горные породы. По сравнению с ними в земных горных породах больше кремния и кислорода, но меньше железа и магния. Место последнего на Земле в минералах как бы занимает алюминий, но, по-видимому, чем глубже внутрь Земли, тем больше состав земных слоев походит на состав метеоритов.
Железные метеориты, кроме железа (91%) и никеля (8%), содержат еще кобальт (0,7%), фосфор (0,2%) и в еще меньших количествах – серу, углерод, хром и медь.
Золота, о котором уже упоминалось выше, содержится всего лишь 0,0004%, т. е. если бы из всех собранных на Земле метеоритов можно было бы извлечь золото, то его не набралось бы и одного килограмма. Однако и это сделать практически невозможно, так как золото в метеоритах распылено; да и смысл в этом был бы такой же, как добывать средства к жизни продажей булавок, оброненных дачниками среди осенних листьев в лесу.
Интересно, что в 1946 г. советским петрографом Л. Г. Кваша под руководством академика А. Н. Заварицкого в одном из метеоритов было найдено 8% воды, входящей, впрочем, в состав минералов, а не свободной.
Еще меньше, чем золота, метеориты содержат радиоактивных элементов – урана, радия, тория и других, причем самого радия – 0,00000000001%, или в 20 раз меньше, чем есть его в горных породах. Однако нахождение этого ничтожного количества радиоактивных элементов в метеоритах несравненно важнее, чем нахождение в них золота или алмазов, будь их там даже в сто раз больше, чем есть в действительности.
Известно также «упрямство», с которым атомы радиоактивных элементов распадаются и следуют закону этого распада, игнорируя попытки ускорить или замедлить их распад.
Сколько бы урана ни было в наличии, за 4560 миллионов лет половина его атомов распадается, т. е., например, от грамма урана через 4560 миллионов лет останется половина. Из этой половины через следующие 4560 миллионов лет останется опять половина, т. е. 1/4 г. То же проделывает и торий, но более лениво, распадаясь наполовину за 13 000 миллионов лет, а радий (промежуточный продукт распада урана), наоборот, гораздо более энергично: уже через 1600 лет от него останется только половина.
Легкие атомы гелия, выбрасываясь из недр тяжелых атомов радиоактивных элементов, накапливаются в твердой массе, их содержащей. Нетрудно определить, сколько гелия должно накопиться в результате распада, скажем, 1 г урана. Но в таком случае легко подсчитать, сколько же времени длится распад урана в данном камне, если к настоящему времени его в камне столько-то граммов, а гелия столько-то граммов. Очевидно, торий и уран распадаются в каждом камне столько времени, сколько они в нем находятся, т. е. с того времени, как камень образовался, скажем, после того как он затвердел из расплавленной массы, из которой гелий не мог улетучиваться и из которой уран тоже не мог как-либо удалиться. После затвердения каменистой массы уран и продукты его распада оказались пожизненно заключенными в нее, как в тюрьму.
Таким образом, соотношение гелия и урана, находимых в камне, определяет возраст камня и притом с относительной точностью, пожалуй, большей той, с какой мы можем по виду человека оценить его возраст.
Этим способом определен возраст разных земных горных пород и найдено, что самые древние из них в земной коре имеют возраст в 3-3 1/2 миллиарда лет. Таков же и возраст твердой земной коры, возраст весьма почтенный.
Панет и его сотрудники проделали чрезвычайно трудное определение содержания урана и гелия во многих метеоритах, – трудное потому, что их там крайне мало. Полученные результаты для нескольких десятков метеоритов привели к неожиданному заключению.
Оказалось, что «возрасты» метеоритов заключены в пределах от 60 до 7600 миллионов лет! Казалось, ученым удалось заполучить в руки совсем «молодые» небесные тела, поскольку 60 миллионов лет для небесного тела – это прямо-таки младенческий возраст.
Но вскоре выяснилось, что удивительный разброс возрастов метеоритов объясняется не реальной разницей во времени их «жизни», а просто различием в «условиях существования». Дело в том, что отношение гелия и свинца в метеорите зависит не только от его возраста, но и от интенсивности облучения метеоритов космическими лучами – потоком частиц огромной энергии. Разделить гелий «космического» и «внутреннего» происхождения оказалось не так-то просто. Когда же это удалось, то возрасты метеоритов оказались куда более сходными: от 2 1/2 до 4 миллиардов лет.
Мы не говорили, между прочим, еще ничего о минералогической и петрографической структуре пришельцев с неба.
Действительно, одни и те же атомы могут образовать различные молекулы, соединяясь в разных комбинациях, и тем более из них могут быть построены более сложные соединения, называемые минералами.
Основные минералы, из которых состоят каменные метеориты, известны и широко распространены на Земле. Надеюсь не утомить вас, перечислив, например, такие, как оливин, пироксен, полевой шпат, плагиоклаз, никелистое железо. Многих земных минералов в метеоритах, однако, и нет, например, ортоклаза и слюды, хотя они так часты на Земле.
Зато метеориты знакомят нас с минералами, почему-то не образующимися на Земле, которые назвали по имени ученых, их обнаруживших. Это – шрейберзит, добрэелит, муассанит и др.
Результаты исследования химического и минералогического состава метеоритов подтверждают очень важный философский вывод о материальном единстве Вселенной. За пределами Земли мы встречаем, например, те же химические элементы, которые великий Менделеев расположил в свою таблицу, и те, которые к ней были добавлены позднее. Законы химии оказываются справедливыми не только на той планете, где они были установлены. И в то же время в природе нет того утомительного однообразия, к которому ее пытались свести метафизически мыслящие люди. Минералогические разнообразия в метеоритах, наличие в них минералов, не встречающихся на поверхности Земли, – один из ярких примеров многообразия природы, обусловленного бесконечным качественным разнообразием движений, процессов, происходящих в вечно существующей и вечно меняющейся материи.
Химический состав Земли и метеоритов
Мы знаем, что в метеоритах не встречается таких химических элементов, каких нет на Земле, но в какой мере количественная пропорция разных химических элементов в Земле и в метеоритах сходна?
К сожалению, анализировать состав Земли, недра которой от нас скрыты, очень трудно. Даже при вулканических извержениях на поверхность изливаются сравнительно неглубоко лежащие массы. Из чего состоят недра Земли, можно судить только косвенно, изучая степень сжатия Земли, небольшие периодические изменения ее формы под действием притяжения Луны и Солнца и главным образом изучая распространение в ее толще тех колебаний, которые возникают при землетрясениях. При этом выясняются твердость и упругость земных недр, изменение плотности в них и сама плотность. Кроме того, обнаружено, что в земной тсоре более глубокие породы богаче железом.
Совокупность этих данных и разные другие соображения приводили к заключению, что наша Земля имеет железистое плотное ядро, окруженное каменистой оболочкой, твердой лишь снаружи. Толщина этой твердой корки не превышает 200 км.
Наша Земля – это, если хотите, вишня с плотным ядром-«косточкой», только ее каменная «мякоть» действительно своего рода мякоть, она пластична, да и ядро, будучи очень плотным, все же не является твердым в обычном смысле. Вещество в недрах Земли находится в совершенно особом состоянии под действием высокой температуры и огромного давления. Мы еще не можем в лаборатории создать искусственно такие условия и привести вещество в такое состояние, в котором находятся недра земного шара.
В целом земной шар отзывается на быстрые внешние воздействия как стальной шарик, а на медленные, но упорные воздействия отзывается как комок глины или даже как пузырь, наполненный водой. Таким образом, Земля сочетает упругие свойства со свойствами пластическими.
При подсчете среднего химического состава Земли мы должны учесть, что состав земной коры с ее средней плотностью около 2,7 г/см3 не представляет состава всей Земли в целом, имеющей среднюю плотность 5,5 г/см3, что вызвано увеличением плотности с глубиной, доходящей в центральном земном ядре до 11 г/см3.
Средний химический состав Земли, как его оценивал академик Ферсман, приведен в таблице в сопоставлении со средним составом метеоритов (в процентах по весу).
Остальные химические элементы составляют по весу значительно менее 1% каждый.
Правда, приведенный средний (предполагаемый) состав Земли установлен с учетом среднего состава метеоритов, падающих на Землю.
Таким образом, эти подсчеты используют мысль, что химический состав разных небесных тел должен быть сходен, но при составлении этой таблички для Земли в расчет принимались не только метеориты, как это мы сейчас увидим.
Вот для примера два более «чистых» сопоставления.
При составлении нашей таблички, дающей средний состав метеоритов, принято, что в мировом пространстве каменных метеоритов в 4 раза больше, чем железных, потому что таково примерно их соотношение при падении на Землю сейчас. В силу одного этого среди метеоритов на железо по весу приходится 38%. Ядро Земли, которое по его упругим свойствам в основном можно было бы считать тоже железным, имеет диаметр 3500 км, что установлено довольно точно. При плотности 11 г/см3 это дает около 1/3 от общей массы Земли, т. е. мы видим, что без всяких предположений главный (по весу) химический элемент – железо – занимает одинаковое место как в Земле, так и в общей массе метеоритов.
Впрочем, в последнее время приходят к выводу, что содержание железа в Земле и метеоритах в среднем меньше, чем указано, и что большая плотность земного ядра в основном обусловлена не преобладанием железа, а давлением.
В самой каменистой коре можно ожидать некоторого увеличения процентного содержания железа по мере опускания в глубину, что и наблюдается. Если не привлекать к рассмотрению менее изученные глубинные породы, так называемые перидотитовые, и ограничиться содержащими ^наименьший процент железа гранитными породами (верхней частью земной коры, имеющей толщину около 20 км) и платобазаль-товыми породами (слой толщиной 40 км, лежащий глубже), то мы можем получить данные, приведенные в табличке.
Из этой таблички следует, что сходство химического состава земной коры и каменных метеоритов весьма велико. Остальные химические элементы содержатся в меньших количествах.
Земная кора содержит радиоактивные элементы, такие, как уран и торий, и тепло, выделяющееся при их распаде, создает то повышение температуры с глубиной, которое наблюдается при опускании в шахту.
В среднем на каждые 100 м глубины температура поднимается на 3°, а иногда и больше, так что, например, спускаясь на Урале в жестокий мороз в шахту, автор обливался потом от жары. Если бы так продолжалось до самого центра Земли, то мы нашли бы там температуру выше, чем на Солнце, чего, как уже говорилось, нет. По-видимому, температура в центре Земли доходит всего лишь до 2000° и постепенно падает наружу, причем тем быстрее, чем ближе к поверхности, через которую Земля теряет тепло в пространство.
Радиоактивные элементы содержатся только в земной коре, и более глубокие породы содержат их меньше. Внутри Земли теплота накапливается, а с поверхности теряется. Возможно, что в общем Земля медленно разогревается.
В поисках родителей
Ключ к разгадке происхождения метеоритов состоит, однако, не в минералогическом строении метеоритов, а в закономерностях, согласно которым эти минералы сочетаются, определяя структуру метеорита.
Выяснилось, что химические элементы, из которых состоят метеориты, в точности те же, что земные, что минералы, входящие в состав метеоритов, в большинстве известны нам и на Земле, но петрографически эти тела уже сильно отличаются от земных горных пород. Прежде всего, в метеоритах нет осадочных горных пород, таких, как песчаники и известняки, образовавшиеся от напластования песка и раковин на дне моря и сцементированные под сильным давлением. Известняк даже органического происхождения – он составлен из скорлупок некогда живших существ; в метеоритах же не нашли никаких признаков чего-либо живого или жившего. В них нет даже бактерий, от которых на поверхности Земли почти невозможно избавиться.
Большинство каменных метеоритов (хондриты) содержит множество мелких шариков, похожих на застывшие капельки стекла и называемых хондрами.
3% каменных метеоритов, как будто ничем особым по своей структуре не выделяющихся, имеют черный цвет. Вероятно, это является результатом того, что когда-то они были сильно прогреты, не так, как они нагреваются с поверхности во время полета в нашей атмосфере, а насквозь.
Лабораторные опыты показали, что при нагревании до 800° в течение нескольких минут серые метеориты становятся черными.