Текст книги "Очерки о Вселенной"
Автор книги: Борис Воронцов-Вельяминов
сообщить о нарушении
Текущая страница: 22 (всего у книги 36 страниц)
Иной была история разоблачения таинственного незнакомца, выступившего перед нами в виде ряда цветных линий спектра солнечной короны. Незнакомца, обнаруженного в спектре солнечной короны в 1869 г., через год после открытия гелия назвали «коронием». Короний был упорнее гелия: он не хотел показываться на Земле. Не показывается он и сейчас. Мало того, гелий по крайней мере был обнаружен в спектрах других небесных тел – звезд и туманностей, короний же обитал только в солнечной короне.
Лишь в 1933 г. короний показался на несколько месяцев в спектре так называемой новоподобной звезды RS Змеедержца (Это созвездие называют также Змееносцем, что вряд ли правильно. Многие люди, особенно на Востоке, могут держать змею, но едва ли есть смысл носить ее в руках)). В этом году слабенькая звездочка, вспыхнувшая уже однажды ненадолго в 1893 г., вспыхнула снова, и в газах, выброшенных ею в момент наибольшего блеска, ненадолго промелькнул короний. Этот случай заинтриговал астрономов, но не пролил света на тайну корония, хотя некоторые соображения еще тогда приводили автора к мысли, что короний как-то связан с железом.
Дело в том, что каждому химическому элементу в таблице Менделеева предоставлена своя клетка – своя квартира. Как только открывался новый элемент, для него тотчас находилась приличествующая ему и незанятая квартира в том или другом этаже таблицы. Уже четверть века назад практически все квартиры во всех этажах дома, построенного для элементов Менделеевым, были заняты. Новым элементам в таблице не оказалось места. Это значит, что им нет места и в природе. Значит, всякий новый незнакомец, и в том числе короний, вовсе не незнакомец, а кто-то из старых знакомых, только в маскарадном костюме и в маске. И имя его – «короний», – не настоящее, а псевдоним, под которым он скрывается. Маскарад его – подневольный, маскарадный костюм в виде незнакомых линий спектра на него надели необычные физические условия, в которые он попал, находясь в солнечной короне, и которых на Земле нет. Сорвите маскарадную маску, и вы увидите под ней знакомый кислород, азот или другой какой-нибудь элемент, смеющийся над нашими тщетными усилиями разоблачить его вот уже более 70 лет.
Убеждение в возможности именно такой расшифровки корония поддерживалось успехом аналогичного случая со спектром разреженных масс газа, образующих туманности, расположенные в межзвездном пространстве. Обнаруженный в них элемент, названный «небулием» (от латинского слова «небула» – туманность) и скрывавшийся под зелеными линиями спектра, был «допрошен с пристрастием» физиком Боуэном в США. После долгого «запирательства» в 1927 г. он «сознался», что он... попросту кислород. Впрочем – не попросту, а кислород, дважды ионизованный, т. е. потерявший два электрона. Но и в этом виде мы бы его разоблачили раньше, если бы он не умудрялся испускать те линии спектра, которые ему «запрещено» испускать.
По сути дела, никто ему, собственно говоря, эти линии не запрещал испускать, но излучение их в земных условиях для него так трудно, что практически обнаружить их в спектре кислорода на Земле невозможно, и потому физики условно назвали эти линии «запрещенными». Линии возникают, когда электрон перескакивает сам по себе, ничем «не принужденный», с одной орбиты на другую. Но вот на той орбите, с которой он должен перескочить, покрутившись на ней некоторое положенное ему время, электрон крутится очень долго – секунды, часы, дни и даже месяцы, прежде чем электрон сам по себе ее покинет и излучит соответствующего «запрещенную» линию.
В земных условиях плотности газа так велики и столкновения атомов поэтому так часты, что с подобной орбиты электрон при ударе сталкивают насильно на другую орбиту раньше, чем он успеет с нее уйти «по своей воле». На обычных же орбитах электрон остается всего лишь около 10~8 сек. Это и не дает возможности атому излучить запрещенную линию.
В газовых туманностях плотность газа так ничтожно мала, что столкновения атомов происходят крайне редко, и излучение ими линий, «запрещенных» в земных условиях, тут происходит беспрепятственно.
По примеру с небулием, линии корония стали искать среди запрещенных линий известных элементов. Их длину волны можно установить только теоретически, зная структуру атомов, но она пока еще не для всех них известна. В газах, выброшенных в пространство звездой RS Змеедержца, были необычайно сильны запрещенные линии атомов железа, ионизованных не слишком сильно. Можно было поэтому поставить линии корония в спектре этой звезды в связь с необычными для звезд условиями свечения паров железа. Многие попытки, сделанные в этом направлении, были безрезультатны, но в 1941 г. шведский ученый Эдлен сообщил давно желанную весть – «короний оказался железом»...
Одни линии корония оказались запрещенными линиями девятикратно ионизованного железа, другие – такими же линиями тринадцатикратно (!) ионизованного железа, а менее яркие линии – принадлежащими многократно ионизованному никелю и другим элементам.
Плотность газа в короне, несомненно, очень мала и могла бы допустить излучение запрещенных линий. А железо в солнечной короне могло бы получаться за счет испарения железной метеоритной пыли, когда она достаточно приближается к Солнцу и нагревается.
В первый момент к отождествлению корония астрономы отнеслись недоверчиво. Как может быть, чтобы вблизи Солнца, которое само имеет температуру «всего лишь» в 6000°, могли существовать столь сильно ионизованные атомы железа. Для такой ионизации в обычных условиях нужна температура выше 100 000°, и потому никто раньше не искал короний среди ионов, существование которых требует таких высоких температур. В последнее время стало, однако, намечаться объяснение существованию вблизи Солнца паров железа, атомы которого лишились 9 и даже 13 электронов. Это может произойти не только от высокой температуры, но и от влияния некоторых других процессов, возникающих в разных местах хромосферы. Описание их здесь было бы слишком сложно, но укажем, что московский астроном И. С. Шкловский представляет обстоятельства дела следующим образом. В условиях короны достаточно наличия слабого электрического поля в ней, чтобы возникло движение электронов наружу со скоростью, соответствующей температуре в 1 000 000°.
Эти электроны, возникающие в самой короне, с бешеными скоростями налетая на находящиеся в ней же атомы железа и никеля, ионизуют их так сильно, как при других условиях это осуществлялось бы при температуре в миллион градусов.
Как показали В. А. Крат и С. Б. Пикельнер, поверхность Солнца, выбрасывая свои электроны в мировое пространство, получает положительный заряд благодаря накапливанию положительно заряженных ионов. Но это ведет тогда к взаимному отталкиванию ионов и к выбросу их из Солнца, заряд которого, уменьшаясь, позволяет электронам выбрасываться снова. Так Солнце постепенно теряет свою массу.
Разгадку корония можно считать решенной, и можно считать решенной загадку спектра солнечной короны, в целом. К настоящему времени в спектрах небесных светил не осталось ни одного «небесного вещества», все их линии принадлежат веществам, имеющимся и на Земле. Мы потеряли в науке два химических «элемента» – небулий и короний, но взамен них приобрели знания о строении и поведении как мельчайших атомов, так и грандиозных мировых тел...
Активные области, хромосферные вспышки, рентгеновское и радиоизлучение Солнца
На Солнце в так называемых активных областях наблюдается усиление движения газов и изменение характера этих движений. В этих областях возникают не только пятна, но и факелы, флоккулы, усиление магнитных полей, некоторые протуберанцы.
Активные области излучают больше корпускул, ультрафиолетовых, рентгеновских и даже космических лучей высокой энергии. Все эти виды излучений лишь недавно стало возможно изучать приборами, установленными на высотных ракетах, искусственных спутниках Земли и межпланетных автоматических станциях.
Ультрафиолетовый конец солнечного спектра впервые сфотографировали с высотных ракет, так как земная атмосфера это коротковолновое излучение поглощает целиком и не пропускает к Земле.
Между тем ультрафиолетовый спектр Солнца содержит ценнейшую дополнительную информацию о физическом состоянии и химическом составе внешних слоев Солнца. Ультрафиолетовые лучи – главный ионизатор земной атмосферы, основной создатель ее ионосферы.
Рис. 131. Фотография Солнца в рентгеновских лучах
Для измерения рентгеновского излучения Солнца вместо спектрографа приходится пользоваться особыми счетчиками, покрытыми тонкой пленкой, поглощающей рентгеновские кванты разной энергии, в зависимости от состава и толщины пленки. На рис. 131 приведена фотография Солнца в рентгеновских лучах. В этих лучах особенно ярки активные области. В них рентгеновская яркость раз в 100 больше, чем в спокойных областях Солнца. Рентгеновское излучение возникает во внутренней короне Солнца, на десятки тысяч километров выше уровня появления водородных флоккул.
По спектрогелиограммам было обнаружено, что изредка на Солнце бывают кратковременные яркие вспышки особенно плотных и горячих газов; температура плазмы во вспышках достигает нескольких десятков тысяч градусов. Именно они-то, а не самые пятна, с которыми вспышки обычно связаны, являются причиной быстрых электромагнитных возмущений на Земле, которые раньше приписывались непосредственно влиянию пятен. (Впрочем, дело обстоит, по-видимому, еще сложнее.) Электромагнитные возмущения на Земле проявляются в колебаниях магнитной стрелки компаса, в помехах в работе проволочного и радиотелеграфа и т. д. Об этом мы поговорим еще и дальше.
Рис. 132. Фотографии четырех солнечных вспышек в свете бальмеровской линии водорода Нα
Для радиосвязи возможность предвидеть наступление таких помех была бы особенно ценна. Опыты предсказания наступления таких помех и даже опыты прогноза погоды, основанные на анализе наблюдаемой связи помех с областями активных изменений и активного излучения на Солнце, все время делаются. Дело в том, что, вообще говоря, для того чтобы повлиять на Землю, активная область должна быть вблизи центра видимого диска Солнца. Всегда можно заранее рассчитать, зная период вращения Солнца, когда активная область, видимая вдали от центра, окажется вблизи него (вернее, на его центральном меридиане).
Улучшение предсказаний хромосферных вспышек очень важно для обеспечения безопасности космонавтов. При хромосферных вспышках возникают лучи, сходные по составу с космическими лучами: 90% протонов и 10% альфа-частиц (ядер гелия). Интенсивность космического излучения возрастает при этом в тысячи раз и более в течение нескольких часов. Особенно мощные вспышки происходят в среднем один раз за 4-5 лет в эпоху спада или подъема солнечной деятельности.
С 1957 г. на Солнце пытались обнаружить изотоп водорода с атомным весом 2. Можно было ожидать его образования при ядерных реакциях, сопровождающих солнечные вспышки. В августе 1972 г. при сильной вспышке было обнаружено гамма-излучение, которое могло произойти при образовании дейтерия. На следующий год дейтерий был обнаружен непосредственно в солнечном ветре при нескольких вспышках благодаря приборам, установленным на двух искусственных спутниках Земли. Тут же зарегистрировали и другой изотоп водорода – тритий. Он нестабилен и половина его распадается за 12,6 лет. Оба изотопа возникают от столкновений быстрых протонов и ядер гелия с ядрами более тяжелых элементов. В продуктах вспышек содержание дейтерия возрастает в сотни раз, достигая 0,1% атомов водорода. Проходившая, по-видимому, очень активная область Солнца дала ряд очень сильных хромосферных вспышек, сопровождавшихся рядом геофизических последствий – бурь в космических лучах, больших магнитных бурь и возмущений ионосферы. Подобные вспышки крайне опасны для космонавтов в открытом Космосе и даже внутри корабля. К сожалению, предвидеть их мы еще не умеем.
Многие исследователи в годы второй мировой войны обнаружили радиоизлучение, идущее от Солнца. Из радиоволн, испускаемых Солнцем, мы можем принимать волны длиной (примерно) от 10 м до нескольких сантиметров.
Если предположить, что Солнце в области радиоволн излучает как абсолютно черное тело, то по интенсивности его радиолучей с длиной волны 1 м его температура составляет сотни тысяч градусов. Метровые волны излучаются солнечной короной, а сантиметровые – хромосферой. Вычисленная выше «температура» характеризует лишь скорость движения электронов в этих оболочках Солнца и соответствует тому, что говорилось ранее в этой книге о причине ионизации газов в короне.
Временами радиоизлучение Солнца усиливается в сотни тысяч раз. Это явление называют «всплесками»; они сопровождают большие солнечные пятна, вернее, происходящие вблизи последних кратковременные извержения из недр крайне горячих газов – хромосферные вспышки.
По теории И. С. Шкловского эти «всплески» вызваны тем, что потоки электрически заряженных частиц, выбрасываемых Солнцем и производящих на Земле полярные сияния, на своем пути вызывают в солнечной атмосфере особые «собственные колебания» находящихся в ней электронов. Эти колебания порождают кратковременное усиленное радиоизлучение.
Однако радиоизлучение активного Солнца очень сложно и разнообразно и теоретическое его объяснение находится в процессе дальнейшей разработки.
Магнитные явления на Солнце
За последние годы теория строения Солнца и явлений на нем сильно продвинулась вперед. В частности, на основе лабораторных опытов с плазмой пришли к выводу о том, что магнитные поля на Солнце играют очень большую роль в наблюдаемых на нем явлениях.
Ядерные реакции происходят в ядре Солнца, где температура достаточно высока – 16 млн. градусов. Радиус этой зоны, где вырабатывается энергия при ядерных реакциях, составляет, по-видимому, около 200 000 км. С удалением от центра Солнца температура падает быстро – на 20° на каждый километр. В этой области происходит перенос лучистой энергии излучением. Не доходя одной десятой по радиусу до фотосферы, температура падает медленнее, и в переносе энергии в ней принимает участие конвекция в виде вертикального подъема горячих газов и опускания холодных газов. Происходит перемешивание вещества, которое, однако, неравномерно по разным направлениям.
В фотосфере водородные атомы в основной своей массе нейтральны, в хромосфере, являющейся переходным слоем, они ионизуются и в короне наступает полная ионизация. Толщина фотосферы только 200-300 км, т. е. около V300 радиуса Солнца. Таким образом атмосфера Солнца состоит из плазмы – смеси ионов и свободных электронов. Хромосфера, в сотни тысяч раз менее плотная, чем фотосфера, переходит в корону. За счет облучения энергией, испускаемой фотосферой, при ее температуре в 6000° термометр в хромосфере показал бы 5000°, а в короне еще меньше. Частицы разреженного газа хромосферы и короны налетали бы на термометр так редко, что не могли бы его нагреть. Однако скорости движения частиц в хромосфере и короне очень велики. Известно, что температуру газа можно измерять кинетической энергией его частиц. Это так называемая кинетическая температура. В фотосфере температуры излучения и кинетическая соответствуют друг другу, а в хромосфере и короне различаются резко – в хромосфере кинетическая температура составляет десятки тысяч градусов, а в короне – около миллиона градусов.
«Нагревание» хромосферы происходит эа счет энергии распространяющихся в ней волн, порождаемых движением гранул в фотосфере. В короне, простирающейся на расстояние до 10 радиусов Солнца, число атомов в 1 см3 в 100 миллиардов раз меньше, чем число молекул в 1 см3 воздуха у поверхности Земли. При такой же плотности, как воздух, вещества в короне хватило бы на слой, окружающий Солнце при толщине всего в несколько миллиметров. В ней возникает основное» радиоизлучение Солнца. С такой же интенсивностьто, как корона, нагретое тело такого же размера излучало бы при температуре в миллион градусов, а такой кинетической температуры требуют, как мы видели, и наблюдаемые в спектре короны яркие линии многократно ионизованных металлов.
Изучение взаимодействия магнитного поля и плазмы показало, что на плазму в целом движение вдоль силовых линий магнитного поля не влияет. При движении же электрически заряженных частиц поперек линий поля (т. е. при течении тока) возникает дополнительное магнитное поле. Сложение этих магнитных полей вызывает искривление и вытягивание силовых линий вслед за движением вещества. Между тем у магнитных силовых линий есть натяжение, стремящееся их выпрямить. Это создает магнитное давление, и поле, мешая плазме пересекать силовые линии, его тормозит и даже может увлечь за собой, если поле сильно. Если оно слабо, то плазма перемещает силовые линии вместе с собой. Итак, во всех случаях можно говорить о том, что силовые линии как бы «вморожены» в плазму.
Эти сведения, а также регулярные измерения напряжения магнитного поля в разных местах на Солнце позволили подойти к объяснению многих явлений на нем.
Общее магнитное поле Солнца очень слабо, но оно, видимо, играет большую роль. Лучи короны, особенно в полярных областях Солнца, располагаются подобно силовым линиям, выходящим и входящим у полюсов намагниченного шара. Изменение направления поля в каждом полушарии Солнца от одного цикла солнечной активности к следующему также очень важно. Причина этого изменения еще не ясна, но известны звезды с очень мощными магнитными полями, у которых полярность поля также периодически меняется.
При вращении Солнца самые быстрые (экваториальные) слои увлекают за собой силовые линии слабого общего поля Солнца, которые в них «вморожены». Эти линии вытягиваются под фотосферой и за три года обвиваются вокруг Солнца шесть раз, образуя тугую спираль. Если силовые линии расположились при этом теснее, то, значит, тут общее (и искаженное здесь) магнитное поле Солнца усилилось.
Ближе к полюсам силовые линии общего поля выходят из фотосферы вверх, и поэтому поле здесь не усиливается. Впрочем, на самом экваторе, где угловая скорость вращения в некоторой зоне меняется мало, поле также не усиливается, а на широтах +30°, где скорость вращения меняется быстрее всего, усиление поля максимально. Так под фотосферой образуются подобия трубок из сгущенных силовых линий. Давление газа в них складывается с давлением магнитного поля, перпендикулярным к его линиям. Газ в «трубке» расширяется и становится как бы легче и может «всплыть» наверх. В этом месте, где она приближается к поверхности, на Солнце наблюдается усиление магнитного поля, а затем и появление факела, а за ним и поля факелов. Их горячие газы поднимаются выше, чем соседние места фотосферы, потому что слабое магнитное поле вокруг них гасит мелкие турбулентные движения, стремящиеся тормозить поток горячего выходящего газа. Над факелами в хромосфере также происходит нагрев и возникают горячие флоккулы. Наконец, над флоккулами в короне начинается более яркое свечение. Так развивается активная область на Солнце. Всплывая к поверхности и пересекая ее, трубка со сгущенными силовыми линиями образует местные усиления магнитного поля и возникают солнечные пятна. Их пониженная температура обусловлена тем, что очень сильное магнитное поле в этой области подавляет не только турбулентность, но и сильные конвективные движения. Поэтому здесь приток снизу горячих газов прекращается, тогда как вокруг пятна, в области факелов и флоккул, конвекция слабым магнитным полем усилена, так как оно подавляет слабую турбу-ленцию и там приток горячих газов снизу облегчен. Понятно, что пересечение изогнутой трубки с этой поверхностью в двух местах обусловливает у двух главных пятен противоположные магнитные полярности. Выход трубки из фотосферы и рассеивание ее линий ведут к дроблению и исчезновению двух главных пятен, образованных пересечением силовой трубки с поверхностью Солнца. Выход – силовых линий трубки в разреженные хромосферу и корону, где давление газа меньше, чем давление магнитного поля, ведет к тому, что линии расходятся, образуя петли и дуги.
Рис. 133. Схема возникновения активных областей на Солнце. а – период незадолго до минимума, слабое общее магнитное поле диагонального характера; б – начало вытягивания и закручивания отдельной силовой линии; в – развитие биполярных групп пятен из трубки силовых линий; на правом краю – остатки тех же активных областей; г – расположение силовых линий на разных гелиографических широтах
Постепенно области активности с порождающими их магнитными трубками в восточной части образуют пятна с полярностями, противоположными той, какая была в начале цикла у этого полюса Солнца. Это вызывает сначала нейтрализацию прежнего общего магнитного поля, а затем, за три года до конца 11-летнего цикла солнечной активности, создает общее поле противоположной полярности.
Через 11 лет восстанавливается прежняя картина полярностей общего поля.
Так получает в основных чертах, по-видимому, правильное объяснение (данное Бэбкоком), 22-летняя периодичность солнечной активности.
Хромосферные вспышки на Солнце образуются вблизи нейтральных точек магнитных полей в активных областях, где с удалением от этих точек напряжение поля быстро возрастает. Здесь происходит крайне быстрое сжатие магнитного поля вместе с плазмой, в которую оно «вморожено», и энергия магнитного поля переходит при этом в излучение газа. Плазма сжимается в тонкий шнур и температура ее резко возрастает – до нескольких десятков тысяч градусов. Плотность хромосферы возрастает здесь за несколько минут в сотни тысяч раз.
Кроме огромного повышения температуры, а с нею и излучения, особенно ультрафиолетового и рентгеновского, хромосферная вспышка состоит и в так называемом всплеске радиоизлучения. На метровых волнах последнее усиливается до десятков миллионов раз.
Источник этого радиоизлучения перемещается из хромосферы в корону со скоростью около 1000 км/сек. Вероятно, он возникает в результате выброса космических лучей, порожденных вспышкой, и бомбардировки плазмы этими лучами, что и вызывает колебания плазмы, порождающие всплеск радиоизлучения.
Наблюдаемые в короне лучи, видимо, порождаются этими потоками быстрых, электрически заряженных частиц, тянущих за собой силовые линии магнитного поля. И это поле, и плазма короны тормозят потоки частиц, но часть их вырывается из атмосферы Солнца и, попадая в земную атмосферу, производит полярные сияния. Изменение картины магнитного поля Солнца от минимума его активности к максимуму и определяет изменения формы короны, о чем мы уже говорили.
Многие протуберанцы, как и лучи короны, обусловлены движением газа вдоль силовых линий, отчего и происходят, например, выбросы их по дугообразной траектории и «скатывание» их обратно на поверхность Солнца. По-видимому, протуберанцы находятся преимущественно в областях плавных изменений магнитного поля. Возникновение свечения протуберанцев внезапно вверху, а затем их движение только вниз обусловлено, по-видимому, процессами, аналогичными тем, какие дают хромосферные вспышки, но менее резкими. Сжатие магнитного поля ведет к сжатию относительно холодного газа, к подъему его плотности и к свечению.
Таковы основные черты современной, в основном газомагнитной, теории солнечных явлений.
Солнечный ветер и полярные сияния
Уже давно норвежские геофизики Биркеланд и Штермер пришли к выводу, что Солнце испускает потоки корпускул – электрически заряженных частиц. По их мысли, эти частицы, попадая в земную атмосферу, могли вызывать возмущения магнитного поля Земли и полярные сияния. В периоды повышения солнечной активности учащаются и усиливаются полярные сияния и магнитные бури на Земле. Последние выражаются в колебаниях напряженности поля, в колебаниях магнитной стрелки компаса. В пятидесятых годах немецкий астрофизик Бирман показал, что ряд явлений в кометных формах, в частности, большие ускорения в движении газов в кометных хвостах I типа должны быть результатом взаимодействия плазмы кометного хвоста с солнечными корпускулярными потоками, несущими с собой магнитное поле. Эта теория развивается; она объясняет многие явления, остававшиеся непонятными, когда полагали, что на кометы действует главным образом давление солнечного света. Так как кометы движутся по солнечной системе постоянно и в разных направлениях, то надо заключить, что корпускулярное излучение Солнца испускается непрерывно и по всем направлениям, заполняя солнечную систему.
Г. М. Никольский, С. К. Всехсвятский и В. И. Чередниченко отождествили корпускулярные потоки с лучами солнечной короны, рассматривая ее как динамическое образование. Из этого следовал вывод, что солнечная корона непрерывно расширяется.
Чепмен пришел к заключению, что солнечная корона с температурой миллион градусов вследствие большого потока тепла, создаваемого ею, должна простираться до орбиты Земли, где ее температура падает до 200 000°. Здесь он оценил плотность короны в 100-1000 атомов водорода в 1 см3, что вытекало и из интерпретации поляризации зодиакального света. Чепмен даже заявил так: «Мы живем в солнечной короне!». Расширяясь, солнечная корона уже на расстоядии 107 км от Солнца должна иметь скорость в несколько сотен километров в секунду. Паркер отождествил расширяющуюся солнечную корону с корпускулярным излучением Солнца и назвал последнее «солнечным ветром».
Появились и экспериментальные данные: начиная с 1959 г. автоматические межпланетные станции стали регистрировать солнечные корпускулярные потоки на разных расстояниях от Земли в межпланетном пространстве. Они установили, что солнечный ветер «дует» постоянно со скоростью около 400 км/сек на расстоянии Земли от Солнца и что число частиц в 1 см3 несколько колеблется. Через 1 см2 за секунду проходит 108-109 частиц и больше после сильных вспышек на Солнце. Они несут с собой магнитное поле и движутся не по радиусам, а по спиралям. Но солнечный ветер не отличается постоянством. В его потоках наблюдаются и турбулентность газа и деформация магнитного поля. В настоящее время солнечный ветер усиленно изучается всеми доступными средствами, так как он ответствен и за процессы в кометах и за многие геофизические явления в земной магнитосфере и атмосфере ( О солнечном ветре см. в книге «Астрономия невидимого», «Наука», 1967)).
Полярные сияния чаще всего, почти ежедневно, наблюдаются в кольцевых зонах радиусом 23° с центром около магнитных полюсов Земли. Самые мощные и высокие полярные сияния наблюдаются не только в высоких и средних широтах, но даже в тропиках, сопровождая собой наступление магнитных бурь, отмечаемых одновременно по всей Земле. Виды и типы полярных сияний, этого электрического свечения в стратосфере, весьма разнообразны. Хотя все они вызваны проникновением в стратосферу частиц высоких энергий, связанных с активностью Солнца, причины существования разных форм сияний неодинаковы. Высота полярных сияний определяется по параллаксу их деталей. Для этого одновременно фотографируют сияние из двух точек и определяют его положение на фоне неба по отношению к звездам.
Чаще всего сияния происходят на высотах 95-120 км, но иногда и немного ниже; изредка же сияния можно увидеть на высотах до 1000 км. Знание этой высоты и плотности воздуха на разных высотах позволяет определить скорость и энергию корпускул, вторгающихся в стратосферу. До высоты 100 км могут проникать протоны с энергией 100 килоэлектронвольт (кэв) и электроны с энергией даже в 10 раз меньшей.
В спектрах полярных сияний наблюдаются яркие линии атомарных и полосы молекулярных кислорода и азота, как нейтральных, так и ионизованных. Среди них есть и запрещенные линии, о которых мы говорили в очерке «История двух незнакомцев». Они обусловлены разреженностью стратосферы, которая на высоте 100 км в миллион раз менее плотна, чем воздух на уровне моря.
С различием химического состава воздуха на разных высотах и различием энергии вторгающихся корпускул связано появление преимущественно тех или других спектральных линий. Поэтому-то в полярных сияниях и наблюдается чарующая игра разных красок и их отблесков на белоснежных полях арктических и антарктических просторов. Наблюдается в спектре полярных сияний и красная линия атомарного водорода, производимая вторжением солнечных протонов.
Очень много для понимания природы полярных сияний дали обширные систематические исследования их, проведенные во время Международного геофизического года (МГГ), а также исследования при помощи искусственных спутников Земли и геофизических ракет.
Магнитное поле Земли в общем похоже на поле намагниченного железного шара с силовыми линиями, выходящими из одного магнитного полюса и входящими в другой. В связи с этим дуги полярных сияний вытягиваются вдоль геомагнитных параллелей, а их лучи – вдоль геомагнитных силовых линий.
Сияния в области геомагнитных полюсов, аморфного вида, производятся очень энергичными электронами, приходящими непосредственно от Солнца, но отклоняемыми в своем движении магнитным полем Земли. Сияния в области наибольшей их повторяемости – в области полярных кругов – возбуждаются электронами с энергией 10 кэв и меньше, которые не могут прийти прямо от Солнца, а приобрели большую скорость, странствуя в магнитном поле Земли, хотя они и не принадлежат к радиационным поясам Земли. Здесь же происходят и сияния, вызванные протонами с энергией в 1 1/2 – 2 кэв, т. е. с такой же, какой обладают протоны солнечного ветра. Протоны эти попадают в зону обтекания геомагнитного поля, а оттуда врываются в стратосферу. Сияния в виде красных дуг на высотах около 350 км создаются ближе к земному экватору протонами небольших энергий из состава солнечного ветра. Детали проникновения корпускул солнечного ветра в стратосферу и их «приключения» в пути еще подлежат выяснению.
Солнечный ветер, вызывая магнитные бури и полярные сияния, возмущая земную ионосферу, влияет на радиосвязь на коротких волнах, а быть может, как считал А. Л. Чижевский, оказывает заметное влияние и на живые юрганизмы. Поэтому изучение солнечного ветра и связанных с ним явлений не безразлично для человеческой практики, особенно в связи с запусками человека в Космос.
Поскольку солнечный ветер связан с активными областями на Солнце, существующими длительное время, а скорость вращения Солнца и скорость корпускулярных потоков известны, наступление магнитных бурь и сильных полярных сияний в некоторой степени удается предсказывать заранее.