Текст книги "Очерки о Вселенной"
Автор книги: Борис Воронцов-Вельяминов
сообщить о нарушении
Текущая страница: 15 (всего у книги 36 страниц)
Теория свечения метеоров приводит к следующим данным о массах метеоров. Масса очень яркого метеора нулевой звездной величины, если его скорость в атмосфере 55 км/сек, составляет 0,25 г. Это равно весу нескольких капель воды. Масса метеора пятой величины, едва приметного для глаза,– несколько тысячных грамма.
Так как, изучая метеоры, можно оценить их массы, то и их размеры не являются для нас тайной. Обычный яркий метеор до своего разрушения в атмосфере имеет размер кедрового орешка, а слабые метеоры, видимые только в телескоп,– размеры небольшой булавочной головки (данные о массах и размерах метеоров приблизительны). Как далеко не похожи такие тела на настоящие звезды, от которых несведущие люди отличают их только эпитетом «падающие»!
Быть может, возникает сомнение в том, как же такие крошки могут быть нами видимы на расстоянии порядка сотни километров? Но ведь видимая нами падающая звезда – не эта твердая частичка! Это необычайно ярко светящийся раскаленный пар, в который она превращается в атмосфере, пар, создающий вокруг летящей частички газовую атмосферу довольно значительного размера. Стоит также вспомнить, что нить электролампочки благодаря ее яркости видна с огромного расстояния, хотя ее толщина – сотые доли миллиметра; между тем газы, в которые обратился метеор, раскалены еще сильнее.
Поэтому не удивительно, что яркий метеор, видимый с расстояния сотни километров как звезда 2-й величины, имеет действительную силу света в 3360 стандартных (международных) свечей.
Мельчайшие космические пылинки, оседающие на Землю, – это жалкие остатки довольно значительных камешков, большая часть которых испарилась за время их полета.
Перепись метеоров
Если есть люди, почитающие за невозможное сосчитать звезды, видимые на небе простым глазом, то тем более безнадежной должна им казаться попытка сосчитать падающие звезды, да еще видимые на всей Земле, да еще в течение года. Между тем они подсчитаны, хотя, конечно, и не поштучно. Действительно, ведь когда мы хотим знать число деревьев строевого леса на участке, то для нас неважно пропустить в счете сотню-другую деревьев, и мы бываем вполне удовлетворены, узнав, что таких деревьев, скажем, около 10 000, а не около 3000 или 170 000. Мало того, наше любопытство будет частично удовлетворено, когда мы узнаем только приблизительно какое-либо число, если до этого не имели никакого о нем представления. Например, любопытно, хотя едва ли важно, знать, что в среднем у человека, еще не признанного лысым, на голове волос около 200 000, если до этого мы могли лишь гадать, сколько их, несколько тысяч или же миллионы. Наше представление об этом мало изменится, если при таком подсчете мы ошибемся на тысячу-другую волос, или даже в несколько раз больше.
Именно так, подсчитывая число метеоров разной видимой яркости в разные часы одних и тех же суток и повторяя это по нескольку раз в год, можно оценить, сколько же их падает за год. Знание этого числа удовлетворит уже не простое любопытство, а даст нам гораздо больше, в частности, может ответить на вопрос, насколько же за счет метеоров увеличивается масса Земли и какую роль их вещество может играть в составе обрабатываемой нами почвы. Вдруг окажется, что картофель на вашем огороде растет в слое, образованном вековыми напластованиями разрушившихся метеоров!
При подсчете метеоров надо учесть процент метеоров, не замеченных наблюдателем, сопоставляя одновременные наблюдения нескольких лиц, долю площади атмосферы, обозреваемой им, и метеоры, видимые лишь в телескоп.
Результаты такого подсчета приведены в нижеследующей таблице, из которой, между прочим, видно, что с ослабеванием звездной величины метеоров на единицу их число возрастает в 2 1/2 раза. Однако ослабление на одну звездную величину означает уменьшение яркости в 2 1/2 раза, и в таком же отношении уменьшается его масса (так как при одинаковой скорости яркость метеора пропорциональна его массе). Благодаря такому случайному совпадению суммарная масса метеоров каждой звездной величины оказывается одна и та же, а именно – 110 кг.
Как мы видим, «коэффициент полезного действия» метеоров, если их рассматривать как источник света, весьма велик. Если бы все метеоры, принадлежащие только к одной звездной величине и падающие за сутки, вздумали упасть одновременно в поле зрения, то они создали бы освещение, в несколько раз более сильное, чем освещение от полной Луны, а если бы все метеоры, падающие за сутки, мелькнули бы все сразу, то они осветили бы местность в 250 раз сильнее, чем Луна. И все это путем обращения в раскаленный пар лишь 5 тонн вещества на расстоянии сотни километров! Если бы они светили на расстоянии 1 км от нас, то освещение было бы еще в 10 000 раз ярче, – правда, всего лишь на секунды.
Самые яркие из метеоров, вернее, болидов, имеют яркость, соответствующую -10-й звездной величине. С другой стороны число слабых метеоров, не видимых даже в телескоп, нет нужды считать бесконечным.
С уменьшением яркости метеоров уменьшается их масса, и метеоры, которые были бы слабее 30-й звездной величины, уже настолько малы, что подобные пылинки давным-давно были бы выметены из Солнечной системы давлением света, которое для них превышает тяготение.
Таким образом, полная масса метеоров от -10 до +30 звездной величины, ежесуточно выпадающих на Землю, составляет около 4400 кг. Подсчет по таким же данным для метеоритов дает еще 5500 кг. Всего на Землю за сутки выпадает около 10 тонн метеоритного вещества.
Если с тех пор как земная кора затвердела, т. е. примерно за последние два миллиарда лет, метеоры и метеориты падали так же часто, как теперь, то на каждый квадратный километр поверхности выпало по 10 тысяч тонн метеоритного вещества, что составляет слой менее 10 см толщиной. Поэтому метеоритное вещество, хотя и примешивается к почве, но в ничтожной доле, и говорить, что наши огороды растут на метеоритной почве, нет никаких оснований.
Метеорные рои
До сих пор речь шла преимущественно о спорадических метеорах. Займемся же теперь подробнее метеорными потоками, т. е. метеорами, падающими в определенные дни года и вылетающими из определенного радианта. В табличке, помещенной ниже, приводится список потоков, наиболее богатых метеорами.
Уже из того, что метеоры, несущиеся из межпланетного пространства и вылетающие из определенного радианта, ежегодно наблюдаются в одни и те же дни, видно, что они движутся растянутым по какой-то орбите потоком. В указанные даты Земля пересекает их путь, отчего и сталкивается с ними. Если метеоры более или менее растянуты по орбите, как трамваи, идущие гуськом, друг за другом на правильных интервалах, то всякий раз, пересекая их путь, Земля будет сталкиваться с ними и встречать их примерно в одинаковом числе. Такой случай имеет место у Персеид. Земля пересекает в течение нескольких суток ту как бы космическую «баранку», которую образует растянутый рой Персеид. 12 августа она, очевидно, пересекает середину этой «баранки», где метеоры больше всего сгущены: это день максимума потока.
Легко понять, что если метеоры движутся по эллиптической орбите, обращаясь около Солнца, и распределены вдоль этой орбиты неравномерно, и имеется где-либо сгущение, то будет происходить следующее. Земля чаще будет пересекать бедные метеорами области «баранки», и их в эти годы (всегда в одни и те же дни) будет наблюдаться мало. Когда-либо Земля встретится в том же месте своего годичного пути с главным скопищем метеоров, и тогда будет обильный дождь звезд. Это можно сравнить с тем случаем, когда правильные интервалы между трамваями на трамвайном кольце нарушились, и они все сгрудились, идя в хвосте друг за другом. Не скоро случится, что, выйдя к остановке, вы сразу встретитесь с этими скученными трамваями.
Если подобное сгущение метеоров имеет очень малую протяженность, то далеко не в каждый свой приход в точку, где орбита сгущения пересекается с Землей, оно будет ее здесь заставать, – либо Земля, либо сгущение метеоров будут проходить точку пересечения орбит раньше другого, как бы играя в прятки. Вероятно, случаи такого рода бывают, но мы их пока не знаем. Действительно, периоды обращения большинства потоков должны измеряться десятилетиями, а одновременный приход в точку пересечения орбит будет происходить тогда раз в несколько столетий. Между тем научное изучение метеоров насчитывает всего лишь около сотни лет.
Определяя точно положение радианта и зная скорость метеоров, можно вычислить орбиту метеорного потока в пространстве. С течением времени эта орбита меняется благодаря возмущениям в движении метеоров, под действием притяжения планет, в особенности Юпитера.
Невозможно себе представить, чтобы метеоры, растянутые на орбите, могли бы с течением времени скучиваться. Наоборот, надо ожидать, что постепенно притяжения планет и Солнца, неодинаковые для более к ним близких и более далеких частей роя, как бы растянут этот рой по всем направлениям, но преимущественно вдоль его орбиты, так что постепенно сгущение метеоров растянется по всей орбите и образует подобие «баранки».
Рис. 93. Орбиты Леонид и Земли в пространстве
Ясно, что чем больше обращений около Солнца совершил метеорный поток, тем больше подвергался он «раздергивающим» воздействиям и тем шире и растянутее по орбите он должен быть. По степени концентрации метеоров на их орбите можно судить о возрасте этого метеорного потока, т. е. о времени, протекшем с момента его образования, хотя, конечно, при этом играет роль и период обращения и расположение его орбиты относительно планет.
Возможно, что спорадические метеоры – это «отщепенцы» метеорных потоков, частички, вырванные некогда из большой компании подобных им тел.
Многие метеорные потоки имеют не только древнее происхождение, но и древние свидетельства их появлений. В этом отношении наиболее замечательны Леониды. Они обращаются по орбите с периодом 33 года, и целые ливни метеоров из этого радианта наблюдались, например, в 1799, 1833 и 1866 гг. С их главным скоплением Земля встречалась каждые 33 года.
В 1799 г. в Южной Америке видели и впервые научно описали звездный дождь, образованный Леонидами в ноябре. Индейцы рассказали, что такое же явление было в 1766 г. Пораженные этим явлением индейцы запомнили его хорошо, тогда как европейские ученые, очевидно, не обратили на него внимания.
Рис. 94. Леониды движутся по своей орбите плотным роем
На этом основании впервые заподозрили периодичность метеорных дождей, и действительно, в 1833 г. ноябрьский дождь падающих звезд повторился. Тогда ученые обратились к летописям разных народов и проследили по ним, хотя и с перерывами, метеорный дождь Леонид вплоть до 1768 г. до нашей эры! Эту первую запись 3700 лет назад сделали китайские летописцы. Следующее упоминание о нем нашлось в арабских источниках, относящихся к 902 г. Японские летописцы отметили необычайные падения звезд в ноябре 867, 1002, 1035-1037 гг., по случаю чего напуганные японские императоры даже объявляли амнистию заключенным. Позднее летописи в разных странах все чаще и чаще, нередко с суеверным страхом, отмечают максимумы падения Леонид. Среди них для нас интересно древнерусское свидетельство, содержащееся в знаменитой Лаврентьев-ской летописи. В записях 1202 г. говорится: «В 5 часов нощи потече небо все», «течение звездное бысть на небеси, отторгаху бо ся звезды на землю». В 1533 г. говорится, что в Москве «видети мнози людие: звезды по небеси протягахуся яко же вервии, летааху с востока на зимний запад». В другой летописи это явление описывается как чудесное «знамение небесное», как «видение» пономаря Тарасия с колокольни в Новгороде-Великом: «множество ангел стреляющих огненными стрелами, яко дождь сильный из тучи».
Цветная фотография Большой туманности Ориона, полученная Миллером на 5-метровом телескопе Паломарской обсерватории (США)
По признанию американского ученого Фишера целый ряд русских летописных сведений о метеорах в прошлые века является ценным для науки и отсутствует в западноевропейских хрониках. Так древнерусские наблюдения принесли огромную пользу для современной науки.
Дождь Леонид, предсказанный в ноябре 1866 г., наблюдался повсеместно, но в 1899 г. всеобщие ожидания оказались напрасными, метеоров в ноябре было очень мало. Оказалось, что между 18Ш6 и 1899 гг. метеорный сгусток проходил вблизи Юпитера и Сатурна. Притяжение этих планет как бы оттащило в сторону его орбиту, так что с Землей встретились лишь окраины роя. В 1932 г. надежды на новую встречу опять были напрасны, и за минуту, как и в 1899 г., появлялось лишь по одному метеору. Едва ли когда-либо возмущения планет снова направят этот метеорный поток прямо на нашу Землю – незначительную пылинку в том объеме, в котором для расположения метеорных орбит так много места.
Леониды налетают на Землю почти в лоб, сталкиваясь с ее «утренним» полушарием, а их скорость, складываясь с орбитальной скоростью Земли, приводит к тому, что их скорость в атмосфере составляет 72 км/сек. При такой большой скорости испарение их в воздухе идет очень быстро, и метеоры достигают большой яркости, оставляя следы в виде быстро затухающих туманных стрел.
Если, однако, из-за возмущений от Юпитера и Сатурна мы почти что лишились поразительного зрелища, доставляемого Леонидами, то иногда благодаря тем же возмущениям случай дарит нас время от времени новыми неожиданностями. Из неведомого перед нами встают новые замечательные явления. Последним из них были Дракониды.
Цветная фотография планетарной туманности в Лире, полученная Миллером на 5-метровом телескопе Паломарской обсерватории (США)
9 октября 1933 г., как только над Европой простерлась ночная тьма, небо усеяли слабые, но многочисленные метеоры. Число их росло, и к 8 часам вечера за минуту насчитывали до 350 падающих звезд, но уже через час от них не осталось и десятой доли. К полуночи метеоры иссякли, и когда ночь добралась до Америки, то все уже было кончено, и там лишь впоследствии узнали, чем случай одарил Европу в эту ночь. Радиант метеоров лежал в созвездии Дракона. Несмотря на неожиданность явления, многие успели сфотографировать метеоры, а на одной из пластинок за 10 минут на площадке неба размером 10X10° обнаружили 26 метеорных следов.
Дракониды, долго блуждавшие в пространстве, в этом году впервые обрушились на Землю, потому что Юпитер, упорно ворочавший их орбиту, наконец привел ее к пересечению с орбитой Земли.
В последующие годы Драконид было видно мало, – признак их значительной концентрации в определенном месте орбиты. 9-10 октября 1946 г. мы опять зацепили часть главного роя и опять увидели дождь падающих звезд.
Б 1933 г. находившиеся тогда под колониальным гнетом туземцы Судана в Африке, перепугавшись злого духа, «срывающего звезды с неба», подняли барабанный бой, чтобы испугать его, так же как некогда китайцы пытались отпугнуть дракона, якобы пожирающего Солнце во время затмения.
В астрономии же сохранился из драконов только один, да и тот является просто созвездием, а о смысле названия, данного во времена древних суеверий, мы теперь редко даже и вспоминаем.
Звездные дожди не раз пугали население. Так, например, в 1833 г. неграми на американских плантациях Леониды были приняты за предзнаменование дня «страшного суда», а сто лет спустя, в 1933 г., Дракониды навели страх в отсталой и реакционной тогда Португалии, и народ повалил в церкви.
Цветная фотография Большой туманности Ориона, полученная Миллером на 5-метровом телескопе Паломарской обсерватории (США).
Прах комет
В то время как для несведущих людей метеорные дожди иногда кажутся грозным явлением, для ученых они явились, наоборот, основанием для рассеивания совершенно иных страхов, так сказать, «научного порядка», именно страхов столкновения Земли с кометой.
В этом отношении, а также для выяснения происхождения метеоров, для нас особенную ценность представила комета Биэлы и метеоры, носящие то же имя,– Биэлиды.
Австрийский офицер Белый, по происхождению чех, был любителем астрономии. Его фамилию переделали в армии на немецкий лад в Биэлу. И вот ему-то, любителю астрономии, посчастливилось в 1826 г. открыть комету, которой присвоили его измененную фамилию. Уже впоследствии выяснилось, что эта комета с периодом обращения 6 1/2 лет наблюдалась в одно из своих прежних появлений вблизи Земли и Солнца еще в 1772 г.
Мы уже упоминали о том, что при своем появлении в 1846 г. эта комета распалась на две, которые, уже сильно ослабленные в яркости и разошедшиеся друг от друга на большое расстояние, вернулись к Солнцу в 1852 г. С тех пор они как в воду канули. При следующих появлениях ни одной из них увидеть не могли, хотя место на небе, где они должны были бы быть видны, с большой точностью было вычислено заранее.
В 1872 г., через двадцать лет после таинственного исчезновения кометы Биэлы, 27 ноября небо засверкало от падающих звезд, хотя и не очень ярких. Их радиант лежал в созвездии Андромеды. Их число, как и число Драконид в 1933 г., быстро росло с конца сумерек до 8 1/2 час» вечера, достигнув в максимуме сотни метеоров в минуту, а после полуночи небо бороздилось уже лишь отдельными редкими метеорами. Орбита этих метеоров, вычисленная на основании наблюдаемого положения их радианта, оказалась сходной с орбитой пропавшей кометы Биэлы. Метеоры оказались летящими вереницей по тому пути, по которому злосчастная комета двигалась, прежде чем исчезнуть. Их взаимное родство поэтому несомненно, и даже возникает вопрос, не являются ли крошечные, но бесчисленные метеорные тельца Биэлид (или Андромедид) – всем, что осталось от хвостатой кометы. Приходится заключить, что это так, хотя перерождение кометы началось не после 1852 г., а раньше. Более подробные исследования показали вот что. Еще в 1782 г. наблюдали 27 ноября обильный поток метеоров, вероятно, тождественный только что описанному. В 1832 г. орбита кометы Биэлы по вычислениям прошла от орбиты Земли на расстоянии всего лишь в несколько тысяч километров, но на этом близком расстоянии свидание Земли и кометы так и не состоялось. До 1872 г. Земля и комета играли в прятки: то одна, то другая опаздывали к месту встречи. После 1852 г. комета не приближалась слишком близко к Юпитеру, и потому она или ее остатки должны были продолжать циркулировать по той же орбите. Встреча их с Землей была возможна, но не было точно известно, где на своей орбите они находятся, а потому время встречи предвидеть было нельзя.
В 1872 г., 27 ноября, когда метеоры заполняли небо, комета была уже далеко, на расстоянии многих сотен тысяч километров, так как она пересекла орбиту Земли на 80 дней раньше, 9 сентября.
В 1878 г. Земля явилась к точке пересечения орбит полугодом раньше, а в 1879 г. полугодом позже, чем комета. В эти годы наблюдалось мало метеоров. По истечении еще одного периода обращения комета Биэлы должна была пересечь орбиту Земли в середине января 1886 г. Однако еще немного раньше, 27 ноября 1885 г., снова посыпался звездный дождь. Его наблюдал, в частности, любитель астрономии и художник, специалист по истории Москвы, А. М. Васнецов (брат известного художника В. М. Васнецова). Он рассказывал, что метеоры появлялись как бы лениво, с промежутками около полусекунды, оставляя бледный, тусклый след, да и сами были не очень ярки, преимущественно около 3-й звездной величины. Их малая яркость объясняется тем, что Биэлидам приходится догонять Землю, и они влетают в атмосферу со скоростью всего лишь 20 км/сек.
Мы видим, что в 1885 г. рой метеоров, еще мало растянувшихся вдоль орбиты, предшествовал тому месту, в котором должна была бы находиться комета. Метеорный рой, который дал звездный дождь 1799 г., должен был зародиться еще раньше, быть может, в 1772 г., когда комета тоже приближалась к Юпитеру.
Таким образом, процесс распада ядра кометы на метеоры (именно ядра, ибо твердые частицы есть только в ядре кометы) длился не менее столетия, и образование метеоров началось задолго до исчезновения кометы как таковой.
В 1890 г., а затем и повторно в 1901 г. Юпитер возмутил движение Биэлид, и потому вблизи возможных встреч их с Землей (в 1892 и 1899 гг.) метеоров наблюдалось в ноябре очень мало. С тех пор их вообще больше не видят. Их путь пролег теперь на расстоянии нескольких миллионов километров от Земли, и крохотные, темные они несутся мимо нас, не видимые нами, вероятно, навсегда ушедшие из области, доступной нашему изучению.
Однако Биэлиды, явив яркий пример связи метеоров с кометами, не были первым звеном на пути к ее установлению.
Еще в 1866 г. итальянский астроном Скиапарелли обнаружил, что орбита Персеид близка к орбите кометы 1862 III. В 1866 г. наблюдалась другая слабая комета, и сходство ее орбиты с орбитой Леонид было тотчас же замечено сразу тремя астрономами разных стран. Вскоре затем, в результате уже специальных поисков такого рода найдено было сходство между орбитой Лирид и орбитой кометы 1861 I.
К настоящему времени около десятка метеорных потоков удалось связать с кометами. В том числе с кометой Галлея связаны Эта-Аквариды и Ориониды.
Большой интерес представляет совсем недавно выясненная связь между Тауридами и самой короткопериодической из комет, знаменитой кометой Энке. Установили, что у этих метеоров период обращения составляет 3,3 года.
По-видимому, они откололись от кометы Энке около 10 000 лет назад. Сейчас благодаря возмущениям рой отклонившихся от нее метеоров движется по орбите, уже весьма отличной от той, по которой теперь движется комета.
В следующей таблице приведен список метеорных потоков, несомненно, связанных с кометами, с указанием некоторых элементов их орбит. Из этой таблички видно, что элементы орбит «родственных» метеорных потоков и комет близки между собой. Однако в этом списке содержится лишь малая часть комет и соответствующих им метеорных потоков, известных в настоящее время. Причину этого мы сейчас разъясним.
Многие из наблюдаемых метеорных потоков могут быть нами связаны, но уже неуверенно, либо с кометами, давно исчезнувшими, либо с кометами, имеющими период обращения порядка сотни лет или больше. Надо вспомнить и о том, что не при каждом своем приближении к Солнцу комета может быть Наблюдаема. Нередко ее путь случайно располагается относительно Земли так, что в пору наибольшего приближения к Земле и к Солнцу комета упорно прячется в солнечных лучах. Случается, что ее видимости, иногда кратковременной, мешает свет полной Луны. Возможно, что из межпланетной пучины вдруг вынырнет периодическая комета, доселе еще не наблюдавшаяся, и сразу выявит свое родство с каким-либо из давно известных метеорных потоков.
Надо сознаться, что и в упомянутых примерах установления связи метеорных потоков с кометами астрономам повезло. Как только впервые были определены орбиты трех метеорных потоков, явились три слабые кометы и... счастливый случай. Комета 1861 I, родоначальница Лирид, имеет большой период обращения, и следующее ее появление будет лишь через несколько столетий. Комета 1862 III, рассеявшая по своей орбите Персеиды, также вернется в следующий раз к Солнцу лишь в конце текущего столетия. Спутница Леонид, комета 1866 I, хотя и оборачивается около Солнца за 33 года, но в 1899 и в 1932 г. была расположена на небе так близко к Солнцу, что ее, старую знакомую, так и не видели.
Проскользни тогда эти три кометы незамеченными, что зачастую бывает со слабыми кометами и сейчас, мы бы еще не скоро обнаружили связь метеорных потоков с кометами и не знали бы, могут ли они сосуществовать на одной и той же орбите.
Можно себе представить, как пришлось бы астрономам ломать голову над происхождением метеоров и какие, быть может, фантастические гипотезы пришлось бы при этом строить! Мы видим, что успехи науки, плод планомерного и длительного труда, иногда зависят и от счастливого стечения обстоятельств. Не надо, однако, забывать, что одного счастливого случая мало, надо уметь им воспользоваться, быть к нему подготовленным.
Наше замечание об удачном появлении комет можно отнести и к метеорам. Данные для предыдущей таблички накопились за целое столетие. В текущем веке Биэлиды не дали ни одного метеора. Дракониды – один из наиболее богатых метеорных потоков – появились совсем недавно, и совсем немного лет назад одной строчкой в таблице было меньше.
В 1916 и 1921 гг. появилось немного слабых метеоров, связанных с кометой Понса – Виннеке, но в 1922 и 1923 гг. автор этой книжки тщетно ожидал их появления в июньские ночи. Бодрствование оказалось напрасным – метеоров не было. Едва став доступными для изучения, они возмущениями планет снова были удалены от земной орбиты, и это добавление к нашему списку остается под некоторым вопросом.
В сравнении с числом комет, бороздящих Солнечную систему, как рыбы ?кеан, число комет, замечаемых нами, невелико, и еще ничтожнее число тех, о которых мы знаем, что они сопровождаются продуктами их собственного разложения – метеорами. Ни одна из комет, движущихся по огромным эллипсам, приближающимся к параболам, с афелиями, лежащими за пределами орбиты Плутона, не показала нам своих метеоров.
Редко проходя вблизи больших планет, они, вероятно, мало разрушились, и их метеоры мало растянулись вдоль орбиты. Если же они и растянулись вдоль нее, то летят далеко друг от друга и сталкиваются с Землей «в рассрочку», в разные годы и в таком малом числе, что из наблюдений невозможно установить их радиант, а следовательно, нельзя вычислить и их орбиту.
Перигелии большинства комет, даже периодических, лежат вне земной орбиты, и без особенно больших возмущении их метеорам никогда не суждено встретиться с Землей. Небольшое число комет с орбитами, пересекающимися с орбитой Земли, имеют короткие периоды обращения и потому быстро распадаются, давая доступные для наблюдения метеоры, но те же возмущения, что породили и рассеяли эти метеоры, опять-таки быстро выводят их из области видимости.
Мы уже упоминали, что в метеорных потоках частицу от частицы отделяют сотни километров. Зная диаметр Земли, время, необходимое для пересечения ею метеорного потока, и число их, попадающих в атмосферу, можно оценить полную массу метеоров в потоке.
Для Персеид такой ориентировочный подсчет дает массу в 500 миллионов тонн. Это число поражает нас своей грандиозностью, но в сравнении с массами небесных тел оно ничтожно. На образование Земли пошел бы миллион миллиардов таких метеорных потоков, тогда как массы одного потока хватило бы только на сантиметровый слой пыли, которой можно было бы засыпать, например, Крымский полуостров.
Спектры метеоров, полученные теперь в достаточно большом числе, показывают, что все метеоры, входящие в периодические потоки, – каменистого строения, тогда как из числа спорадических метеоров половина приходится на каменные и половина на железные.
Это обстоятельство как будто мешает нам считать, что все спорадические метеоры, так же как и периодические потоки метеоров, произошли от комет и являются продуктом разложения метеорных роев. Быть может, часть их, именно железные, имеет иное происхождение. Какова их суммарная масса в Солнечной системе, оценить невозможно. Во всяком случае, метеоры и даже метеорные потоки в бесчисленном множестве снуют по Солнечной системе, и лишь ничтожная часть их доступна нашему наблюдению.
Наблюдая метеоры, мы до некоторой степени похожи на собирателя насекомых, идущего в летний день по необозримым лугам по узкой тропинке и подбирающего на ней лишь те экземпляры, которые ему подарит случай.
Все же мы должны быть удовлетворены уже тем, что установили неоспоримую связь некоторых метеоров с кометами.
Метеоры в атмосфере
Мы развенчали падающие звезды в качестве подлинных звезд – этих величайших небесных тел – и признали в них лишь ничтожные камешки. Эти камешки, пока они несутся вне земной атмосферы, – ничтожные, но все-таки небесные тела, и изучение их как таковых увело нас в глубины межпланетного пространства, заставило обратиться к другим и гораздо более значительным небесным телам – кометам. Но, попав в атмосферу Земли и светясь в ней короткое время, и метеор и метеорит уже перестают быть по существу небесными телами. Их полет в воздухе сопровождается особыми интересными явлениями, причем маленький камешек-метеор уже перестает при этом быть таковым, почему некоторые ученые предлагают все такие камешки называть метеорными телами, а под метеором понимать лишь само явление свечения во время его полета в атмосфере. Нам кажется, что в этом нет особой нужды и это вызывает свои неудобства, но уделим некоторое внимание тому, почему и как метеоры, оказавшись в атмосфере, становятся видимы, и что нам дает изучение этих явлений для познания нашей собственной планеты...
Беззвучно катящаяся по небу звезда, осколок далекой кометы и орудийные залпы, обстрел и бомбежка мирных тыловых городов, что, кажется, может быть общего между ними?!
1918 год... Немецкие армии рвутся к Парижу, но они далеко, определенно известно, что враг не ближе 120 км от города, оснований для паники нет. И вдруг... в окрестностях Парижа начинают рваться большие снаряды. Что же думать... Где враг?
Оказалось, что немцы создали сверхдальнобойные пушки, которые могли стрелять на дистанцию в 120 км. Эти орудия выбрасывали снаряды весом 120 кг из ствола длиною 37 м с начальной скоростью 1700 м/сек под углом 55° к горизонту. В этом и заключался главный секрет сверхдальности. Быстро прорезав нижние плотные слои воздуха, снаряд забирался в верхние разреженные слои земной атмосферы, далеко в стратосферу, на высоту 40 км. Там разреженный воздух мало тормозил его движение, и вместо нескольких десятков километров снаряд пролетал сотню километров. Надо сказать, что стрельба немцев не была очень меткой; они рассчитывали больше на создание паники.
Известную долю неточности их стрельбы обусловила невозможность рассчитать точно условия полета снаряда на большой высоте. Ни плотность, ни состав, ни движение воздуха на этой высоте не были тогда известны; атмосфера на этих высотах не была еще изучена. Действительно, даже стратостаты, поднимавшие впоследствии людей с научными приборами, достигли высоты всего лишь около 22 км, а воздушные шары с самопишущими приборами без людей поднимались до 30 км. Ракеты, поднимающиеся на высоты более 100 км, стали пускать только после второй мировой войны.
О более высоких слоях воздуха раньше можно было составить представление лишь путем изучения происходящих там явлений, и метеоры, ежедневно пронизывающие их, все еще доставляют один из лучших косвенных методов такого рода. Лишь совсем недавно на вооружение ученых поступило такое мощное средство всестороннего исследования верхних слоев атмосферы, как искусственные спутники Земли. Вот почему усиленное изучение метеоров было важным пунктом программы проведения Международного геофизического года (1957-1958 гг.).