Текст книги "Очерки о Вселенной"
Автор книги: Борис Воронцов-Вельяминов
сообщить о нарушении
Текущая страница: 28 (всего у книги 36 страниц)
Газовые оболочки, выбрасываемые новыми звездами, дают спектр совершенно такой же, как газовые туманности, и иногда в спектрах новых звезд все самые яркие линии, а в некоторых случаях даже и вообще все видимые линии – запрещенные.
В настоящее время все линии спектров газовых туманностей отождествлены. Их известно более сотни. По этим линиям мы узнаём качественный химический состав туманностей. В основном он характеризуется легкими элементами, но, как и в случае звездных атмосфер, в туманностях могут быть и некоторые другие химические элементы, хотя их линии в спектре и не наблюдаются. Причиной этого является либо слабость линий, либо их нахождение в области, недоступной для исследования в земных условиях: в ультрафиолетовой (которая поглощается в земной атмосфере) или в инфракрасной (где сильны линии поглощения водяными парами нашего воздуха).
Гораздо труднее определить количественный химический состав газовых туманностей, т. е. пропорцию разных химических элементов. При прочих равных физических условиях чем ярче, интенсивнее соответствующие линии спектра данных ионов, тем больше этих ионов, так как каждый квант света спектральной линии вызывается излучением одного иона. Но дело заключается в широких различиях физических условий, вызывающих излучение данной линии, и в том, что многие ионы не дают линий в наблюдаемой части спектра. Полное же число атомов данного элемента равно сумме всех нейтральных атомов и всех его ионов.
Можно считать, что в пределах точности расчетов нет существенного различия между количественным химическим составом туманностей и звезд. Было бы особенно интересно сравнить химический состав ядер туманностей и их оболочек, так как, несомненно, вещество оболочки (если учитывать факт ее расширения) отделилось когда-то и как-то от звезды. Это тем более интересно, что среди ядер со спектром типа Вольфа – Райе одни содержат углерод без азота, другие же содержат и углерод и азот, а в одном случае азот даже сильно преобладает. К сожалению, такое сравнение химического состава нелегко, в частности потому, что линии спектра туманности накладываются на линии спектра ядра, и без того малочисленные, и отделить их друг от друга трудно. Известно, что в солнечных протуберанцах аномально высоко содержание ионизованного кальция по сравнению с его содержанием в хромосфере, из которой они выбрасываются. Протуберанцы бывают водородные и металлические. Такого рода различие возможно и в планетарных туманностях.
Свечение и природа газовых туманностей
Спектр излучения газовых туманностей и то, что их яркость больше, чем яркость соседних звезд, которые можно было бы заподозрить как причину их свечения, отвергает возможность их свечения отраженным светом. Однако доказываемая спектром разреженность газа не допускает, чтобы он был раскаленным и вполне самосветящимся. Американцы Хаббл, Боуэн и Мензел, голландец Занстра и советский ученый В. А. Амбарцумян установили основные черты свечения и природы газовых туманностей.
Газовые туманности светятся до некоторой степени подобно тому, как светятся кометы или как газ в газосветной трубке. Их свечение вынужденное.
Вынуждают их к этому звезды: в планетарных туманностях – находящаяся в их центре, а в диффузных – находящаяся где-либо в них, либо даже
по соседству. Но такая звезда должна быть непременно очень горячей. Так оно и есть, – звезды, возбуждающие свечение газовых туманностей, имеют спектральный класс О или В0, – никак не более поздний, т. е. их температура 25-30 тысяч градусов. При таких высоких температурах в спектре этих звезд максимум энергии лежит в невидимой глазу ультрафиолетовой области. Туманность поглощает невидимые глазом мощные потоки ультрафиолетовых лучей, и затем ее атомы излучают поглощенную энергию в области видимых глазом лучей, например излучают зеленые линии. Минимальная порция света или квант видимых лучей содержит меньше энергии, чем квант ультрафиолетовых лучей. Поэтому в силу закона сохранения энергии, чтобы излучить то же количество энергии, какое было поглощено, туманность должна излучить большее число квантов, чем ею получено. Впечатление яркости, воспринимаемое глазом, зависит от числа квантов, падающих на него в секунду. Вот почему газовые туманности в видимых лучах светятся ярче, чем звезды, вызывающие это свечение. Энергия же излученных туманностью видимых лучей равна энергии поглощенных ею ультрафиолетовых.
Под действием высокой температуры звезды газы туманности ионизуются очень сильно, например, там наблюдается четырежды ионизованный кислород. Водород светится, когда его ионы захватывают пролетающие мимо свободные электроны. Запрещенные же линии кислорода излучаются после того, как атомы или ионы кислорода возбудятся за счет энергии столкновения с медленно летящими свободными электронами. Чтобы испустить зеленую линию «небулия», ион кислорода должен быть в возбужденном состоянии сколько ему полагается, а именно не менее нескольких минут. За этот период, следовательно, его не должны потревожить толчком ни кванты света, ни другие атомы, ни электроны. Чтобы столкновения были так редки, число частиц в единице объема (т. е. плотность газа) должно быть очень малым. Вычисления показывают, что плотность газовых туманностей составляет 10-19-10-22 г/см3. При этой плотности от одного столкновения атома до другого проходят часы. Вследствие удаленности от звезды кванты ее света тоже летят далеко друг от друга и редко сталкиваются с ионами. Таким образом, у атомов есть все условия, нужные для излучения ими запрещенных линий, т. е. запрещенных в земных условиях, при большой плотности газов. В земных условиях атомы толкаются гораздо чаще, чем люди на толкучке, а в туманности по сравнению с этим они сталкиваются реже, чем бродячие музыканты встречались друг с другом. В воздухе молекулы от столкновения до столкновения проходят путь длиной в миллионные доли сантиметра, а в туманности длина, как говорят, такого «свободного пробега» измеряется миллионами километров.
Как мы говорили, масса колоссального объема газа, образующего планетарную туманность благодаря ее разреженности, составляет всего лишь одну сотую массы Солнца. Массы больших диффузных туманностей могут быть в сотни раз больше этого. О. Д. Докучаева, пользуясь теорией В. А. Амбарцумяна, оценила, например), массу туманности Ориона в 500 масс Солнца.
Очень часто диффузные газовые туманности перемешаны с пылевыми туманностями, светящимися отраженным светом, и даже с темными пылевыми туманностями. Не происходит ли кое-где сгущение газа в метеоритную пыль? На эту мысль наводят нас и другие соображения.
Некоторые планетарные туманности наряду с яркими линиями излучают и слабый непрерывный спектр. Казалось неправдоподобным, чтобы при большой прозрачности этих туманностей в них присутствовала в заметном количестве пыль, отражающая свет ядра. Эта загадка была решена в 1950 г. эстонским физиком А. Я. Киппером.
Еще раньше знали, что некоторые атомы могут совершить запрещенный переход, излучив не один, а два кванта сразу, причем сумма энергий этих двух квантов равна разности энергий двух соответствующих уровней в атоме. Вероятность такого двухквантового перехода мала, но не слишком. В атоме водорода время жизни на одном из подуровней второго состояния составляет 0,12 сек. Переход с него в основное состояние дает двухквантовое излучение, но в разных случаях сумма энергий распределяется между двумя квантами неодинаково. Так, при наличии множества атомов излучаются подобным образом всевозможные кванты разных частот. В результате излучается непрерывный спектр. Его могут давать в меньшей мере и атомы гелия: нейтрального и ионизованного. Яркость свечения непрерывного спектра водорода пропорциональна населенности второго уровня, а последняя пропорциональна числу рекомбинаций протонов, следовательно, яркости водородных линий. Эта теория и количественно согласуется с наблюдениями, особенно, если учесть еще некоторые тонкости процесса и то, что при рекомбинациях водородных атомов излучается некоторый слабый непрерывный спектр (его излучают также электроны, тормозящиеся при пролете вблизи атомов, не способных, однако их захватить). Так загадка непрерывного спектра в газовых туманностях тоже была разрешена теорией.
Диффузные газовые туманности
Газовые диффузные туманности, обычно весьма клочковатые, сильно концентрируются к галактическому экватору. Они бывают самых разнообразных размеров и неопределенных очертаний. Из них наиболее известны туманности Ориона (рис. 169 и на вклейке), Лагуна, Омега, Трехраздельная, Пеликан, Северная Америка. Но существуют и такие более ясно очерченные объекты с усилением яркости к периферии (периферические туманности), как Розетка. В ее середине находится рассеянное звездное скопление, состоящее из горячих звезд классов О и В. Существуют еще немногочисленные волокнистые туманности. Самая известная из них NGC 6960 и 6992, или Рыбачья сеть в созвездии Лебедя является, однако, как полагают, остатком сверхновой звезды (рис. 170).
Рис. 169. Диффузные туманности в созвездии Ориона. (Фотография Д. Я. Мартынова.)
Фотографии, сделанные через красный светофильтр, подавляют свечение ночного неба и позволяют выявить в лучах красной водородной линии очень слабые туманности. Много их открыл на Крымской обсерватории Г. А. Шайн со своими сотрудниками. Он, а также В. Г. Фесенков и Д. А. Рожковский издали прекрасные атласы фотографий этих объектов, показывающие их тонкие детали, в которых можно видеть явные признаки турбулентных движений.
Рис. 170. Волокнистые туманности в созвездии Лебедя. (Фотография Д. Я. Мартынова.)
В туманности Ориона такие движения проявляются и в различии лучевых скоростей от места к месту.
Насчитывают около 300 диффузных газовых туманностей, но их число и размеры в каталогах весьма произвольны в силу того, что часто встречаются комплексы туманностей и каждый такой комплекс можно считать одной туманностью; с другой стороны, можно считать самостоятельной туманностью каждую деталь сильно клочковатой, затейливой туманности.
Под туманностью Ориона, самой яркой, понимают обычно сияние, около одного градуса в поперечнике, окутывающее четыре звезды класса О, называемые «трапецией Ориона». Но слабые туманные области простираются и много дальше и окутывают почти все громадное созвездие Ориона.
Обширные области свечения с неопределенными границами часто встречаются в полосе Млечного Пути и называются водородными полями или областями НИ, так как в них светится в основном ионизованный водород в процессе рекомбинации, как и в планетарных туманностях.
Хаббл давно доказал, что источником свечения газовых туманностей является облучение их ультрафиолетовым светом горячих звезд классов О и В0 – В1, но не более холодных. Так как температура этих звезд ниже, чем температура большинства ядер планетарных туманностей, то в них ионизация и возбуждение ниже: яркие ультрафиолетовые линии λλ 3727-3729 кислорода сильны, а зеленые линии кислорода слабы.
Звезда (или ряд звезд), возбуждающая свечение, бывает и внутри туманности, и на ее краю, и даже вне ее, поблизости. Поэтому, а также иногда вследствие удаленности от нас, установить, какая звезда вызывает свечение туманности, не удается. Такие звезды не найдены для ряда волокнистых туманностей, свечение которых имеет, может быть, даже другое происхождение.
Свечение диффузных туманностей и водородных полей так слабо, что получить их спектры удается только при помощи особо светосильных небулярных спектрографов. Лучевые скорости их того же порядка, что и у звезд, их освещающих, но возможно, что взаимная связь туманности со звездой временная и случайная, а не генетическая, как у планетарных туманностей и их ядер, которые имеют большие пекулярные скорости, доходящие до 200 км/сек.
У Диффузных туманностей скорости меньше и в основном свидетельствуют об их участии во вращении вокруг центра Галактики в плоскости Млечного Пути по орбитам, близким к круговым, тогда как планетарные туманности имеют, вероятно, более вытянутые орбиты и большие хаотические скорости.
В своей совокупности диффузные газовые туманности и водородные поля образуют клочковатый слой газа, толщиной около 200 парсек (около 600 световых лет), в плоскости галактического экватора. Этот слой совпадает со слоем горячих гигантов и без них газовые облака не светились бы.
Горячий гигант внутри облака газа вызывает его свечение только в соответствии с размером обусловленной им зоны Стремгрена (зоны полной ионизации водорода). Вне ее газ невидим, и, вероятно, большинство светлых туманностей окружено зонами невидимого нейтрального водорода. По аналогии с диффузными туманностями, видимыми в ближайших к нам спиральных галактиках поздних типов и в нашей Галактике, считают, что они располагаются вдоль спиральных ветвей. Поэтому локализацию спиральных ветвей нашей Галактики стараются установить прежде всего по расположению в ней горячих гигантов и диффузных туманностей. Но часто забывают, что эти данные не независимы, так как за расстояние до туманностей принимают расстояние до звезд, возбуждающих их свечение и иногда, может быть, неверно признанных за таковые. Другого способа определения расстояний до диффузных туманностей нет.
Расстояние до горячих звезд оценивается довольно приблизительно из сравнения принятой для них абсолютной звездной величины с видимой звездной величиной. Абсолютные величины установлены еще не очень уверенно. Требуется также учесть влияние межзвездного поглощения света вблизи галактической плоскости и на большом протяжении. Этот учет еще неточен. Некоторое различие в пространственном распределении горячих гигантов и диффузных туманностей состоит в том, что иногда в местах большого скопления гигантов туманностей нет.
Массы диффузных туманностей определяют, анализируя «меру эмиссии». Так называют произведение n2еХl, где nе – электронная концентрация, а l – предполагаемая толщина туманности в парсеках. Следовательно, эта величина, пропорциональная поверхностной яркости, характеризует число атомов водорода на луче зрения в столбике сечением 1 см2 с длиной, равной толщине туманности.
Определив электронную температуру или приняв ее за 8000°, по мере эмиссии находят nе, подставляя принятое значение l. Можно обнаружить свечение с мерой эмиссии, равной всего лишь нескольким десяткам. Плотности диффузных туманностей обычно оказываются в пределах от десятка до сотни электронов (протонов) на 1 см3, а в центре туманности Ориона плотность доходит до 1000 и больше, но в общем плотности их ниже, чем в планетарных туманностях. В водородных полях плотность падает до nе=1.
Умножая массу протона на пе и на объем туманности (иногда условный), получаем массу последней. Первые такие определения были сделаны в лаборатории автора О. Д. Докучаевой для туманности Ориона и Д. П. Гук для туманности Омега. Получились массы 166 и 515 масс Солнца соответственно. Позднее Г. А. Шайн, В. Ф. Газе и другие нашли, что массы отдельных туманностей колеблются от 0,1 до сотен масс Солнца, а массы комплексов составляют тысячи масс Солнца. Наименьшие диффузные туманности близки по массе к планетарным. Что касается размеров, то они у диффузных туманностей колеблются от долей парсека до десятков парсек.
В газовых туманностях иногда наблюдается и непрерывный спектр той или иной интенсивности. Иногда он, несомненно, принадлежит пыли, особенно когда на фоне туманности видны темные прожилки, как в Трехраздельной туманности. В туманности Ориона много пыли; это видно из того, что погруженные в нее горячие звезды, как говорят, сильно покраснены. При такой плотности пыли на протяжении парсека она производила бы поглощение в 10 звездных величин!
В одних туманностях пыли больше, в других меньше, иногда одна часть туманности пылевая, другая газовая. Отсутствие следов газового спектра во многих пылевых туманностях не означает еще, что в них газа нет. Освещающие их звезды В1 и более поздних классов не могут вызвать нужную ионизацию и свечение газа, но все же его в пылевых туманностях мало, так как согласно расчетам даже при плотности ne=10-15 звезды В2-ВЗ вызвали бы заметное свечение газа. Но неясно обратное: почему нет чисто отражательных туманностей, освещенных звездами классов О и В0?
Во многих газовых туманностях, как показали наблюдения и расчеты Г. А. Шайна и С. Б. Пикельнера, непрерывный спектр обусловлен не пылью, а двухквантовыми переходами, как в планетарных туманностях, тогда как раньше этот спектр приписывали пыли. В ярких газовых туманностях, может быть, и есть пыль, но она светится отраженным светом так слабо, что ее непрерывный спектр не заметен на фоне яркого спектра, вызванного двухквантовыми переходами в газе.
Большие массы диффузных туманностей посылают весьма заметное тепловое радиоизлучение.
Много исследований посвящается сейчас газодинамическому исследованию судьбы диффузных туманностей. Тяготение может, конечно, удерживать от рассеяния большую массу холодного газа. Но в Галактике все находится в движении.
Недостаточное знание распределения плотностей и других условий в реальных туманностях, их разнообразие, различия в постановке и решении теоретической задачи не привели пока к однозначным выводам о том, рассеиваются ли диффузные туманности, либо в них происходит конденсация. Наблюдения также пока еще не могут ответить на этот вопрос. Согласно некоторым работам холодный газ может конденсироваться в звезды и в пылинки, если имеются ядра конденсации в виде сложных тяжелых молекул или иные. Горячий, ионизованный газ конденсироваться никак не может.
Зародыши пылинок, сталкиваясь друг с другом и с атомами холодного газа, могут в одних случаях сливаться и расти, в других случаях испаряться. Это влияет и на плотность окружающего газа. Получается очень сложная картина, в которой большое внимание привлекают вторжения темной материи в светлые области ионизованного газа. При этом свечение по периферии темной массы усилено, образуя светлый, резкий ободок вдоль ее края, всегда обращенного к звезде. Особенно узкие клинья темных вторжений получили за свой вид название «слоновые хоботы».
Плотность ионизованного газа в светлом ободке сильно повышена, а темная область содержит холодный газ, перемешанный с уплотненной пылью. Теоретическая трактовка описанного явления опирается на то, что когда горячая звезда облучает холодный газ, то ионизация в нем распространяется быстрее, чем волна давления нагреваемого газа. Светлый ободок получается, когда ионизационный фронт подходит к плотному облаку газа со стороны горячей звезды. Если на пути фронта встречается область очень большой плотности, она остается неионизованной, и фронт огибает эту флуктуацию. Это и приводит к включениям областей Н I в области Н II в виде «слоновых хоботов». Сжимание холодного газа в области «слонового хобота» давлением газа зоны Н II может привести к полной изоляции газового сгустка и дать начало возникновению глобулы. Сжатие глобул горячим газом и образование в них так называемой кумулятивной сходящейся ударной волны облегчают их гравитационную конденсацию.
Особый случай представляют собой волокнистые туманности округлых очертаний в целом, вроде Рыбачьей сети в созвездии Лебедя. Но они очень немногочисленны и, по-видимому, являются результатом вспышек сверхновых звезд. О них мы уже рассказывали. Но волокнистость часто проявляется в туманностях, вытянутых обычно вдоль Млечного Пути. Эта вытянутость не может объясняться действием
различия в скорости обращения туманностей около центра Галактики на разных от него расстояниях. По-видимому, вытянутость туманностей обусловлена характером магнитного поля Галактики, силовые линии которого лежат в ее плоскости и вдоль спиральных ветвей.
Г. А. Шайн нашел подтверждение этому предположению, сопоставляя направления вытянутостей туманностей с данными о поляризации света звезд. Магнитное поле допускает движение газа вдоль силовых линий и тормозит движение поперек них. При расширении туманности она и растекается вдоль линий поля, вдоль спиральной ветви. Сдерживающее действие магнитного поля, сгущение силовых линий в одних местах и их разрежение в других местах, по-видимому, и обусловливают волокнистую структуру больших туманностей, вытянутых вдоль Млечного Пути. Ионизованный проводящий газ удерживает в себе силовые линии поля и перемещается вместе с ними. При сильных хаотических движениях силовые линии вместе с потоками газа запутываются, напряжение поля усиливается, а вместе с ним уплотняются газовые потоки, что, вероятно, и создает волокнистую структуру в обширных газовых туманностях, как, например, в созвездии Лебедя.
Планетарные туманности
Более внимательное изучение фотографий, на которых планетарные туманности видны лучше, показывает, что одни из них выглядят как равномерно светящиеся или как пятнистые диски, другие имеют вид колечка или колечка на фоне диска. Реже встречаются более сложные и даже загадочные формы, но, как правило, планетарная туманность симметрична и резко очерчена. Угловой диаметр самых гигантских планетарных туманностей составляет половину углового диаметра Луны, т. е. 1/4 градуса. Некоторые из них, более примечательные, получили забавные названия по сходству с чем-либо: Сова, Эскимо, Сатурн. Многие планетарные туманности так малы, что даже в наибольший телескоп неотличимы от звезды. Как же их тогда обнаруживают? Решает дело спектр.
Спектры подавляющего большинства звезд непрерывные, с темными линиями. Во всяком случае, они содержат обычные линии известных химических элементов. Спектры же газовых туманностей – это спектры разреженных газов; они содержат так называемые запрещенные линии, не наблюдаемые в земных лабораториях, и возникают лишь в крайне разреженных газах при условии, что газ облучают очень разреженные потоки света. Об этом мы уже говорили в разделе «История двух незнакомцев».
Рис. 171. Планетарная туманность в созвездии Лисички. (Фотография автора.)
Среди запрещенных линий, наблюдаемых только в газовых туманностях, первыми были замечены самые яркие – две зеленые линии, которые были приписаны неизвестному газу, имеющемуся только в туманностях. От латинского слова «небула» (туманность) этот газ получил название небулий, а его линии называют небулярными. В планетарных туманностях зеленые линии небулия ярче, чем сине-зеленая линия бальмеровской серии водорода Нβ. Это их и выдает.
До второй мировой войны было открыто всего лишь около полтораста планетарных туманностей. Сейчас их известно уже более 700.
В 1887 г. Дрейер в Англии составил каталог, содержащий почти 8 тысяч звездных скоплений и разных туманностей. Туманности часто обозначаются номерами по этому каталогу, например NGC 6720, где NGC есть сокращенное обозначение «Нового генерального каталога» Дрейера. Дополнение к нему, опубликованное в 1894 и 1908 гг., обозначается IC.
В каталоге Дрейера в основном содержатся галактики, которых тогда не умели еще распознавать. Находить в нем немногочисленные планетарные туманности, где к тому же о них нет необходимых и известных сейчас сведений, крайне неудобно. Кроме того, в нем нет множества туманностей, открытых позднее. Поэтому автор этой книги, начиная с 1931 г., составлял уже три раза специальные каталоги планетарных туманностей, дающие о них все важнейшие сведения – положение на небе, размер, яркость, физические свойства и т. д. Из этих трех каталогов последний содержит около 600 туманностей и в литературе сокращенно обозначается VV. Некоторые планетарные туманности имеют еще другие обозначения, на которых мы останавливаться не будем.
Как их открывают? Фотографировать спектр каждой слабой звезды обычным спектрографом, чтобы узнать, не планетарная ли это туманность – безнадежно долгое занятие. Ведь известные ранее планетарные туманности имеют суммарный блеск звезд от 7-й до 13-14-й звездной величины. Звезд же 15-й звездной величины уже около 15 миллионов, а более слабых еще больше.
Для обнаружения планетарных туманностей часто применяют объективную призму. Это призма с углом преломления 3-7°, которую ставят теперь перед светосильным телескопом с отверстием 25-60 см. Он охватывает площадь неба порядка 3x5° и фотографирует в виде ниточек спектры всех звезд, которые при данной экспозиции оставляют в определенной области неба свой след. Получаются сразу ниточные спектры сотен звезд, среди которых спектры планетарных туманностей сразу выделяются тем, что они выглядят как цепочка бусинок. Бусинки – это монохроматические изображения планетарной туманности в лучах небулярных, водородных и других линий (см. рис. 168). От очень слабых планетарных туманностей получается только одно изображение самой яркой линии, которой бывает либо главная зеленая линия небулия, либо красная водородная линия На . Немало таких туманностей было открыто в Абастуманской обсерватории в Грузии.
Большие туманности с низкой поверхностной яркостью открывают по снимкам, полученным со светосильными телескопами, применяя иногда красный светофильтр, который ослабляет гяешающий выявлению туманностей фон ночного неба.
Из-за малости масштаба снимков, на которых делаются эти открытия, для большинства из найденных 700 планетарных туманностей известно, и то с недостаточной точностью, их положение на небе, да в лучшем случае их суммарный блеск. О диаметре же их, структуре, линиях спектра ничего не известно, и наши сведения опираются пока на наблюдение полусотни наиболее ярких или крупных объектов.
В центре достаточно крупных планетарных туманностей обычно видна слабая звездочка. Как правило, она слабее, чем суммарный блеск ее туманной оболочки. На основе известной сейчас причины свечения туманностей можно утверждать, что в каждой из них есть такая звездочка – ядро. Оно невидимо лишь из-за слабости блеска. Изучать ядра еще труднее, чем сами туманности, так как они редко бывают ярче 10m часто 16m-18m или вообще невидимы.
Спектры ядер бывают трех видов: класса О с темными линиями, типа Вольфа – Райе с яркими полосами и непрерывные, без всяких линий. Последнее может быть обусловлено как крайне высокой температурой, так и очень сильным эффектом Штарка (расширения спектральных линий в межатомных электрических полях), если атмосферы ядер очень тонки и сильно уплотнены. Таким образом, ядра являются, судя по типу их спектра, такими же горячими, как и самые горячие из обычных звезд. Ядра изучены пока еще мало. По наполовину гипотетическому расчету автора этих строк, основанному на статистике распределения планетарных туманностей в пространстве, масса ядер составляет в среднем около двух масс Солнца. Это много меньше, чем масса обычных звезд класса О и даже Вольфа – Райе.
Замечательное явление обнаружено в гигантской туманности NGC 7293, сфотографированной 5-метровым телескопом в красных лучах водорода. Вероятно, она наиболее близка к нам. Расстояние до нее едва ли больше 100 парсек, т. е. 300 световых лет. Поэтому только в ней пока и обнаружены сотни тончайших волокон, направленных строго радиально к ядру. Эти волокна, по-видимому, и составляют внутреннюю, более яркую половину ее кольца, но они наблюдаются и внутри него на темном фоне внутренности кольца, далеко не доходя до ядра. Толщина совершенно прямых волокон около 1",5 – на пределе разрешения телескопа, а длина порядка 1000 астрономических единиц. Эти тончайшие волокна, однако, грандиозны, если учесть расстояние до туманности. Их толщина вдвое больше, чем диаметр орбиты планеты Плутон, а длина составляет около светового месяца. Природа и происхождение волокон еще совершенно не известны. Несомненно, что они имеют самое прямое отношение к формированию оболочки и как-то связаны с ее ядром.
В общем планетарные туманности имеют простые очертания и четкий край. Однако это не всегда так. Например, туманность NGC 2440 затейливо хаотична. На ее периферии много растрепанных волокон. Увеличение экспозиции превращает ее в значительно большую по размерам и более правильную туманность, по очертаниям сходную с бабочкой. Наконец, передержанное изображение рисует ее как почти правильный эллипс с совершенно резким и ярким краем.
Туманность в Лире NGC 6720 сотни лет была известна как кольцевая с резким краем (см. цветной рис. в конце книги). Снимки 1964 г. показывают у нее вторую, внешнюю, очень слабую оболочку и третью оболочку с неровным краем, еще более слабую. В результате диаметр туманности «стал» в 2,5 раза больше.
У некоторых планетарных туманностей еще раньше были обнаружены очень слабые придатки, иногда в виде тонких и слабых прямых или эллиптических, иногда в виде спиральных волокон, как у NGC 650-1. При малой экспозиции она выглядит как неправильный четырехугольник, а при большой экспозиции волокна на ее краях похожи на «рукоятки», как бы приделанные к ней. Ионизация в придатках и волокнах меньше, чем в основной массе туманности. Они излучают преимущественно в лучах водорода и ионизованного кислорода.
Особо следует обратить внимание на ярко выраженную волокнистую структуру ряда дискообразных туманностей. Волокна коротки, имеют вид червячков и соответствуют местным уплотнениям газа. В промежутках между ними излучение слабо, что создает эффект так называемой скважистости. В промежутках между волокнами излучение ядра может уходить в пространство не использованным для свечения туманности. Это затрудняет определение истинной средней плотности и массы туманностей при применении некоторых методов. Когда в какой-либо части туманности плотность вдвое больше, то излучение в запрещенных линиях там больше вдвое, а в линиях водорода больше вчетверо. Считают, что оболочка туманности заполнена газом на 30-70 %, но в разных туманностях эта величина должна быть различна.
Расширение планетарных туманностей
Одним из важнейших свойств планетарных туманностей является их расширение, открытое благодаря изучению линий их спектров, полученных с большой дисперсией. Когда дисперсия спектрографа достаточно велика, а линия спектра имеет заметную ширину, то можно изучить структуру планетарной туманности. При этом вскрываются важные дополнительные данные.
Если щель спектрографа покрывает целиком изображение туманности по диаметру, то линия спектра оказывается расщепленной посередине. С удалением щели от центра расщепление уменьшается, и на краях диска обе компоненты линии сливаются в одну. По малой ширине компонент расщепленной линии можно судить, что в слое газа, образующем оболочку туманности, скорости молекул соответствуют тепловым скоростям и что в туманности нет заметных турбулентных движений. Расщепление же всех линий спектра в середине можно объяснить только радиальным расширением туманности, которая представляет собой оболочку, полую внутри и прозрачную для собственных излучений. Эта прозрачность обусловлена крайне малой плотностью оболочки. Прозрачность планетарных туманностей в общих лучах видна из следующего факта: сквозь гигантскую планетарную туманность в созвездии Водолея NGC 7293 (Хеликс) видны далекие галактики.