355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Борис Воронцов-Вельяминов » Очерки о Вселенной » Текст книги (страница 29)
Очерки о Вселенной
  • Текст добавлен: 5 октября 2016, 01:34

Текст книги "Очерки о Вселенной"


Автор книги: Борис Воронцов-Вельяминов



сообщить о нарушении

Текущая страница: 29 (всего у книги 36 страниц)

При расширении центр поверхности полусферы, обращенной в нашу сторону, приближается к нам, а лучевая скорость его равна скорости расширения. Центр поверхности противоположной полусферы при расширении удаляется от нас, а его скорость по лучу зрения тоже равна скорости расширения. В этой точке линия спектра смещена максимально к красному концу спектра, тогда как от центра передней полусферы точка линии смещена максимально к синему концу спектра. Таким образом, половина расстояния между компонентами расщепленной линии, т. е. полуширина всей линии, соответствует истинной скорости расширения. В соответствий с принципом Доплера эта полуширина раздвоенной линии, выраженная в разности длин волн в ангстремах, может быть пересчитана в скорость, выраженную в километрах в секунду. Дальше от видимого центра скорость расширения направлена под углом к лучу зрения. Ее проекция на луч зрения меньше и смещение спектральной линии от нормального положения тоже меньше.

Рис. 172. Расщепление линии спектра в расширяющейся планетарной туманности

На краях видимого диска туманности скорость расширения перпендикулярна к лучу зрения и соответствующие точки линии спектра занимают нормальное положение. Впрочем, и эти точки смещены от нормального положения на величину, соответствующую скорости движения по лучу зрения всей туманности как целого. Эти лучевые скорости имеют также немалое значение для изучения туманностей, тем более, что вследствие удаленности от нас туманностей при движении они почти не перемещаются по небу. Вследствие этого полная (пространственная) скорость их определяется неточно. Если бы туманность не была совершенно прозрачной для собственных излучений из-за своего крайнего разрежения, мы не наблюдали бы красной компоненты расщепленной линии, образованной удаляющейся полусферой туманности.

Когда скорость расширения мала и велрхчина расщепления линии лишь не намного превосходит ширину компонент, обусловленную тепловым, хаотическим движением атомов в оболочке, то вместо явного расщепления наблюдается лишь расширение линий. Если толпщыа или плотность передней и задней полусферы сильно различаются, то интенсивности компонент расщепленной линии заметно различны.

Заметим, что общего наклона спектральных линий с достоверностью не обнаружено, что говорит об отсутствии у планетарных туманностей заметного вращения вокруг оси. Если бы туманности вращались, то в силу закона сохранения момента количества вращения в ранних стадиях расширения, когда туманность была в тысячи раз меньше, чем теперь, ее вращение было бы таким быстрым, что она вообще не могла бы существовать.

Что касается самих скоростей расширения, то в исследованных случаях они составляют 15-30 км/сек, достигая максимума 53 км/сек у NGC 2392. У туманностей малого углового размера расширение обнаружить нельзя.

Общая картина расширения, выводимая из вида спектра, осложняется в деталях. У некоторых туманностей, особенно у IC 418, существует общее уменьшение скорости расширения с ростом потенциала ионизации данных атомов, т. е. с ростом энергии, нужной для их ионизации. В то время как одни газы почему-то быстро расширяются со скоростью до 23 км/сек, другие, например водород, совсем не показывают расширения. Между тем и эта зависимость имеет исключения. Например, некоторые атомы с таким же потенциалом ионизации, как водород, удаляются от звезды со скоростью 10 км/сек. У других планетарных туманностей все газы в оболочке движутся наружу одинаково. Эти различия от туманности к туманности и от одного сорта атомов к другому, вместе с незнанием иногда точного их относительного распределения в оболочке, мешают дать всем этим фактам окончательное объяснение. Вероятно, описанные детали связаны с различием силы светового давления для разных атомов, со степенью их переме-шанности или разделения в пространстве, с температурой ядра, а может быть, и с начальными условиями расширения.

Естественно желание проверить непосредственно расширение планетарных туманностей, установленное по спектру. Для этого надо обнаружить угловое увеличение диаметра туманностей. Наиболее обстоятельна последняя работа Лиллера и его сотрудников в США. Они сделали снимки некоторых туманностей, у которых, по расчету автора этих строк, сделанному еще в 1948 г., можно было ожидать наиболее заметное угловое расширение. Эти снимки они сравнили со снимками, сделанными на том же телескопе лет на 60 ранее.

В восьми случаях угловое расширение оказалось меньше ожидаемого, а в шести случаях вообще отсутствует и не может быть объяснено ошибкой в оценке расстояния до туманностей, но может объясняться предположением о поддержании плотности туманности за счет выброса вещества ядром (заметим, что ошибки, неизбежные при измерении любых малых величин, скорее бы преувеличили изменение диаметров туманностей, а не преуменьшили). В одном случае, по-видимому, наблюдается согласие углового и линейного расширений и зависимость расширения от расстояния вещества от ядра. При другой оценке расстояния опять требуется привлечение гипотезы пополнения массы оболочки непрерывным истечением газа из ядра.

Хотя масса ядер туманностей и неизвестна, а расстояния до них, а следовательно, и размеры оболочек известны неточно, несомненно следующее. Скорости расширения в 10 км/сек и более превосходят в оболочке скорость отрыва ее от ядра. Тяготение к ядру не может остановить их расширение, и они расширяются практически с постоянной скоростью. Несомненно также, что при постоянстве этой скорости уже через несколько десятков, максимум сотен тысяч лет оболочка планетарной туманности настолько расширится, что перестанет быть видимой и рассеется в пространстве. Итак, планетарные туманности, как впервые отметил автор этих строк еще в 1931 г., являются поставщиками рассеянного газа в мировое пространство.

Интересен также другой вывод. Очевидно, 104-105 лет назад расширяющаяся оболочка была размером со звезду, т. е. еще только отделилась от ядра и начала расширяться. Значит, в космическом смысле планетарные туманности – очень молодые образования, они возникли совсем недавно, они моложе даже, чем сверхгиганты, возраст которых оценивают в 106-108 лет. Сверх того, планетарные туманности эфемерны, их жизнь очень коротка. Эти космические мотыльки «живут» не более чем 105-106 лет. Это не значит, однако, что их ядра также эфемерны. Это могут быть старые звезды, которые будут светить, заметно не меняясь, еще долго после того как их оболочка рассеется. Впрочем, если иногда межзвездная среда тормозит расширение туманностей или если ядро пополняет оболочку газом, жизнь планетарной туманности может затянуться.

Эволюция планетарных туманностей и их ядер

Температуру ядер планетарных туманностей нельзя определить способами, применяемыми к обычным звездам, потому что линии их спектра часто либо ярки и широки либо плохо видны, либо совсем не видны. По распределению энергии в непрерывном спектре температуру горячих ядер тоже нельзя определять, так как это распределение в видимой области спектра мало меняется с температурой.

Занстра указал на возможный способ определения температуры ядра. Идея его состоит в том, что яркость туманности в видимых линиях спектра отвечает энергии в далеком ультрафиолетовом спектре ядра, – там, где кванты достаточно мощны, чтобы ионизовать атомы оболочки туманности и отрывать от них электроны при столкновении. Так, по яркости туманности в видимых линиях водорода можно определить яркость далекого ультрафиолетового участка спектра ядра с длиной волны короче 912 А (более длинноволновые кванты уже не могут ионизовать водород). Сравнение числа этих квантов с числом квантов в видимой области спектра ядра позволяет уже точно определить температуру его, если ядро излучает как абсолютно черное тело (для последнего распределение энергии во всем спектре в зависимости от температуры известно теоретически).

Недавно Г. С. Хромов использовал размеры зон ионизации разных атомов и из них получил значения энергии в трех точках ультрафиолетового спектра ядра. Исходя из этих значений энергии и применив формулу Планка, он получил температуру, характеризующую ультрафиолетовый участок спектра, около 150 000°. В более длинноволновой области спектр ядра представится формулой Планка для более низкой температуры. В 1965 г. сотрудница лаборатории автора Р. И. Носкова нашла хорошее соответствие видимой части спектра десятка ядер формуле Планка при температурах от 15 до 65 тыс. градусов.

Вопрос о температуре ядер остается еще плохо разработанным. Надо ожидать большой ее дисперсии, потому что ядра со спектрами поглощения О9-О5, вероятно, имеют такие же температуры, как обычные звезды этого класса, т. е. не выше 35 000°.

Автор этих строк еще много лет назад нашел, что температуры ядер со спектром Вольфа – Райе выше, чем ядер со спектром классов О9-О5. Самые высокие температуры находят у ядер с непрерывным спектром, не имеющим никаких линий – ни темных, ни ярких. Первое согласуется с тем, что мы имеем для обычных звезд О и Вольфа – Райе, а горячие звезды с непрерывным спектром, помимо ядер планетарных туманностей, неизвестны, если не говорить о двух-трех белых карликах.

Каковы бы ни были окончательные данные о расстоянии отдельных конкретных планетарных туманностей, незыблемым остается вывод, сделанный еще 35 лет назад при первых оценках расстояния до этих объектов, о том, что светимости ядер в среднем гораздо ниже, чем светимости обычных горячих звезд с такими же спектрами и температурами, но не имеющих обширных туманных оболочек. Более того, учитывая бесспорно большую дисперсию светимости ядер, можно было сказать, что по крайней мере некоторые ядра сходны с белыми карликами типа спутника Сириуса.

Ядра еще более сходны с бывшими новыми звездами и по температуре, и по спектру, и по светимости. Их правильнее было бы даже назвать, как я предлагал, голубыми или ультрафиолетовыми карликами. Массы их не могут быть меньше массы Солнца, а светимости некоторых из них во много раз меньше, чем у Солнца, следовательно, при высокой температуре их объемы много меньше, чем у Солнца, а плотности громадны. Последние, вероятно, приближаются к плотностям белых карликов, хотя, может быть, и не достигают их.

Привести точные числовые данные их физических характеристик мы не можем ввиду ненадежности всех данных. В частности, неизвестны те поправки, которые надо придать к их видимой (визуальной или фотографической) светимости, чтобы получить их болометрическую светимость, выражающую их суммарное излучение во всех длинах волн. Причина этого в отклонении их излучения от законов излучения черного тела. По-видимому, болометрические светимости ядер имеют гораздо меньшую дисперсию светимостей, чем их фотографические светимости.

При большом напряжении силы тяжести на поверхности белых карликов в их спектрах, как известно, наблюдается смещение линий к красному концу, предсказываемое теорией относительности. Можно ожидать такого эффекта и у карликовых ядер туманностей. Для его обнаружения надо сравнивать длины волн спектра ядра с длиной волны концов тех же линий в спектрах оболочек (так как в середине линии расщеплены расширением). Такое сравнение практически трудно. В двух случаях результат оказался отрицательным, а у одной туманности красное смещение в ядре измерено, но полученные данные не заслуживают большого доверия. Значительное красное смещение не обязательно, так как линии спектра ядра могут возникать и на большой высоте в его атмосфере, где напряжение силы тяжести меньше и ядро может быть не очень малого радиуса.

Автор этих строк в двух случаях обнаружил изменения интенсивности линий спектра туманности, что можно объяснить только изменениями температуры ядра, вероятно, временного характера. Это указывает на возможность и быстрых эволюционных изменений ядер. Такие изменения, если они есть, существенно повлияют на картину эволюции и оболочки ядра, о которой скажем ниже. Колебаний блеска ядер или их двойственности пока не обнаружено с достоверностью.

Выяснение причины расширения и возможных изменений его со временем представляет сложную задачу. Предполагалось, что давление света со стороны ядра и вызывает расширение (оно различно для разных ионов). Теперь эти расчеты вызывают сомнения.

Более существенной является, по-видимому, роль газового давления. Скорости расширения близки к тепловым и к скоростям расширения газа в пустоту. Г. А. Гурзадян ввел впервые в рассмотрение гипотезу о большой роли магнитного поля внутри туманности, которое влияет на распределение и движение газов. Его теория встретила критику, но нам представляется, что без допущения магнитного поля многие детали структуры планетарных туманностей объяснить нельзя.

Обычно принимается, что планетарная туманность неограниченно расширяется; при этом ее светимость и поверхностная яркость очень быстро уменьшаются. Через несколько десятков или сотен тысяч лет она перестает быть видима и ее оболочка рассеивается в окружающем межзвездном пространстве.

Остается ядро – голубой карлик, если к этому времени оно не успевает изменить свои характеристики. Однако мы уже отмечали выше, что торможение межзвездной средой и другие факторы могут замедлить скорость эволюции, но насколько, сказать трудно.

Существенно, как это впервые еще 35 лет назад показали расчеты автора, что расширение большого числа планетарных туманностей является непосредственно наблюдаемым фактом рассеяния в пространстве газов, ранее входивших в состав ядер, т. е. звезд.

Из каких звезд и почему возникают планетарные туманности, пока совершенно не ясно. Попытки видеть в стадии, предшествующей планетарным туманностям, некоторые типы холодных переменных звезд, вспышки новых звезд или же выбрасывающие газ звезды Вольфа – Райе пока не убедительны. В двух последних случаях скорости выброса оболочек или постоянного истечения газа слишком велики, чтобы создать медленно расширяющуюся планетарную туманность. Но несомненно (по подсчету автора), что за срок существования Галактики планетарные туманности наполнили ее количеством газа, составляющим заметную долю от всех газов, наблюдаемых в Галактике сейчас. До сих пор «спорят» две гипотезы: возникают ли звезды из сгущения диффузной материи или, наоборот, они происходят из сверхплотного вещества. Между тем то, что диффузная материя хотя бы частично порождается звездами, уже стало общепризнанным фактом.

Межзвездный газ

Газ, всюду газ! Собранный в гигантские раскаленные шары, он образует бесчисленные звезды – в них сосредоточена главная масса вещества во Вселенной. Разреженный холодный газ, заполняющий огромные пространства в виде газовых туманностей, обволакивающий десятки звезд, газ, образующий атмосферы планет! И все это в безвоздушном пространстве. Но подлинно ли в безвоздушном?

Наши понятия о вакууме, о безвоздушном пространстве относительны. В электрической лампочке старого типа «нет воздуха», говорим мы, он оттуда выкачан. Сравнительно о комнатным воздухом там вакуум. Но физик с помощью своих лучших насосов может так выкачать воздух из какой-либо стеклянной трубки, что по сравнению с пространством в ней пространство внутри электрической лампы кишит мириадами молекул.

Газовые диффузные туманности с их плотностью порядка 10-19 г/см3 раскинулись в безвоздушном пространстве. Но и оно, как мы убеждаемся, не совершенно пусто, в нем тоже есть газ. Газ ничтожной плотности, но все же газ, и между любыми двумя звездами есть газовая среда, как бы разрежена она ни была.

Но какой это газ? Это, конечно, не земной воздух, хотя бы и разреженный. История изучения этого газа принесла много интересного и неожиданного.

В 1904 г., изучая спектрально-двойную звезду Дельту Ориона, Гартман для большей точности определения ее лучевой скорости измерял положение в спектре всех темных линий, которые в нем были видны. Ведь если звезда движется как целое по своей орбите около центра тяжести системы, то все линии ее спектра должны смещаться одинаково в том смысле, что в пределах ошибок измерения смещение любой линии спектра должно соответствовать одной и той же скорости приближения или удаления от нас. Мы уже знаем, что при таком периодическом орбитальном движении линии спектра периодически же изменяют свое смещение. В спектре Дельты Ориона все линии вели себя «как следует», кроме линий ионизованного кальция. Эти две линии почему-то не участвовали в общем периодическом колебании положения линий в спектре, а упрямо стояли на месте. Неслась ли звезда на нас, удалялась ли она от нас в данный момент – линиям кальция это было безразлично.

Рис. 173. Линии межзвездного кальция

Упрямые линии принадлежали атомам кальция, и Гартману ничего не оставалось, как заключить, что кальций почему-то не участвует в орбитальном движении звезды. Раз линии кальция видны как темные (в поглощении), то,,очевидно, свет звезды проходит через него, поглощается в нем, но этот элемент не находится в атмосфере звезды, вызывающей появление в спектре остальных линий поглощения. Атмосфера звезды движется вместе со звездой, кальций же с ней не движется. Быть может, наша двойная звезда погружена в обширное облако разреженного кальция, в котором она и движется, не увлекая его с собой?

Такого рода линии кальция назвали стационарными, т. е. неизменными, неподвижными. В дальнейшем в спектрах многих других спектрально-двойных звезд были открыты стационарные линии кальция, но лишь в тех случаях, когда звезды были раннего спектрального класса В.

Слайфер, однако, нашел более вероятным, что стационарные линии производятся не облаком кальция, в которое погружена звезда, а облаками кальция или его непрерывной массой, расположенной на всем пути луча света от звезды к нам. Другими словами, кальций не околозвездный, а межзвездный газ. Этот взгляд был подтвержден. Тогда вместо «стационарные линии» стали говорить «межзвездные линии».

Выяснилось это так. Когда стало известно, что температура атмосферы звезды определяет вид ее спектра, стало возможно теоретически определять интенсивности разных линий, создаваемых атмосферой звезды определенного химического состава и определенной температуры. Выяснилось, что такие горячие звезды, как звезды класса В, не содержат в своей атмосфере атомов ионизованного кальция – для них там слишком горячо. Весь кальций там уже дважды ионизован, и его линий в спектре быть не может. Значит, ионизованный кальций, производящий в спектре горячих звезд стационарные линии, должен быть далеко от звезды, там, где не так горячо и где он может существовать.

Затем обнаружилось, что вовсе не одни лишь спектрально-двойные звезды обнаруживают эти линии кальция, – он есть в спектрах большинства горячих одиночных звезд. Там его линии вообще нельзя назвать стационарными, потому что одинокая звезда не совершает орбитального движения. По отношению к нам она движется постоянно с одной и той же скоростью, поэтому все линии ее спектра смещены по принципу Доплера на величины, соответствующие одной и той же скорости. Однако оказалось, что у таких горячих звезд смещение линий ионизованного кальция соответствует совершенно другой скорости, чем та скорость, с которой движется сама звезда.

Если ионизованный кальций заполняет все межзвездное пространство, то его линии, смещенные, как мы видим, всегда особенным образом, должны присутствовать в спектрах звезд любого типа. К сожалению, более холодные звезды сами содержат в своей атмосфере ионизованный кальций, а потому и его линии в спектре. Эти линии широки и сильны и маскируют тонкие, слабые линии межзвездного кальция. В некоторых случаях все же удалось обнаружить эти тонкие «межзвездные» линии, наложенные на более широкие «звездные» линии спектра.

Решающим оказалось выполненное в Канаде Пласкеттом и Пирсом сопоставление интенсивности линий межзвездного кальция с расстоянием до звезд. Чем звезда дальше, тем интенсивнее ее линии межзвездного кальция. Но так и должно быть, если кальций заполняет всю межзвездную среду. Чем дальше от нас звезда, тем длиннее путь ее луча, прежде чем он дойдет до нас, и тем больше поглощающих атомов кальция он встретит на своем пути. Чем больше атомов кальция поглотит свет звезды, тем больше он ослабится и тем темнее и интенсивнее будет линия поглощения в спектре. С этим объяснением пришлось согласиться.

Мало того, теперь мы имеем возможность, установив из наблюдений связь между интенсивностью линий ионизованного кальция и известными расстояниями до звезд, определять по интенсивности этих линий расстояние до тех горячих звезд, для которых они еще не известны. Спасибо межзвездному кальцию! – должны сказать мы во многих случаях, так как часто у нас не бывает другого способа определить расстояние до какой-нибудь звезды.

Пласкетт и Пирс сумели также доказать, что межзвездный кальций участвует в том общем вращении, которым охвачены все звезды нашей звездной системы. Сопоставляя лучевые скорости звезд, вызванные этим вращением, с лучевой скоростью межзвездного кальция (по сдвигу его линий в спектрах тех же звезд), убедились, что последняя вдвое меньше, чем та лучевая скорость, которая следует для данной звезды по теории вращения Галактики. Но вдвое меньшую скорость относительно Солнца при вращении Галактики должна иметь точка, вдвое более близкая. Вывод отсюда один: межзвездный кальций участвует во вращении всей звездной системы, вместе со звездами и по тем же законам, так как центр тяжести того столба газа, который находится между любой звездой и нами, во всех случаях совпадает с его серединой. Это значит, что в пространстве между звездами кальций расположен довольно равномерно.

Впрочем, позднее выяснилось, что, как и космическая поглощающая пыль, кальций концентрируется в плоскости Млечного Пути. Выяснилось и то, что он расположен не непрерывной средой, а скорее в виде многочисленных облаков. Размеры некоторых облаков кальция доходят до 2000 световых лет.

Пока свойства атомов не были хорошо изучены физиками, исключительное или по крайней мере преобладающее нахождение именно кальция между звездами вызывало недоумение. Потом выяснилось, что ионизованный кальций поглощает свет главным образом в тех двух своих линиях, которые находятся в легко наблюдаемой части спектра. Атомы других элементов поглощают свет либо в очень многих линиях, как, например, железо, либо в такой области спектра (ультрафиолетовой), которая недоступна для изучения из-за ее полного поглощения в нашей атмосфере. Поэтому-то линии других межзвездных атомов, если они и есть, либо вообще не могут быть обнаружены, либо они менее заметны, потому что их общее поглощение разбивается на много разных поглощений – в каждой линии понемногу. Таким образом, нет оснований считать ионизованный кальций единственным или преобладающим газом в межзвездных недрах, он только заявляет о своем присутствии «крикливее» других.

Можно все же попытаться найти и другие межзвездные газы, хотя бы слабые следы их, – «кто ищет, тот всегда найдет!». И действительно, после специальных поисков в спектрах звезд был найден межзвездный натрий, а в самые последние годы обнаружили еще нейтральный кальций, ионизованный титан, нейтральный калий и даже железо! Кроме того, в конце тридцатых годов были найдены еще межзвездные молекулы нейтрального и ионизованного углеводорода СН и СН+, циана CN, NaH, a также некоторые линии неизвестного еще пока происхождения. Средняя плотность поглощающего межзвездного газа в несколько тысяч раз меньше плотности излучающих свет газовых туманностей.

Все, что известно сейчас о межзвездном газе, хорошо укладывается в единую теоретическую картину, рисующую физику газовых туманностей следующим образом.

Атомы газа, так или иначе попавшего в межзвездное пространство, ионизуются и возбуждаются квантами света, излучаемого звездами. С этими квантами они изредка сталкиваются. Мы сказали – изредка, потому что вдали от звезд через квадратный сантиметр поверхности проходит очень мало этих квантов. Так же редко происходит встреча иона со свободным электроном, при которой он восстанавливает свою структуру, реже, чем в газовых туманностях с их большей плотностью. Пока атом ионизованного кальция странствует в пространстве, терпеливо ожидая встречи с каким-либо заблудшим электроном, на него может налететь какой-нибудь квант света звезды, соответствующий длине волны 3933 А, и возбудить его до высшего энергетического состояния. Не будучи в состоянии переживать такое возбуждение дольше одной десятимиллионной доли секунды, атом вернется к исходному нормальному или невозбужденному, состоянию. При этом он излучит обратно поглощенный было им квант энергии с длиной волны 3933 А. Но его он пошлет уже не в том направлении, откуда получил, а в каком-либо ином. Так ион кальция, находящийся между нами и звездой, перехватывая кванты ее света, идущие к нам, будет их отбрасывать то туда, то сюда, будет рассеивать свет, и до нас его дойдет меньше, чем дошло бы без этого вмешательства. В результате в этой длине волны свет звезды ослабится, и в ее спектре мы увидим темную линию. Подобно этому ведут себя и другие межзвездные атомы.

Зная структуру атомов и их способность к поглощению, можно по интенсивности линий оценить их число на пути звездного луча, а зная расстояние до звезды, вычислить и плотность межзвездного газа.

Первые шаги, сделанные в этом направлении, дают для межзвездного ионизованного кальция плотность порядка 4•10-32 г/см3. Полная же плотность межзвездного газа значительно больше и по оценке Эддингтона составляет не менее 10-24 г/см3. Если бы этот газ состоял из одного лишь водорода, то при такой плотности в одном кубическом сантиметре содержалось бы только по одному атому, тогда как в таком же объеме комнатного воздуха их содержится десять миллиардов миллиардов!

В действительности дело почти так и обстоит, так как водород на самом деле является главной составной частью межзвездного газа. Следующее за ним место занимают кислород и натрий, но на водород приходится более 90 % атомов всей межзвездной среды, включая космическую пыль и метеориты. На долю последних приходится, как оказывается, ничтожная доля массы всей межзвездной среды и больше всего в ней весит самый легкий из газов!

К сожалению, межзвездный водород в поглощении не обнаружен оптическими методами и едва ли даже будет обнаружен, потому что в большинстве уголков нашей Вселенной подавляющее число атомов водорода находится в невозбужденном состоянии и потому поглощает энергию в невидимой далекой ультрафиолетовой области спектра.

Некоторая надежда увидеть знакомые линии водорода, но не в поглощении, а в излучении, все же есть. Они могут возникать, когда свободные электроны будут захватываться ядрами водорода и возвращаться к ближайшей к ядру орбите с наименьшей энергией каскадами – со ступеньки на ступеньку, задерживаясь на время на второй от ядра орбите. Такие случаи будут не часты, и излучение ярких линий межзвездного водорода должно быть слабым.

Путем многочасовых экспозиций О. Струве удалось обнаружить в некоторых обширных областях Млечного Пути слабые линии излучения водорода. Это и есть сигнал в видимых лучах от межзвездного водорода, но автор этой книги думает, что нередко мы тут имеем дело с проекцией друг на друга больших, далеких от нас и очень разреженных диффузных газовых туманностей. Будучи слабы и неразличимы по отдельности, они-то и создают впечатление неопределенно широкой излучающей водородной области Н II.

Это подтверждается тем, что, кроме линий водорода, в тех же областях неба были обнаружены яркие линии запрещенного азота и кислорода, т. е. был получен обычный спектр газовых туманностей. К тому же в этих областях были как раз обнаружены и горячие звезды спектрального класса О, которые всегда возбуждают свечение газовых туманностей.

Однако не только существование, но и распределение в пространстве, и скорости движения межзвездного водорода в настоящее время надежно установлены по его радиоизлучению. Подробнее об этом мы расскажем в главе 10.

По оценке Дэнхема и О. Струве плотность отдельных газов в межзвездном пространстве, определенная по интенсивности как линий поглощения, так и излучения, такова:

Для межзвездного вещества, на основании анализа наблюдаемого движения звезд, нельзя допустить плотность больше чем 6•10-24 г/см3, и вероятнее всего именно эта величина, совпадающая с оценкой, приведенной выше. Любопытно, что по некоторым оценкам средняя плотность межпланетного пространства в Солнечной системе, если иметь в виду его заполнение метеоритной материей, составляет 5•10-5 г/см3. Это даже меньше, чем плотность межзвездного пространства. По оценке Гринстейна плотность межзвездной пыли (исключая газ) составляет 2•10-5 г/см3. Так, вероятно, пыль между звездами по своей массе уступает место межзвездным газам!

В 1932 г. американский радиофизик Янский обнаружил радиоизлучение Млечного Пути. В метровом диапазоне оно очень сильно. Как выяснилось, это радиоизлучение имеет два источника. Одним из них является скопление в полосе Млечного Пути множества газовых туманностей. Мы видим из них только самые близкие или самые яркие. Видеть их далеко от нас мешает и поглощение света космической пылью. Но радиоволны эта пыль почти не задерживает и радиоизлучение далеких туманностей сливается в сплошной «радиошум» вдоль полосы Млечного Пути. Составлены карты неба, показывающие его «яркость» в разных местах в радиодиапазоне на разных длинах волн.

Другим источником радиоизлучения является торможение релятивистских электронов в межзвездных магнитных полях. Существование межзвездных магнитных полей строго доказано к середине шестидесятых годов. Релятивистские электроны входят и в состав космических лучей. Как мы уже говорили, при торможении релятивистских электронов в магнитном поле возникает излучение, в частности, в радиодиапазоне.

Водород ионизуется горячими звездами, которых мало и которые образуют сравнительно тонкий слой, заполняя его далеко не целиком. Дальше от слоя и в этом слое, но ближе к центру нашей звездной системы, горячих звезд и ионизованного водорода тоже нет.

Там везде водород может быть, но он будет не ионизован. И. С. Шкловский предвычислил, что нейтральный водород должен испускать в радиодиапазоне линию излучения с длиной волны 21 см и что она должна быть достаточно яркой для ее обнаружения радиотелескопами. Наблюдения вскоре это подтвердили. Так холодный невидимый нейтральный водород стал доступен для изучения почти во всем объеме нашей звездной системы. Ведь на энергию волн длиной 21 см поглощение межзвездной пылью не влияет!


    Ваша оценка произведения:

Популярные книги за неделю