355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Борис Воронцов-Вельяминов » Очерки о Вселенной » Текст книги (страница 13)
Очерки о Вселенной
  • Текст добавлен: 5 октября 2016, 01:34

Текст книги "Очерки о Вселенной"


Автор книги: Борис Воронцов-Вельяминов



сообщить о нарушении

Текущая страница: 13 (всего у книги 36 страниц)

Хвост кометы, всегда лежащий в плоскости ее орбиты, еще грандиознее. У больших комет длина хвоста того же порядка, что расстояния между орбитами близких к Солнцу планет. У той же кометы 1811 г. вблизи перигелия (когда ее голова находилась совсем близко к Солнцу) длина хвоста превышала расстояние от Земли до Солнца. Световой сигнал, пущенный из ядра кометы, был бы воспринят в конце кометного хвоста лишь через 10 минут, а крик, если бы он мог передаваться в хвосте кометы без ослабления и с той же скоростью, как в воздухе, достиг бы конца кометного хвоста только через двадцать лет.

Рис. 83. Орбита кометы Галлея

Объем больших комет в сотни раз превышает объем Солнца, и если бы средняя плотность комет была равна плотности воды, то первое же вторжение такой кометы в Солнечную систему произвело бы в ней полный разгром. Все планеты сорвались бы со своих орбит? и само величественное Солнце с бешеной скоростью начало бы кружиться около кометы или бы даже упало на нее.

Между тем кометы, пролетая среди системы планет, ведут себя в ней не как грозные завоеватели, а как бледные тени, неслышно скользящие от планеты к планете. Плавная поступь комет, при которой они иногда даже задевают планеты, не производит на последние ни малейшего впечатления, и, наоборот, комета каждый раз сворачивает с намеченной тропы, когда она проходит вблизи массивной планеты. Мы видели, что это ведет либо к превращению кометы в короткопериодическую, либо к изгнанию ее из Солнечной системы.

Из-за отсутствия ощутимого притяжения планет кометами массу кометы определить точно невозможно и можно лишь указать ее верхний предел. Если бы масса кометы была больше такого предела, то притяжение ею планет было бы заметно хотя бы чуть-чуть. Так получается, что масса даже самых крупных комет меньше 1/10000 массы Земли. Исходя же из других дополнительных данных, надо думать, что масса комет еще во много раз меньше – меньше миллионной доли массы Земли.

Ничтожность кометных масс очевидна с космической точки зрения, но с земной точки зрения эта масса все же громадна. Если даже масса кометы в тысячу миллиардов раз меньше массы Земли, то все же она составит миллиард тонн, или около того количества земли, какое было вырыто и вывезено при прорытии Беломорско-Балтийского канала.

Ничтожно малая по сравнению с планетами масса комет при всей грандиозности их объема нисколько не мешает им двигаться в Солнечной системе, не встречая ни малейшего сопротивления. Межпланетное пространство безвоздушно, и если бы Земля внезапно исчезла со всем, что на ней есть, так что от нее осталась бы только одна пушинка из самой нежной перины, то эта пушинка продолжала бы нестись вокруг Солнца с той же скоростью 30 км в секунду, с которой она неслась вместе с Землей. Огромное «лобовое сечение» комет нисколько не сказывается на их движении.

Очевидно, что средняя плотность комет чудовищно мала, если представить себе ничтожно малую массу кометы распространенной по всему ее колоссальному объему. Распылите... 1/1000000000000 долю земного шара по объему, в сотни раз превышающему Солнце, объем которого в свою очередь в миллион триста тысяч раз больше земного. Возьмите зернышко пшеницы, отделите от него одну миллионную часть, разотрите ее в тончайшую пыль и развейте ее по залу Большого театра в Москве – вот будет примерно средняя плотность комет. Можно ли ее себе представить? И, однако, она достаточна, чтобы создать видимость громадного и яркого светила. Разве не справедливо назвать эту отчетливо видимую комету «видимым ничто»!

Все наши понятия о том, как можно «пускать дым или пыль в глаза» и «делать из мухи слона», бледнеют перед способностью природы.

Еще поразительнее наши расчеты будут, если мы учтем, что практически вся масса кометы сосредоточена в ее крохотном ядре и что на долю огромной головы приходится несравненно меньшая масса и еще меньшая масса приходится на чудовищный объем хвоста. Самой плотной частью кометы должно быть ядро, затем голова, затем начало хвоста, и, наконец, сам хвост, незаметно переходящий в безвоздушное межпланетное пространство.

В 1960 г. автор этой книги впервые определил плотность газов на разных расстояниях от ядра в комете. Это была комета 1943 I. Масса ее газовой оболочки была 8•104 m Плотность менялась обратно пропорционально квадрату расстояния от ядра. Вблизи него было 1011 молекул/cм3, а на расстоянии 370000 км только две молекулы циана и одна молекула углерода С2 в 1 см3.

Только ядро кометы может быть твердым. Вся масса ядра по размеру не превысила бы небольшого астероида. Если требовать, чтобы у комет, имеющих голову и хвост, непременно было «туловище», как главная часть ее массы, то «туловищем» скорее всего будет само ядро кометы, находящееся к тому же внутри головы!...

Ядро – самая яркая и непрозрачная часть кометы. Через голову же и тем более сквозь хвост свободно проглядывают слабые звезды, и это указывает на разреженность вещества кометы. Непосредственно бывает видно, как голова и хвост кометы образуются за счет вещества, выделяющегося из ядра кометы, и тем энергичнее, чем она ближе к Солнцу. Это вещество в периодических кометах выделяется непрерывно, особенно в перигелии. За один оборот кометы около Солнца из ядра выделяется только ничтожная часть его вещества, идущая на образование комы и хвоста.

Причина свечения комет и их химический состав

Во времена Ломоносова еще ничего не было известно о законе изменения блеска комет и тем более об их спектрах. Однако Михаил Васильевич Ломоносов со свойственной ему научной проницательностью охарактеризовал свечение комет с точки зрения, близкой к современной. Он писал: «Комет бледного сияния и хвостов причина недовольно еще изведана, которую я без сомнения в електрической силе полагаю...»

Светись комета только отраженным светом, ее блеск с приближением к Солнцу (после учета изменения ее расстояния от Земли) менялся бы обратно попорционально квадрату расстояния ее от Солнца. Примерно так и ведет себя блеск ее звездообразного ядра, что согласуется с тем, что оно состоит в основном из твердых кусков, попросту отражающих свет Солнца.

Это подтверждается также и характером спектра ядра. Обычно он является копией солнечного спектра, как и полагается спектру отраженного света. Но когда ядро кометы приближается к Солнцу, то в его спектре появляются яркие линии излучения натрия. В спектре ядра кометы 1882 г., подошедшей чрезвычайно близко к Солнцу, были обнаружены даже яркие линии железа и никеля, пропавшие, когда комета от него удалилась. Потом исчезли и линии натрия. Все это нужно объяснить тем, что твердое ядро кометы, когда оно подходит очень близко к Солнцу, нагревается настолько, что начинает испаряться, превращаясь в раскаленный, светящийся пар. Натрий превращается в пар и светится при меньшей температуре, чем железо, т. е. на большем расстоянии от Солнца; ближе к нему не выдерживает и железо. Распределение яркости в голове кометы вследствие таких процессов подробно исследовал теоретически Д. О. Мохнач (в Ленинграде).

Блеск головы кометы меняется с приближением к Солнцу значительно быстрее, чем обратно пропорционально квадрату расстояния, чаще всего примерно как его 3-я или 4-я степень. Это показывает, что свечение (блеск) головы кометы зависит от Солнца, но не является просто отраженным. Очевидно, Солнце возбуждает свечение кометы, но свечение холодное; это свечение возникает не вследствие обращения кометы в раскаленный пар, так как комета светится даже будучи далеко от Солнца, где ее температура должна быть много ниже нуля. Пыль не может дать подобного свечения, – его могут дать только газы.

Поведение блеска комет все же очень прихотливо, и описанная выше зависимость от расстояния до Солнца меняется не только от кометы к комете, но и у одной кометы на ее пути вокруг Солнца. Это говорит безусловно о неустойчивости кометного ядра, о возможности быстрых изменений на его поверхности. Ярким примером этого является история кометы, открытой чешским астрономом Когоутеком ранней весной 1973 г. В это время она была еще очень далеко от Солнца и поэтому была очень слаба (16-й звездной величины). Но вычисленная вскоре ее орбита оказалась имеющей перигелий очень близко к Солнцу, всего 0,14 а. е. или 21•106 км. Это очень вдохновило наблюдателей, так как, предполагая, что для нее оправдается закон повышения блеска как четвертая или даже более высокая степень расстояния от Солнца, они ожидали, что комета в декабре и январе станет почти столь же яркой, как Венера, и надеялись изучить ее очень подробно. Однако комета увеличивала блеск очень медленно и в декабре была лишь едва видима глазом, тем более, что наблюдать ее мешал свет зари. Лишь в январе 1974 г. она стала примерно 2 зв. величины и удалось ее изучить инструментами средней силы. Шумиха, поднятая журналистами по поводу этой «кометы века», как они ее назвали, оказалась преждевременной.

Некоторые молекулы кометного газа поглощают солнечный свет, а затем снова его же излучают в той же длине волны. Такое излучение физики называют резонансным. Другие молекулы поглощают энергию Солнца в виде ультрафиолетовых лучей, но излучают их в виде лучей с другой длиной волны, видимых глазу. Такое свечение физики называют флуоресценцией. Пример флуоресценции представляют некоторые вещества на Земле, например, сернистый цинк; «освещенные» невидимыми глазу рентгеновскими лучами в темноте, они от этого светятся видимым светом, часто зеленым или голубым. Теория происхождения таким путем кометных спектров, разработанная в Бельгии Свингсом, подтверждается новейшими детальными наблюдениями.

Спектр головы кометы показывает, что она состоит из молекул, т. е. химических соединений, излучающих не узкие яркие линии, а широкие полосы. Химический состав этих газов удалось выяснить подробнее лишь за последние годы. Оказалось, что голова кометы состоит из молекул углерода (С2), циана (CN), углеводорода (СН). Недавно были обнаружены гидрид азота (NH), гидроксил (ОН) и NH2.

В 1970 г. было произведено первое наблюдение кометы с борта искусственного спутника Земли ОАО-2. С него в ультрафиолетовом свете (не доходящем до Земли вследствие его поглощения в ее атмосфере) было обнаружено, что ядро кометы Таго – Сато – Косака 1969 g было окружено водородным облаком, которое по размерам было больше, чем Солнце. Огромность этого облака сама по себе не удивила уже астрономов, потому что еще тридцатью годами ранее автор этих строк доказал, что у кометы 1943 г. и пары циана составляли оболочку, большую чем Солнце.

Яркость разных полос в спектре у разных комет бывает различна, и в одной и той же комете она меняется с изменением ее расстояния от Солнца, по-видимому, как вследствие изменения пропорции газов, составляющих голову кометы, так и вследствие изменения условий их свечения. Главную роль все же играют всегда углерод и циан, который является, как известно, крайне ядовитым газом и главной составной частью сильного яда – синильной кислоты.

В спектре головы кометы, кроме ярких полос, присутствует и непрерывный спектр, который, возможно, также принадлежит молекулам газа и не является спектром света, отраженного от Солнца. Однако большинство ученых полагает, что пыль в голове кометы все же должна быть и что из нее же состоят изогнутые хвосты (II типа по классификации Бредихина), так как у них тоже наблюдается непрерывный спектр. Если бы в этом спектре удалось обнаружить и темные линии, имеющиеся в спектре Солнца, наличие пыли в хвостах комет было бы доказанным.

Хвост кометы, когда он широкий и яркий, иногда обнаруживает непрерывный спектр, свидетельствующий о наличии в нем пыли. По большей части, однако, спектр хвоста кометы газовый, обнаруживающий наличие ионизованных углекислоты СО2, окиси углерода СО, молекул азота N2. Как известно, окись углерода СО образуется в печах при неполном сгорании топлива и тоже ядовита, хотя и не так, как циан. Ее называют угарным газом. Вы видите, что на вопрос о химическом составе комет ответить кратко нельзя, так же как, например, на вопрос о содержании большой цирковой программы: состав комет разнообразен, он сложен и в разных частях комет (в ядре, голове и хвосте) различен.

Что происходит в кометах

Выдающийся русский ученый Федор Александрович Бредихин большую часть своей жизни посвятил изучению кометных явлений и созданию теории образования кометных хвостов. К концу прошлого столетия он создал стройную теорию, принятую теперь всеми учеными.

Часто бывает видно, как в голове большой кометы из ядра, на стороне, обращенной к Солнцу, выделяется в виде фонтана светящееся вещество. Иногда оно имеет вид нескольких струй. Направляясь сначала к Солнцу, струи заворачивают в стороны, растекаются назад и, огибая ядро кометы, создают вокруг нее голову – оболочку, имеющую параболические очертания. Выделяясь в большом количестве, газы головы все дальше уходят от Солнца и создают кометный хвост. Вещество хвоста все время движется прочь от Солнца и рассеивается в пространстве, а на смену ему из ядра поступает все новое и новое вещество. Чем ближе комета к Солнцу и чем сильнее нагревается ядро, тем быстрее и в большем количестве выделяется из него газ, тем ярче, пышнее и длиннее хвост.

В ядре бесхвостых комет вещества выделяется слишком мало, и то же бывает у больших комет, когда они далеки от Солнца и когда они также лишены хвоста. Такие кометы почти круглы.

Иногда наблюдалось, как в ядре яркой кометы происходит нечто вроде взрыва, потому что вдруг из него выделяется светлое облачко, быстро переходящее в хвост и ускорений двигающееся вдоль него. Иногда такое облачко вытягивается, располагаясь поперек хвоста. Бывает, что ряд облачков выбрасывается из ядра друг за другом. Некоторые из них несутся так быстро, что уже за несколько дней, а то даже и часов, проходят всю длину хвоста – десятки миллионов километров – и рассеиваются.

Бредихин обратил внимание на формы кометных хвостов, среди которых есть и почти прямые, направленные почти прямо от Солнца, и изогнутые в той или другой степени. Степень кривизны хвоста Бредихин объяснил величиной отталкивательной силы, исходящей от Солнца и действующей на частицы кометного хвоста. Чем больше отталкивательная сила по сравнению с силой тяготения к нему, тем прямее хвост. Бредихин вывел формулы, позволяющие вычислить эту силу по форме хвоста, а С. В. Орлов усовершенствовал их и дал более точные способы вычисления этих сил по движению облаков газа в хвосте кометы в тех случаях, когда они наблюдаются.

Оказалось, что в очень сильно изогнутых хвостах (III тип) тяготение преобладает над отталкиванием, в менее искривленных (II тип) – отталкивание уравновешивает тяготение, и выброшенные частицы движутся по инерции. В почти прямолинейных хвостах (I тип) отталкивание превышает тяготение в десятки, а иногда даже в сотни раз. В комете Брукса 1893 IV автор этой книги обнаружил частицы, двигавшиеся под действием отталкивательной силы, в 3000 раз превышавшей тяготение!

У немногих комет наблюдались светлые конусообразные придатки, выходящие из головы и направленные вершиной к Солнцу. На них отталкивательная сила не действует.

Зависимость кривизны хвоста от соотношения между отталкивательной и притягательной силами, действующими на него одновременно, можно до некоторой степени представить себе на следующем примере. Представьте, что паровоз мчится, извергая из трубы клубы дыма, как несется комета, извергая частички из своего ядра. Теплый воздух увлекает частички дыма вверх, а сопротивление воздуха при безветренной погоде отклоняет столб дыма назад. Сопротивление воздуха возрастает со скоростью движения паровоза. Мы его уподобим отталкивательной силе Солнца. При большой быстроте паровоза струя дыма, не кривясь, сразу отклоняется назад, стелясь ровной прямой линией.

Что же заставляет частички комет, безусловно, притягиваемые Солнцем, одновременно отталкиваться от него и часто с гораздо большей силой?

Первый ответ на этот вопрос дал другой замечательный русский ученый П. Н. Лебедев. Лебедев впервые доказал тонкими опытами, что свет давит на легкие частицы; это вытекает также и из теории световых явлений. Свет давит на всякое тело с силой, пропорциональной поверхности тела. Для обычных земных предметов эта сила ничтожна по сравнению с их весом и потому не производит никакого ощутимого действия. Так, сопротивление воздуха очень мало для бомбы, брошенной с самолета. Но сопротивление воздуха, пропорциональное лобовой поверхности или поперечному сечению тела, оказывается очень велико по сравнению с весом для парашютиста или для пушинки. Они опускаются на Землю гораздо медленнее, чем бомба, потому что поверхности парашюта и пушинки велики по отношению к их весу или массе. Мелкая пыль оседает медленнее, чем крупная, когда хозяйка занимается уборкой комнаты. Причина та же – вес пылинок пропорционален их массе, т. е. объему, т. е. кубу их диаметра, а сопротивление воздуха пропорционально поверхности пылинок, т. е. квадрату их диаметра, и с уменьшением диаметра вес убывает быстрее, чем поверхность. Если диаметр шарика уменьшить в десять раз, то его вес уменьшится в тысячу раз, а его поверхность – только в сто раз.

Рис. 84. Поразительные изменения в хвосте кометы Хамасона. Вверху – снимок 6 августа, внизу – 23 августа 1962 г

Поэтому при уменьшении размеров частиц давление света на них будет убывать медленнее, чем их масса. С уменьшением размера частички отношение силы отталкивания ее светом к силе ее притяжения Солнцем будет возрастать. Как показывает расчет, при размерах пылинки, сравнимых с длиной световой волны, т. е. при размерах, измеряемых тысячными долями миллиметра и меньше, сила отталкивания сравняется и может стать больше, чем сила тяготения к Солнцу на любом от него расстоянии.

Таким образом, хвосты комет II и III типов образуются из мельчайшей пыли, исторгаемой ядром, быть может, при столкновении глыб, из которых оно может состоять, или из пыли, освобождающейся при испарении загрязненного «ледяного» ядра. Но спектральный анализ показал, что хвосты комет I типа содержат газы, главным образом ионизованную окись углерода СО+.

Развитие теории атомов и молекул показало, что и на них действует давление света, хотя молекулы и нельзя рассматривать как простые маленькие шарики. Сила давления света на молекулы зависит от строения молекул. Сравнительно недавно удалось сделать подсчет для молекул окиси углерода и оказалось, что для них давление света хотя и превышает тяготение к Солнцу, но не так сильно, как требуют наблюдения. Дальнейшее развитие уже не механической, а чисто физической теории комет требует дальнейших успехов в области изучения строения молекул и их свойств. Многие приходят теперь и к той мысли, что в образовании кометных хвостов играют роль электромагнитные силы и бомбардировка кометы частичками, выбрасываемыми с поверхности Солнца.

Солнце постепенно испускает потоки корпускул, потоки плазмы, т. е. струй ионизованного газа, несущих с собой магнитное поле. Силовые линии магнитного поля ведут себя как упругие нити. Ионизованные газы головы кометы при столкновении с солнечным корпускулярным потоком «продавливают» эти силовые линии и придают им форму цепной линии. (Такова форма провисающей тяжелой нити, концы которой закреплены на одном уровне.) Такую форму имеет передний край головы больших комет. В изменениях формы хвостов I типа, в движении в них облачных образований и других, остававшихся плохо объяснимыми явлениях в кометах, также могут играть роль корпускулярные солнечные потоки и магнитные силы. При столкновении газа кометы с газом корпускулярного потока возникает ударная волна и импульс протонов потока может передаться ионам кометного хвоста через магнитное поле, несомое потоком. Через него газы хвоста проникнуть не могут и оно их увлекает. Молекулы, из которых состоит хвост, всегда ионизованы; в голове кометы такие молекулы отсутствуют. Вместе с тем молекулы хвоста из молекул головы путем химических реакций возникнуть не могут. Поэтому предполагается, что непосредственно из ядра выделяются какие-то ненаблюдаемые «родительские» молекулы. Это может быть вызвано тем, что их полосы, вероятно, лежат в невидимой с Земли ультрафиолетовой области спектра. Под действием солнечных лучей «родительские» молекулы распадаются и выделяют ионизованные молекулы СО и N2, спектр которых мы видим. На эти молекулы воздействует «солнечный ветер» – корпускулярный поток из Солнца. Резкие усиления «солнечного ветра» должны производить скачки в сообщаемом им ускорении и могут повышать выделение «родительских» молекул, вызывать вспышки яркости комет. Что касается причины ионизации молекул в кометах, то она еще не ясна.

Рис. 84. Поразительные изменения в хвосте кометы Хамасона. Вверху – снимок 6 августа, внизу – 23 августа 1962 г

Струйки в хвостах I типа, по мысли шведского ученого Альвена, могут возникать вследствие распространения в них волн особого типа, открытых им в лаборатории. Эти магнитогидродинамические волны подобны колебаниям упругой нити и представляют собой колебания кометной плазмы вместе с «вмороженными» в них силовыми линиями магнитного поля. «Вмороженность» состоит в том, что газ может двигаться только вдоль силовых линий, а последние перемещаются только вместе с газом.

Столкновение Земли с кометой

Столкновения Земли с кометой – вот чего стали бояться люди, перестав видеть в кометах предвестниц войн. Но говорить о столкновении Земли с кометой – это примерно то же, что говорить о случайном падении в Московской области неуправляемого аэростата, если этот аэростат оторвался с привязи где-нибудь в Казахстане. Крайне сомнительно уже то, чтобы аэростат принесло ветрами именно в Московскую область. Еще более сомнительно, чтобы аэростат упал в центр какого-нибудь города. Ведь в этом случае вероятность попадания аэростата в поле, лес или в город пропорциональна площадям, которые на Земле занимают поля, леса и города.

Если говорить о столкновении Земли с твердым ядром кометы, то одно такое ядро, приблизившись к Солнцу на расстояние Земли от Солнца, имеет один шанс из 400 000 000 столкнуться с Землей.

Поскольку в год на этом расстоянии от Солнца проходит около пяти комет в среднем, то ядро какой-либо кометы может столкнуться с Землей в среднем один раз за 80 000 000 лет. Вот какова вероятность столкновения! Она равна вероятности того, что из 80 миллионов белых шаров, среди которых есть один черный шар, беря ежегодно по одному, вы вынете в данном году именно черный шар.

Столкновение с головой или с хвостом кометы может происходить, конечно, чаще, и даже гораздо чаще. Но что в этом случае может быть? На эту тему было написано много увлекательных романов.

Некоторые представляют себе столкновение Земли с хвостом кометы, как нечто подобное тому, что получится, если крокодил заденет своим хвостом куриное яйцо. В свете того, что было только что рассказано о хвостах комет, этого опасаться не приходится. Ни сдвинуть Землю с ее пути, ни даже изуродовать ее кометный хвост не сможет. Но не можем ли мы отравиться ядовитыми газами – цианом или окисью углерода, имеющимися в комете?

Зная ничтожно малую, почти неосуществимую искусственно в лаборатории плотность комет, мы убеждены, что примесь кометных газов к нашему воздуху будет совершенно неощутима. Вероятно, ее даже не удастся обнаружить стременными методами химии. В голове или в хвосте кометы при большой скорости движения небесных тел Земля может пробыть не дольше нескольких часов. Кометные газы ничтожной плотности примешиваются только к наиболее высоким слоям земной атмосферы. Буквально лишь немногие молекулы сумеют за долгий срок, быть может, за годы, добраться до нижних слоев воздуха. К тому же еще вопрос, уцелеют ли они на таком пути, испытывая множество столкновений и химических соединений с молекулами воздуха?

Насколько можно судить по вычислениям, Земля в свое время пересекла хвост кометы 1861 II. Комета Галлея 19 мая 1910 г. была на расстоянии 24 миллионов км от Земли, между нами и Солнцем. Хвост же кометы в эти дни тянулся на 30 миллионов км и, по-видимому, коснулся Земли 19 мая. В этот период не только не произошло ничего особенного, но даже точнейшие химические анализы, как и в 1861 г., не обнаружили никакой примеси посторонних газов в воздухе.

Таким образом, «столкновение» Земли с хвостом кометы, содержащим угарный газ, гораздо безопаснее для всей Земли, чем преждевременное закрытие вьюшки у одной печки с непрогоревшими углями. Даже досадно, что и редкая встреча с кометой не позволяет нам непосредственно заняться химией комет!

Рис. 85. 19 мая 1910 г. хвост кометы Галлея коснулся Земли

Но что будет, если с Землей все-таки столкнется ядро кометы? Оно ведь твердое!

Масса кометных ядер, как мы знаем, ничтожно мала в сравнении с Землей. Исследования автора этой книги показали еще 30 лет назад, что, на наше счастье, твердое вещество в ядре, если оно сплошь каменное, то раздроблено на множество кусков, так что, вероятно, даже самые крупные из них будут размером не больше, чем какая-нибудь «избушка на курьих ножках». Если принять, что ядро состоит из смеси льда и пыли, то при полете сквозь атмосферу лед сразу испарится, а пылинки принесут еще меньше вреда, чем при гипотезе о ядре, состоящем из небольших каменных кусков.

Большинство же таких кусочков, составляющих ядро кометы, должно быть еще мельче, иначе поверхность ядра была бы недостаточна, чтобы выделять газы с той скоростью, как это наблюдается. Для крупного зверя заряд мелкой дроби безопаснее одной крупнокалиберной пули. Так и для Земли дробное строение кометных ядер предпочтительнее при встрече с ними. К тому же сопротивление атмосферы сильнее затормозит движение мелких твердых кусков, чем крупных, и ослабит их ударную силу. Куски эти при падении на Землю рассредоточатся и выпадут на расстоянии десятков километров или даже сотен километров друг от друга, а не кучей.

Марс по рисунку Антониади. На красноватом фоне марсианских 'материков' четко выявляются зеленовато-коричневые пятна 'морей'

Что же может произойти в результате? В худшем случае легкие местные землетрясения и разрушения на отдельных площадях размером в несколько километров.

Цветные зарисовки самых крупных планет Солнечной системы Юпитера и Сатурна

В главе «Небесные камни и пыль» мы узнаем подробности о падении в Сибири в 1908 г. гигантского тела, которое взорвалось в атмосфере, и его остатков практически не нашли. Академик В. Г. Фесенков считает, что это и было столкновение Земли с ядром небольшой кометы. Если он прав, то такое столкновение может быть ощутимо на площади всего лишь в несколько километров или десятков километров в диаметре. С другой стороны, из следующей главы мы узнаем, что ядро кометы в конце концов распадается на облако мельчайших частиц. Облако в тысячи раз больше Земли, а частица от частицы в нем крайне далеки. Если Земля встретится с таким облаком, то, скорее всего, кроме волны взрыва, произойдет оседание на Землю микроскопических пылинок.

Цветные зарисовки самых крупных планет Солнечной системы Юпитера и Сатурна

Вроятность попадания осколков кометного ядра в какой-либо город очень мала. Чтобы убедиться в этом, попробуйте мысленно пройти по компасу все в одном и том же направлении тысячу километров и подсчитайте, через сколько городов вы пройдете при этом на своем пути, какую часть этого пути вы пройдете по мостовой...

Где родились кометы и рождаются ли они сейчас?

Вопрос о происхождении комет очень сложен. Наших фактических данных о них весьма недостаточно для его решения. Но ученым, как и всем людям, хочется поскорее узнать о том, что так интересно, хотя бы оно и было еще мало изучено. Поэтому строятся разные гипотезы о происхождении комет; эти гипотезы меняются по мере их обсуждения и появления новых данных. Поэтому и мнения существуют различные.

Взять хотя бы открытие астероидов с вытянутыми орбитами, такими же, как орбиты некоторых периодических комет. Эти мелкие астероиды по виду отличаются от таких комет только отсутствием вокруг них туманной оболочки. Таковы астероиды Гидальго, Гермес, Адонис, Аполлон, Икар. В то же время и у некоторых короткопериодических комет, например, у комет Швассмаыа – Вахмана и Отерма орбиты более близки к окружности, к которой приближаются орбиты большинства планет, чем у названных астероидов. К тому же у некоторых комет туманные оболочки едва видимы. Поэтому еще недавно можно было думать об общем происхождении астероидов и периодических комет, быть может, вследствие дробления астероидов при столкновениях, при которых орбиты осколков меняются. Можно было даже допустить, что астероиды, вроде Гидальго, – это ядра комет, утративших свою газовую оболочку. Однако известные теперь данные о природе и структуре кометных ядер не позволяют считать их каменными, монолитными осколками, и это является затруднением для такой гипотезы.

Советский астроном С. К. Всехсвятский много лет назад нашел убедительные признаки того, что периодические кометы быстро теряют свою яркость, истощаются и перестают наблюдаться. Мы видели примеры и распада комет с их последующим превращением в метеорный поток. Между тем периодические кометы продолжают открываться вновь. Если число их за время существования Солнечной системы не сошло на нет, значит, их состав пополняется рождением новых комет. Но где и как?

С. К. Всехсвятский защищает гипотезу о том, что кометы возникают даже в настоящее время путем выбросов при вулканических извержениях на планетах или их спутниках.

Для того чтобы оторваться от планет-гигантов, а тем более преодолеть сопротивление их атмосферы, выбросы должны приобрести огромные скорости, их энергия должна быть неправдоподобно велика. В то же время и масса совокупности комет должна быть чуть ли не больше массы планет, а тем более их спутников. Поэтому такая гипотеза не имеет многих сторонников.

Неутомимый энтузиаст С. К. Всехсвятский создал в СССР (впервые в мире) специальную обсерваторию под Киевом для изучения комет. Он организовал также систематическое наблюдение в Советском Союзе всех появляющихся комет и посылает для этого экспедиции своих учеников во все концы Союза. Плоды этих работ ускорят наше лучшее понимание природы и происхождения комет.

Популярностью пользуется гипотеза Оорта (Голландия). Он допускает, что подобно астероидам кометы образуют кольцо далеко за пределами орбиты Плутона. Быть может, – думает он, – вначале это были малые конденсации, возникшие при образовании планет и выброшенные возмущением последних во внешние области. Теперь же, под действием возмущений со стороны ближайших звезд, некоторые из них по временам вталкиваются обратно и становятся видимыми.


    Ваша оценка произведения:

Популярные книги за неделю