Текст книги "Очерки о Вселенной"
Автор книги: Борис Воронцов-Вельяминов
сообщить о нарушении
Текущая страница: 24 (всего у книги 36 страниц)
В нашем распоряжении есть еще спектральный анализ, позволяющий определить, в каком участке неба звезды в среднем приближаются к нам с наибольшей скоростью к в каком удаляются. Эти участки на небе, очевидно, должны располагаться прямо друг против друга. Из такого анализа лучевых скоростей звезд можно получить скорость и направление движения Солнечной системы, а из анализа собственных движений – только ее направление.
Изучая эти средние систематические движения звезд, являющиеся отражением движения всей Солнечной системы, мы приходим к заключению, что она со скоростью 20 км/сек несется в направлении созвездий Лиры и Геркулеса (Точнее говоря, это направление близко к границе между этими созвездиями)). Это – ее движение по отношению к сравнительно близким звездам, взятым в совокупности. Оно сказывается в изменении видимого положения звезд, подобно тому, как меняется для вас видимое положение коров в том же пасущемся стаде, если вы пойдете через него насквозь. Ввиду относительности движения в данном случае безразлично – вы ли пробираетесь сквозь стадо, оно ли минует вас на своем пути. Подобно этому мы движемся по отношению к звездам.
Скорость Солнечной системы в этом движении того же порядка, что и собственные скорости звезд. Нечего опасаться, что, летя к созвездию Лиры, мы на него налетим и разобьем его в куски. Скорее можно было бы опасаться, что пуля, пущенная вверх, в «воздушный флот», разобьет его. Созвездие Лиры – лишь направление, по которому видно множество звезд. Пространство между ними так же просторно, как и пространство между звездами, окружающими Солнце сейчас. Звезду от звезды отделяют световые годы. Если у вас есть охота, попробуйте подсчитать, через сколько лет мы приблизимся вдвое к яркой звезде Веге (пренебрегая ее движением), если до нее 25 световых лет, а наша скорость 20 км/сек.
Изучение звездных движений развивается, как говорят, методом последовательных приближений. Поясним это применительно к изучению движений звезд. Сначала мы считаем движения звезд хаотичными и выявляем движение Солнечной системы. Затем учитываем его влияние на видимые движения звезд и после этого выявляем систематические движения групп звезд. Узнав их, мы вводим поправку в наше первоначальное предположение о хаотичности звездных движений и снова, уже правильнее, определяем движение Солнца и опять повторяем свои дальнейшие исследования. Так, постепенно удается разобраться в кажущемся хаосе многочисленных движений звезд в нашей Вселенной и уточнить картину, нарисованную поэтом:
Небесный свод, горящий славой звездной,
Таинственно глядит из глубины,
И мы плывем, пылающею бездной
Со всех сторон окружены.
( Тютчев)
Интересно отметить, что своевольные, как нам кажется, скорости звезд (как отдельных коров в стаде) тем больше, чем сами звезды легче. Большинство тяжелых гигантов, как тучные люди, двигается медлительно, а легкие карлики подвижны как детвора, впрочем... есть подозрение, что в звездной семье в смысле возраста детворой-то являются как раз гиганты, а не карлики. Но это вопрос уже совсем другого рода.
Поучительно, что в газе, состоящем из разных молекул, более тяжелые молекулы тоже двигаются более медленно
Снятие мерки со звезд
Размеры планет легко рассчитать, зная расстояния до них и измерив угловой диаметр видимого их диска. Но как снять мерку со звезды, если даже в самый мощный телескоп ее диска не видно, так мал его угловой диаметр? Даже в 5-метровый телескоп все звезды видны как точки. Тут нам опять помогает физика.
Поскольку звезды излучают почти как абсолютно черное тело, закон излучения ими энергии в разных частях спектра известен. Если знать температуру звезды и ее светимость, то можно вычислить полную энергию, испускаемую звездой. Но для нее, как для черного тела, теоретическая физика умеет вычислить полную энергию, испускаемую одним квадратным сантиметром ее поверхности. По закону Стефана – Больцмана она пропорциональна четвертой степени температуры. Если мы разделим определенную таким образом полную энергию, испускаемую звездой, на энергию, испускаемую одним квадратным сантиметром ее поверхности, то мы получим, очевидно, величину поверхности звезды. Звезда – шар, и, зная ее поверхность, уже школьник сможет вычислить ее диаметр.
Этот способ снятия мерки со звезд вполне надежен, но, как и всегда в науке, естественно хотелось бы найти возможность его проверить. Проверочный способ, применимый пока лишь к наиболее ярким звездам и с наибольшим угловым диаметром диска, был придуман в 1920 г. Он основан на явлении, называемом интерференцией. Для его осуществления Пизу в США пришлось преодолеть ряд технических затруднений, связанных с тем, что далее наибольший в мире телескоп оказался для данной цели недостаточно большим.
Выход из положения нашли, приделав на конце 2 1/2-метрового телескопа (наибольшего в то время) стальную ферму длиной 6 м, по которой на тележке передвигались два больших плоских зеркала, принимавших свет звезды и отражавших его на зеркало телескопа. Тогда в телескоп изображение звезды представлялось крохотным полосатым кружком. При определенной величине расстояний между зеркалами полоски на этом кружке исчезали, и тогда теория интерференции позволяла вычислить угловой диаметр невидимого диска звезды. Зная расстояние до звезды, можно было вычислить и ее линейный диаметр.
Первая звезда, диаметр которой в 1920 г. удалось измерить «непосредственно» – интерферометром, была яркая красная звезда в созвездии Ориона – Бетельгейзе. Вообще первые измерения удались для гигантских красных звезд, не особенно к нам близких, но у которых угловые размеры, видимые с Земли, ожидались наибольшими. После измерения десятка таких звезд наступил длительный перерыв – дальше мощи инструмента оказалось недостаточно. В 1956 г. в Англии удалось наконец измерить диаметр Сириуса, а в 1963 г. в Австралии измерили диаметр Беги. Это – белые звезды, гораздо меньшие, чем красные гиганты, но одни из ближайших к нам.
Результаты всех этих измерений и расчетов мы приведем немного позже. Они показывают крайнее разнообразие звездных размеров. Отметим лишь, что одной из наибольших среди известных звезд является звезда VV в созвездии Цефея. Она больше Солнца по диаметру по крайней мере в 1600 раз. Есть звезды, которые гораздо меньше Солнца.
Дьявольские звезды
Первую дьявольскую звезду открыли арабы. Это была β Персея, которую они, собственно говоря, назвали просто «дьяволом» (Эль-Гуль). Она поразила их тем, что будучи обычно около 2-й звездной величины, она вдруг ослабевала почти до 4-й – она менялась на небесах, считаемых неизменными, где живет Аллах. Чем может быть такая звезда, как не звездой дьявола, если не им самим!
После долгой смены исторических событий и возникновения новых очагов культуры, несколькими веками позже изменение блеска β Персея, Эль-Гуля, переделанного европейцами в Алголя, в 1670 г. подметили в Европе.
Еще через сто с лишним лет глухонемой от рождения любитель астрономии Гудрайк обнаружил периодичность изменения блеска Алголя. Его период оказался 2 дня 20 часов 49 минут. Но из них 2 дня 11 часов звезда остается постоянного блеска, а затем в течение 5 часов теряет 2/3 своего блеска с тем, чтобы через 5 часов снова к нему вернуться. Кривая изменения блеска Алголя в. зависимости от времени изображена на графике, построенном на основании современных нам измерений с помощью фотоэлектрического фотометра (рис. 144).
Странное и упорное поведение дьявольской звезды было объяснено тем, что тут, собственно, не одна звезда, а две, но одна гораздо ярче другой. Они обращаются друг около друга по орбите так, что по временам менее яркая частично закрывает от нас более яркую, производя периодические затмения.
Правильность объяснения была окончательно подтверждена в конце прошлого века, когда оказалось, что Алголь – спектрально-двойная звезда, у которой спектр слабо светящегося спутника невидим, как и следовало ожидать. При этом в момент затмения линии спектра занимают нормальное место, т. е. звезда движется в это время по орбите под прямым углом к нашему лучу зрения (не к нам и не от нас), как и должно быть. Кроме того, между главными минимумами блеска было обнаружено вторичное небольшое ослабление блеска, соответствующее затмению слабой звезды более яркой.
Было открыто много других двойных звезд этого же типа, названных затменно-двойными, или алголями. Исследование кривых изменения их блеска в совокупности со спектральными данными позволяет изучить эти звезды так подробно и точно, как этого нельзя сделать ни в каком другом случае. Поэтому «дьявольские» звезды среди всех звезд для нас наименее загадочны, и дьявольского в них не остается для нас ничего, кроме разве «дьявольски» подробной их изученности.
Рис. 144. Кривая изменения блеска 'дьявольской звезды' – Алголя и ее происхождение. Алголь – двойная звезда, и составляющие его периодически затмевают одна другую. Видно, что более яркая звезда заметно освещает обращенное к ней полушарие более слабой
В итоге мы находим их форму и размеры по сравнению с Солнцем, размеры и форму орбиты и ее положение в пространстве, светимость звезд и их температуру, массы звезд и характер затмений, а сверх того иногда можем изучить строение их атмосфер почти так же подробно, как у Солнца, хотя в телескоп эти звезды по виду ничем не отличаются от любых других звезд и кажутся такими же светлыми точками. Благодаря близости друг к другу и возникающим отсюда сильным приливам в массах этих звезд форма их не шарообразная, а вытянутая. Они вытянуты по направлению друг к другу и обращаются как бы «нос к носу».
Много звезд типа Алголя открыл и изучил в начале нашего века московский астроном С. Н. Блажко.
Рис. 145. Кривая изменения блеска β Лиры. Вверху изменение блеска звезды наглядно изображено величиной белых кружков
По кривой блеска этих звездных систем астрономы читают их свойства почти так же свободно, как хороший музыкант читает ноты В. П. Цесевич обладает наибольшим в СССР собранием собственных наблюдений звезд, меняющих блеск, а Д. Я. Мартынов известен тем, что «с пристрастием» допрашивает бывшие «дьявольские» звезды об их строении со столь разных точек зрения и разделов науки, что им ничего не остается, как разоблачаться перед ним от остатков своих «тайн».
Портретная галерея цветных звезд
Пройдемся по портретной галерее звезд и посмотрим сначала на типичные лица рядовых обитателей звездной Вселенной, а затем на портреты некоторых звездных знаменитостей.
Вот висят рядом два портрета, и в одном из них мы улавливаем знакомые черты, – это как будто наше Солнце. Тот же желтый цвет, тот же спектральный класс G и температура 6000°. Даже светимость, масса, плотность и размер у этой звезды почти те же, но, увы, подпись под портретом говорит нам, что это не Солнце, а звезда α Центавра А. В складе портретов звезд, накопленных астрономией, лежат целые груды точно таких же портретов, однако все с разными подписями, указывающими имя оригинала, но если подписи перепутаются и одна этикетка пристанет к чужому портрету, то ничего страшного не произойдет. Эти звезды настолько «все на одно лицо», что их собственные «дети» – планеты не могли бы их отличить друг от друга. Личность нашего Солнца оказывается столь обыденной, что к нему можно было бы потерять всякий интерес, если бы мы не имели удовольствия ежедневно пользоваться его теплом и светом.
Поднимем еще раз наш разочарованный взор на портрет, и мы заметим, что это собственно лишь половина портрета звезды и нашей ближайшей соседки в пространстве – α Центавра. Потому-то под этой половинкой и подписано α Центавра А. Рядом, под другой половинкой написано α Центавра В; ведь α Центавра – это двойная звезда.
Со второй половинки портрета на нас смотрит звезда почти такого же веса, немного более легкая (на 15%) и впятеро менее яркая. Если ее компаньонку причислить по цвету ее оболочки, так сказать, к желтой расе звезд, то саму ее надо назвать краснокожей. Густооранжевый цвет ее поверхности вполне соответствует ее спектральному классу К5 и более низкой температуре: 4000°. Диаметр звезды составляет 3/4 солнечного, а средняя плотность немного больше, чем у воды, но меньше, чем у Солнца. Из общей подписи к этим портретам мы узнаем, что период обращения этих двух звезд составляет 78,8 года – немного больше, чем у Урана в солнечной системе, а большая полуось взаимной орбиты в 23,3 раза больше, чем расстояние от Земли до Солнца, т. е. опять-таки того же порядка, что расстояние между Солнцем и Ураном. Однако здесь не огромное Солнце и планета, а пара почти одинаковых солнц. Орбита спутника – а Центавра В – относительно главной звезды, имеющая эксцентриситет 0,51, более вытянута, чем орбиты больших планет в нашей Солнечной системе, и больше похожа на орбиты корот-копериодических комет. Плоскость орбиты наклонена к лучу зрения всего на 11°, так что орбита видна нам в сильном ракурсе (см. рис. 142, стр. 466). Мы знаем, в какой части орбиты спутник движется на нас и в какой он от нас удаляется; помимо того, вся система в целом (ее центр тяжести) приближается к нам со скоростью 22 км/сек. Однако с такой же скоростью (точнее, 23 км/сек) она движется в поперечном направлении, так что в итоге по отношению к нам система α Центавра летит «вкось» под углом 45° со скоростью 31 км/сек.
Под портретом се Центавра у стены прислонен, как вы замечаете, еще какой-то маленький портретик. «Видите ли, – объясняет вам заведующий этой «портретной галереей», – тут у нас висят семейные портреты, и я не знаю, нужно ли рядом с портретом четы а Центавра повесить этот портрет «Ближайшей Центавра».
Дело в том, что она к нам ближе, чем α Центавра, всего лишь на две световые недели и движется сейчас в пространстве в том же направлении и с той же скоростью, как α Центавра, но на небе она отстоит от нее больше чем на 2 градуса. Значит, в пространстве расстояние между ними составляет около одной тридцатой того расстояния, на каком мы сами находимся от α Центавра.
Вы помните, что последнее составляет 4,3 светового года.
Несомненно, что они чувствуют некоторое взаимное тяготение, и их дружное движение едва ли случайно. Быть может, между ними была когда-то более тесная связь, может быть, они соединены узами родства, т. е. когда-то и где-то вместе родились, но трудно быть уверенным в том, что Ближайшая есть далекий спутник а Центавра и обращается вокруг нее по огромной орбите с периодом в тысячи лет. Может быть, наблюдаемая общность их движения аналогична параллельному прямолинейному движению многих звезд в группе Гиад и не представляет собой движения компонентов двойной звезды по криволинейной орбите с такой малой кривизной, что последнюю невозможно обнаружить за короткий срок наших наблюдений».
Рассмотрите портретик Ближайшей Центавра, если хотите. Он мал, потому что в нашей галерее портреты звезд писаны, если и не в «натуральную величину», то во всяком случае с сохранением относительных пропорций. Этот портрет тоже один из огромнейшего множества ему подобных и типичен для звезд, называемых красными карликами. Правда, среди известных этот карлик превышает «ростом» только звезду Вольф 359 и еще мало изучен, но раз уж он попался и достаточно типичен, то не стоит обращаться к другим портретам из-за того, что художник может быть не совсем точно воспроизвел черты оригинала.
Ближайшая Центавра имеет светимость в 15 000 раз меньше солнечной, и масса ее в семь раз меньше, чем у Солнца. Она густокрасного цвета, спектрального класса М, с температурой всего лишь в 3000°. Если бы мы заменили ею Солнце, то она освещала бы нас красным светом, только в 30 раз более сильным, чем свет полной Луны. Диаметр Ближайшей Центавра в шесть раз меньше солнечного или всего в полтора-два раза больше, чем диаметр Юпитера, крупнейшей из наших планет. Средняя плотность этого красного карлика почти в пятьдесят раз больше плотности воды. Если бы это вещество было жидкостью, то в ней, как пробки, могли бы плавать куски железа и чугуна, утюги и паровозы. Однако это не жидкость, а очень сжатый газ, который в недрах звезды имеет гораздо большую плотность, а в атмосфере ее он почти так же разрежен, как и в атмосфере нашего Солнца.
«Пойдемте во двор, – говорит заведующий, – я покажу вам писаный в том же масштабе портрет звезды, столь же холодной и «краснокожей» и того же спектрального класса М. Ее зовут Бетельгейзе или α Ориона и ее портрет не умещается в галерее» правда, после портрета Ближайшей Центавра который вы смотрели, держа в руках, вам приходится еперь задрать голову высоко вверх, чтобы увидеть верхний край круга, изображающего Бетельгейзе. Црртрет нашего Солнца был размером с человеческое лицо, а портрет Бетельгейзе возвышается на 60 м, достигая верхним краем двадцатого этажа!
Рис. 146. Сравнительные размеры Солнца, компонент Капеллы (а Возничего) и Бетельгейзе
Огромное тело Бетельгейзе больше, чем у Солнца, в 300 раз по диаметру и в 27 000 000 по объему. Но оно массивнее Солнца всего лишь в 15 раз. Поэтому вещество Бетельгейзе, не в пример веществу Солнца, с его плотностью, в 1 1/2 раза большей плотности воды, очень легкое. Нельзя сказать, что оно легкое как пух, потому что оно в полтора миллиона раз легче воды, несравненно легче пуха и в полторы тысячи раз легче комнатного воздуха! Наполнив таким веществом объем Большого театра и сжав затем это вещество в объеме спичечной коробки, вы бы могли свободно положить такую коробку в карман, не рискуя порвать его подобной тяжестью.
По светимости, в 2600 раз большей, чем у Солнца, по гигантскому размеру, по ничтожной плотности и лишь в малой степени по массе отличается краснокожая Бетельгейзе от Ближайшей Центавра, на которую она похожа по цвету, спектру и температуре.
Бетельгейзе действительно гигант звездного мира, вернее, даже сверхгигант, и экземпляров, подобных ему, в звездной Вселенной сравнительно немного.
Обращая внимание на цвет, спектр и температуру в поисках портрета Солнца, вы можете задержаться взглядом на портрете «желтолицей» Капеллы. Она тоже желтая и остальные признаки у нее те же, но она опять-таки отличается от Солнца тем, что она – желтый гигант, тогда как Солнце – желтый карлик.
Как и а Центавра, Капелла, собственно говоря, не звезда, а система двух звезд. Легко наблюдаемая спектрально, она находится на пределе «разрешения» для сильнейших в мире телескопов. Период обращения системы составляет 104 дня 2 часа 34 минуты; орбита, почти круговая, имеет радиус лишь немногим меньше радиуса земной орбиты.
Мы получим модель Капеллы, если вместо Солнца поместим такую же желтую звезду с массой в 4,2 раза большей солцечной, и диаметром в 12 раз большим солнечного, а Землю заменим другим солнцем, с диаметром в 7 раз большим солнечного, с массой в 3,3 раза большей нашего Солнца, и на 1000° более горячим. Новое солнце – желтый гигант, в 110 раз ярче нашего, а его спутник в 69 раз ярче. Средняя плотность обеих звезд – желтых гигантов вдвое больше плотности комнатного воздуха. Поперечная скорость системы – 33 км/сек, лучевая скорость – 30 км/сек (удаление), так что ее полная пространственная скорость относительно солнечной системы составляет 45 км/сек.
Желтые гиганты тоже гораздо малочисленнее, чем желтые карлики
Портреты белых звезд и история их написания
Из типичных портретов остается посмотреть еще семейный портрет четы Сириуса. Каждый из членов этой звездной пары – характерный представитель белых звезд, встречающихся очень часто, но пара Сириуса поражает нас диспропорцией ее членов. Сириусу А природа навязала смехотворно мелкого компаньона, тем не менее подражающего своему большому соседу по манере испускать спектр и горячиться, доходя до «белого каления».
В самом деле, спектры их почти одинаковы: АО и А7, и спутник, будучи лишь на две тысячи градусов холоднее Сириуса А, нагретого до 10 000°, тоже белого цвета. Масса принципала в 2 1/2 раза больше солнечной, а у Сириуса В она почти равна солнечной массе (точнее, 0,96), т. е. массы двух этих звезд отличаются не так уж сильно. Но на этом сходство между компаньонами кончается...
Рис. 147. Три спичечные коробки с веществом спутника Сириуса уравновешивают целый класс школьников
Сириус А – давно знакомый нам типаж с диаметром почти вдвое большим солнечного, и с плотностью в 2 1/2 раза меньшей, чем у воды. Сириус А – звезда как звезда, а вот черты его спутника светящегося в 10000 раз слабее, кажутся просто невероятными, если бы подлинность портрета не была многократно и авторитетно заверена.
«Как ни верти», а приходится принять, исходя из совокупности всех данных, что он лишь втрое больше Земли (это бы еще куда ни шло) и что его средняя плотность в 30 000 раз больше плотности воды! Но если так, то для перевозки спичечной коробки, наполненной таким веществом, нужен грузовик! Ее вес уравновесил бы восемь взрослых человек, а наперсток с этим веществом весил бы 30 кг.
Кто этому поверит?! Не верили этому и астрономы, хотя не верить было нельзя, потому что все вычисления подтверждали друг друга. Физики на основе своих успехов в изучении атома заявили, что такая огромная плотность в условиях звездных недр осуществима. Для этого температура в недрах должна быть ниже чем у обычных звезд, а давление вышележащих слоев к центру очень велико. При этом атомы разрушаются и превращаются в смесь ядер и электронов, не связанных друг с другом. Размеры атомных ядер составляют всего лишь 10-13 см, а размеры полных атомов можно определить, как размеры орбиты их внешнего электрона, – не меньше 10-8 см, т. е. ядра в сто тысяч раз меньше атомов. Следовательно, пространство, занятое ядрами, гораздо меньше пространства, занятого атомами, и при достаточном давлении, которое существует в недрах звезд – белых карликов, они могут быть сближены друг с другом гораздо теснее. Искрошенные атомы теоретически можно упаковать еще теснее, чем это имеет место в спутнике Сириуса.
Обычные атомы с электронной оболочкой можно себе представить как электрические лампы с огромными бумажными абажурами, а искрошенные атомы – как такие же лампы, искрошенные в мелкие осколки и кусочки. Возьмите эти осколки и в ящике, где едва-едва умещалась одна лампа с абажуром, уместится великое множество ламповых остатков, так что ящик станет в тысячи раз тяжелее.
Спутник Сириуса, считавшийся вначалв уродом звездного мира, объектом кунсткамеры, оказался типичным представителем довольно обширного племени звезд – белых карликов, которые трудно обнаружить лишь ввиду их общего слабого излучения. Мы их можем заметить лишь вблизи нас, как жука в поле, тогда как яркие звезды, как коровы, видны нам издалека и в большем числе, хотя жуков в поле больше, чем коров.
Говоря о Сириусе, нельзя не сказать об исключительной роли, сыгранной им в развитии человеческих знаний.
Сириус – песья звезда, бог с песьей головой древних египтян (Анубис) – управлял, по их мнению, разливами Нила, оплодотворявшего почву своим илом и своей влагой. Разлив Нила бывал летом (после выпадения дождей в горах Абиссинии); приближение его знаменовалось определенным положением Сириуса на небе. Сириус, или звезду Изиды, богини плодородия, называли еще Сопд, что греки произносили как Сотис. С появления Сириуса перед восходом Солнца в лучах утренней зари и сопутствующего ему разлива Нила египтяне начинали новый год.
Они взывали к Сириусу:
«Божественная Сотис вызывает Нил к началу года.
Сотис, великая, блистает в небе, и Нил выходит из его источников.
Божественная Сотис производит разлив Нила в его верховьях».
Такие надписи нашли высеченными на стене храма богини Хатор в Дендерах.
Учащиеся и поныне, быть может, сами того не зная, славят Сириуса и «песье время», т. е. каникулы, ибо так в Древнем Риме называется летний период, связанный с определенной видимостью на небе Сириуса, главной звезды в созвездии Большого Пса. По-латыни пес – «канис», откуда и произошло слово каникулы.
Сириус был первой звездой, собственное движение которой по небу заметил Галлей, сравнивая современные ему наблюдения положения звезды на небе с древними.
Почти 1/2 века назад на примере Сириуса была продемонстрирована сила человеческого гения, способного создать не только «астрономию видимого», но и «астрономию невидимого». Это – знаменитая история открытия спутника Сириуса.
В 1834 г., изучая собственное движение Сириуса, Бессель в Германии обнаружил, что он движется не по прямой (точнее, не по дуге большого круга), а описывает какую-то волнистую линию. Лишь через десять лет он заключил: волнистый путь Сириуса вызван наличием у него невидимого спутника с периодом обращения в полустолетие. Центр тяжести системы движется в пространстве прямолинейно, как любая одиночная звезда, но оба тела описывают около него свои орбиты, так что сочетание орбитального движения с поступательным и делает видимый путь Сириуса подобным волнистой линии. Сириус и его невидимый спутник находятся всегда по разные стороны от их центра тяжести.
Рис. 148. Извилистый путь Сириуса по небу и орбита его спутника. Центр тяжести системы движется прямолинейно
Предсказание блестяще подтвердилось только 31 января 1862 г. В этот вечер американский оптик Альван Кларк испытывал новый, построенный им 45-сантиметровый рефрактор. Это был наибольший тогда телескоп, обладавший прекрасными оптическими качествами. Наведя его на Сириус, он увидел возле него слабо светящегося спутника, как раз в том месте, которое для него указывала теория. Последующие наблюдения показали, что и период обращения спутника также совпал с периодом, предсказанным теорией. Таким образом, невидимое небесное тело, в существовании которого были убеждены и местоположение которого на каждый день знали, стало, наконец, видимым...
Спутник Сириуса не такой уже слабый, – он 7-й видимой звездной величины, но соседство ослепительной «песьей звезды» мешало его заметить раньше и затрудняло его изучение в дальнейшем. Поэтому только в 1916 г. удалось сфотографировать спектр спутника и убедиться, что он похож на спектр своего яркого соседа. Предположение, что спутник светит отраженным светом, приводило к выводу о нелепо больших его размерах, а позднее выявилось и различие в спектрах этих двух звезд, что окончательно заставило признать спутник самосветящимся. И вот тогда-то с неизбежностью последовал вывод о чудовищно высокой его плотности, перед чем астрономы останавливались в недоумении. В 1920-1924 гг. английский физик Резерфорд постиг строение атомов, как сложных систем, состоящих из ядер и электронов, а индийский физик Саха создал теорию ионизации под действием высокой температуры, и то, что казалось совершенно необычайным, стало естественным.
К этому времени А. Эйнштейн разработал теорию относительности. Благодаря своей необычности новая теория была встречена сначала с недоверием. Эйнштейн же из своей теории сделал некоторые выводы, которые нельзя было проверить опытами в лабораториях и которые требовали проверки опытом буквально «в мировом масштабе» и требовали услуг астрономов.
В качестве подопытного кролика, или, если хотите, белой мыши, была взята белая крошка – спутник Сириуса. При малом объеме он имеет массу почти как у Солнца и представляет собой как раз то, что нужно для упомянутого опыта. Вследствие малости размеров Сириуса В сила тяжести на поверхности этой звезды в тысячу раз больше, чем на Солнце, и почти в 30 000 раз больше, чем на Земле. Маятник, делающий на Земле за секунду одно колебание, сделал бы их там около 140. «Сутки», т. е. 1440 минут по часам с таким маятником, мы бы прожили на белом карлике за 10 земных минут. По теории относительности в таких условиях световые колебания (вызванные колебаниями в атомах) должны происходить заметно ленивее (медленнее), чем у нас. Длина волны их должна быть больше, чем в нашей лаборатории, линии спектра спутника Сириуса, возникающие у его поверхности, должны быть сдвинуты к красному концу спектра. Величина этого сдвига по вычислениям должна быть такая же, как если бы спутник Сириуса удалялся от нас со скоростью 20 км в секунду.
Но как проверить, что такой сдвиг именно по этой причине действительно есть? Ведь звезда в самом деле может удаляться от нас с такой скоростью, а мы соответствующий сдвиг линий примем за «красное смещение» теории относительности.
Спутник Сириуса, к счастью, как раз позволяет отличить друг от друга такие сдвиги. В самом деле, скорость по отношению к нам вследствие движения спутника по орбите может быть точно вычислена для любого момента. Движение центра тяжести системы Сириуса тоже хорошо известно из наблюдений спектра самого Сириуса. Он приближается к Солнцу на 8 км за каждую секунду. Если после учета обоих движений в спектре спутника все же останется сдвиг линий, то подлинное движение его будет тут уже не при чем. Получить для этой цели хорошую фотографию спектра спутника, находящегося в близком соседстве со звездой, в 10 000 раз более яркой, было трудным делом и требовало от наблюдателя не меньшей ловкости, чем для акробата хождение по канату. Оказалось, что в спектре спутника Сириуса действительно обнаруживается сдвиг линий и как раз такой, какой требуется теорией относительности. Теория, предсказавшая существование сдвига, была тем самым подтверждена и получила права гражданства...
К каким еще новым научным открытиям приведет дальнейшее изучение звезды Изиды и ее диковинного спутника?
О звездах-карликах и звездах-пигмеях, которые еще меньше, мы скажем в очерке «Соседи Солнца».
Анатомия звездных атмосфер
Светлая далекая одинокая точка, на которой ничего не видно даже в сильнейший телескоп, – вот что такое звезда для обычного наблюдателя. Такова, например, и звездочка 3-й величины Дзета Возничего, одна из тех лампад, зажигаемых ангелами ввечеру, за какие почитались звезды суеверными людьми в средние века. Много лет мы не видели в ней ничего особенного, но с 1932 г. она стала наиболее изученной звездой. С 1932 по 1934 г., за два года, астрономы, как хирурги, произвели как бы полное ее вскрытие или рассечение, изучив всю ее «анатомию», но вместо операционных ножей они воспользовались всем арсеналом приборов, анализирующих свет.
Рис. 149. Система двойной звезды ζ Возничего и затмения в ней
В 1908 г. Кэмпбелл в Ликской обсерватории доказал, что спектр Дзеты Возничего состоит из наложенных друг на друга двух спектров К3 и В8, принадлежащих двум разным, невидимым по отдельности звездам, составляющим Дзету Возничего. Только в 1924 г. был установлен период их взаимного обращения – 972 дня, почти 3 года. По совокупности имевшихся спектрограмм вычислили элементы орбиты и обратили внимание на то, что одна из спектрограмм сильно отличалась от всех прочих. Линии спектра были на ней необычайно резки. Это объяснили тем, что в то время, когда был получен этот спектр, белая звезда со спектром В была в затмении – скрылась от нас за оранжево-красной звездой К. Отсюда заключили, что затмения должны происходить периодически, а Дзета Возничего, следовательно, является затменно-двойной звездой, меняющей свой блеск, – «дьявольской звездой» – алголем. Вычислили и даты предстоящих затмений звезды В: 1926, 1929 и 1932 г., предлагая проверить эти выводы наблюдениями.