Текст книги "Очерки о Вселенной"
Автор книги: Борис Воронцов-Вельяминов
сообщить о нарушении
Текущая страница: 21 (всего у книги 36 страниц)
На спектрогелиограммах отчетливо проявляется не видимая в обвшный телескоп структура водородных масс в области пятен, о чем говорилось выше. Кроме того, пятна, как правило, бывают окружены яркими облаками горячего водорода и кальция (флоккулами). Флоккулы – это верхние части областей, занятых факелами. Это сопровождение областей похолодания на Солнце облаками горячих газов и вызывает то, что в годы максимума площади, занятой холодными пятнами, общее излучение Солнца, по-видимому, не понижается. Изучение спектрогелиограмм в связи с измерениями скоростей движения газов в разных местах Солнца показывает сложную циркуляцию газов в пятнах.
Рис. 123. Спектрогелиограмма Солнца в лучах водорода. Видны светлые флоккулы вокруг пятен и темные волокна. Внизу – обычная фотография Солнца
В нижней части пятна газ течет горизонтально от центра к периферии, а в более высоких слоях газы втекают сверху и сбоку внутрь пятна. Скорости достигают 10 км/сек. Однако пятна – спокойные образования, где конвекция подавлена сильным магнитным полем. Вокруг же пятна, в области флоккул, магнитное поле слабо и усиливает конвекцию ионизованного газа, называемого плазмой.
Солнечные газы охвачены непрерывной и мощной циркуляцией, законы которой для нас все еще гораздо «темнее», чем сами пятна.
Покрывала Солнца
Хотя фотосфера сама состоит из разреженных газов, она окружена атмосферой, еще более разреженной. Быть может, лучше сказать, что Солнце окружено несколькими покрывалами или оболочками, как бы вложенными одна в другую, так что солнечная атмосфера состоит из нескольких слоев. Атмосфера Солнца, более разреженная, чем фотосфера, почти совершенно прозрачна. Через нее, как через чистое стекло, мы видим фотосферу, а ее самое не видим, так же как стекло. Атмосфера Солнца нагрета до нескольких тысяч градусов и потому испускает свет.
Сравнительно тонкий и разреженный слой атмосферы испускает не непрерывный спектр, а яркие линии, но их свет так слаб, что на светлом фоне неба вблизи края Солнца атмосфера не видна. Небо, освещенное Солнцем вблизи его края, ярче, чем атмосфера Солнца. Там же, где сквозь атмосферу видна фотосфера, свет последней поглощается по уже известным нам причинам в длинах волн, которые атмосфера испускает.
Поглощение атмосферой Солнца света в определенных длинах волн и производит появление в непрерывном спектре фотосферы темных, фраунгоферовых линий.
Но если атмосфера Солнца, проектирующаяся на его диск, прозрачна, а у его края невидима из-за яркого света неба, то можем ли мы узнать ее строение?
Рис. 124. Строение Солнца
Да, можем. Нам помогают в этом полные солнечные затмения. Когда Луна закрывает собой ослепительно яркий диск Солнца, то небо около Солнца, уже не освещаемое его прямыми лучами, темнеет. Тогда на потемневшем фоне неба из-за края Луны становится видна солнечная атмосфера, как яркое кольцо, окаймляющее темный круг Луны. Стоит выглянуть из-за Луны крошечному кусочку яркой фотосферы, как небо тотчас же опять светлеет, и атмосфера
Солнца снова делается невидимой. Атмосферу Солнца во время полного затмейия можно наблюдать всего лишь несколько минут, не больше. К тому же полные затмения Солнца, видимые в таких местностях, куда удобно снарядить экспедиции, бывают редко, так что в общей сложности таким путем солнечную атмосферу мы видели только около одного-двух часов, – и это с тех пор, как наука ею впервые заинтересовалась!
Солнечной атмосферой обычно называют слой газов, более разреженных, чем газы фотосферы, и убывающий в плотности с удалением от нее. Этот слой изменяющейся толщины во время полных затмений «высовывается» из-за темного края Луны либо в виде красноватого кольца, либо в виде серпа, в зависимости от обстоятельств и фазы затмения. За розовый цвет эту оболочку Солнца назвали хромосферой, а розовый цвет ей придает излучение водорода, которого в хромосфере всего больше. Спектр хромосферы состоит из ярких линий на темном фоне. Нижние ее части содержат все те газы, которые своим поглощением в более плотных наружных слоях Солнца вызывают появление в его спектре темных линий. Спектр нижних частей хромосферы, состоящий из множества ярких линий, виден очень недолго, обычно 2-3 секунды, и был назван спектром вспышки: его линии вспыхивают почти на мгновение. Линии разных химических элементов, составляющих хромосферу, наблюдаются до разной высоты. Выше всего наблюдаются линии ионизованного кальция – до 14 000 км, хотя он и тяжелее, чем водород.
Видимая граница хромосферы, различная для разных газов, кроме того, все время колеблется, так как она, по-видимому, не является неподвижным, спокойным напластованием слоев газа. Она образуется, скорее, за счет выбросов газов вверх в форме бесчисленных струй или фонтанов, вздымающихся из обращающего слоя или даже из фотосферы. Представьте себе бесчисленное множество мелких фонтанчиков, струи которых сливаются в сплошную водяную стену, – вот будет примерная модель хромосферы. Хромосфера, другими словами, является не статическим, а динамическим образованием.
Во всяком случае, наличие мощных вертикальных движений газа в хромосфере и из нее и даже взрыво-подобные выбросы газа наблюдаются нами непрестанно.
Высочайшие в мире фонтаны
Во время полных затмений Солнца даже невооруженным глазом видны выходящие из атмосферы гигантские фонтаны раскаленного газа, называемые протуберанцами. Впервые в истории такой протуберанец был отмечен в Древней Руси в 1185 г., но физическая природа протуберанцев была выяснена лишь многими веками позднее. Выброс газов происходит со скоростями, доходящими до нескольких сотен километров в секунду, но, как ни огромны эти скорости, они, как правило, недостаточны для отрыва протуберанцев от Солнца. На солнечной поверхности критическая скорость, при которой тело может уже преодолеть солнечное тяготение и улететь в бесконечность, составляет 617 км/сек. Газы протуберанцев, быстро вздымающиеся вверх, растягиваются в обширные облака, и рассеиваясь, снова оседают вниз. Высота выброса протуберанцев колоссальна. Например, в 1928 г. наблюдали протуберанец, достигший высоты 900 000 км, т. е. 1,3 солнечного радиуса. Это в 2 1/2 раза больше расстояния от Луны до Земли. В 1946 г. наблюдался протуберанец еще вдвое более высокий. При огромной скорости извержения изменения в протуберанцах происходят очень быстро, буквально на наших глазах.
Кроме таких протуберанцев, называемых изверженными, или эруптивными, и состоящими почти из всех газов, входящих в состав хромосферы, на краю Солнца видны еще спокойные протуберанцы. Они имеют вид огромных облаков, плавающих над хромосферой и соединяющихся с ней отдельными колоннами или отростками; они излучают линии водорода, ионизованного кальция и гелия. Длина их доходит иногда до 600 000 км – это в 50 раз больше диаметра Земли, а между тем такой протуберанец» – сравнительно лишь небольшой, временный придаток солнечной атмосферы.
Средний протуберанец плавает на такой высоте над поверхностью хромосферы, что по ней под протуберанцем свободно мог бы катиться земной шар. При средней толщине, равной диаметру Земли, при длине 20 000 км и высоте 50 000 км протуберанец имеет объем в 100 раз больше объема Земли, но так как он состоит из разреженных газов, то его масса равна всего лишь 1018 г, или массе куба воды с длиной стороны в 15 км, т. е. все же больше массы мелких астероидов.
Рис. 125. Фотографии, показывающие изменение вида протуберанца
Число протуберанцев на Солнце меняется ото дня ко дню, но в среднем оно растет и убывает вместе с размером площади, занятой солнечными пятнами. Кроме того, изверженные протуберанцы зарождаются вблизи солнечных пятен, тогда как спокойные протуберанцы встречаются в любых местах солнечной поверхности.
Протуберанцы видны «в профиль» на краю Солнца во время полных затмений, но их можно видеть и «сверху» в проекции на солнечный диск. Имея, как и хромосфера, температуру около 10000°, они поглощают свет фотосферы в длинах волн, соответствующих поглощательной способности атомов, из которых они состоят. Поэтому на спектрогелиограммах они видны как длинные темные волокна. С помощью особого метода, описываемого ниже, можно постоянно наблюдать протуберанцы на краю Солнца. Таким образом, мы можем наблюдать протуберанцы ежедневно по всему солнечному диску.
Рис. 126. Еще одна фотография протуберанца. Сложные движения вещества протуберанца свидетельствуют о наличии на Солнце электромагнитных сил
Протуберанцы поддерживаются на большой высоте, по-видимому, электромагнитными силами, но величина их как от места к месту, так и в одном и том же месте в связи с какими-то физическими процессами меняется, иногда даже скачками. Скорости движения протуберанцев, как это недавно выяснилось, тоже иногда меняются скачками.
Звезды, так же как Солнце, должны иметь фотосферу и атмосферу, состоящую из обращающего слоя и хромосферы. Отличие их по температуре, составу и по строению от того, что есть на Солнце, и обусловливает различие между спектрами Солнца и звезд, когда таковое отмечается. На звездах тоже должны быть извержения протуберанцев, хотя непосредственно их нельзя видеть.
За последнее время Лио во Франции, на Гарвардской обсерватории (США) и у нас в Крымской обсерватории, применяя особые светофильтры, пропускающие только излучение красной водородной спектральной линии, испускаемой протуберанцами, удалось заснять их на кинофильм. На этом кинофильме можно видеть в ускоренном темпе, как с поверхности Солнца выбрасываются и затем рассеиваются гигантские газовые арки. На нем видно также, как на некотором расстоянии над поверхностью Солнца возникает внезапно свечение протуберанца и как затем оно распространяется не от Солнца, а в направлении к поверхности последнего. Особенно забавно выглядят еще незадолго до этого неизвестные протуберанцы, которые поднимаются над поверхностью Солнца косо, как струя из водопроводного шланга, и которые затем, как бы подумав немного, убираются обратно в Солнце, откуда они высунулись. Они уходят назад по тому же самому пути, напоминая вытянувшегося червяка, который неожиданно сокращается. Эти замечательные снимки проливают новый свет на природу протуберанцев и указывают на наличие электромагнитных сил в процессе их изменений.
Корона властелина и ее загадки
Солнце часто называли властелином Солнечной системы. Эта аналогия не вполне удачна, хотя властелин планет действительно увенчан чудесной короной, и корона эта – жемчужная. Собственно говоря, это цвет ее жемчужный, а из чего «сделана» сама корона, о том речь, и речь весьма длинная, будет дальше.
Лишь во время полных солнечных затмений видим мы солнечную корону как чудесное серебристо-жемчужное лучистое сияние, со всех сторон простирающееся вокруг Солнца. Внутренняя часть короны, более яркая, дает непрерывный спектр, на который наложены яркие линии,– ни одну из них никто никогда не видел в лаборатории на Земле. Внешняя, менее яркая часть короны характерна лучами, достигающими в длину диаметра Солнца и даже иногда еще более длинными. Общий свет короны примерно вдвое слабее света полной Луны.
Рис. 127. Различные формы солнечной короны. Слева – формы короны в эпоху малого количества пятен на Солнце (период минимума солнечной деятельности), справа – в эпоху, когда на Солнце много пятен (период максимума солнечной деятельности)
Форма короны при разных затмениях различна, и еще безвременно скончавшийся в 1908 г. пулковский астроном Ганский обнаружил, что эта форма зависит от фазы солнечной активности.
Когда пятен и протуберанцев на Солнце много, у короны «растрепанный» вид. Ее искривленные лучи торчат во все стороны, как волосы на голове человека, только что вскочившего со сна. Когда же на Солнце пятен мало, то корона вытягивается вдоль солнечного экватора наподобие крыльев или опахал.
В 1942 г. советский астроном Н. М. Субботина высказала интересное предположение, что знаменитое изображение крылатого Солнца у египтян, этот их священный и любимый, наравне со скарабеем, символ, есть не что иное, как изображение Солнца с его короной.
Во всяком случае корона, хорошо видимая при затмении невооруженным глазом, не могла не производить потрясающего впечатления на наблюдательных египетских жрецов, которые к тому же обоготворяли Солнце и придумали изображение крылатого Солнца.
На некоторых фотографиях затмений в эпохи, промежуточные между – максимумом и минимумом пятен, солнечная корона выглядит как крылья гигантской бабочки, вспорхнувшей на небо и усевшейся на его фиолетово-синем бархатном фоне.
Рис. 128. Солнечная корона во время затмения 30 июня 1954 г
Несколько тысяч лет назад строители египетских пирамид взирали на чудесное и загадочное явление короны, на крылатое Солнце, но приходится признать, что и для нас оно представляет все еще немало загадок.
Мы не знаем еще точно происхождения короны и причины ее лучистости, хотя искривление корональных лучей от полюсов к экватору Солнца очень похоже на искривление силовых линий магнитного поля около намагниченного шара. Корона не спокойное, статическое образование, а пополняется непрерывно веществом, исходящим из Солнца наружу, Огромная протяженность короны и ее спектр (не чисто газовый) не позволяет нам решиться назвать корону самой внешней частью солнечной атмосферы.
Если она образуется отчасти притекающей к Солнцу метеоритной пылью, как думают некоторые, то ее, конечно, нельзя назвать атмосферой, но если она состоит из вещества, распыленного вокруг себя Солнцем, то чем тогда она не своеобразная, грандиозная атмосфера! Во всяком случае таковой должна являться внутренняя газовая корона, так как она прилегает к газам солнечной атмосферы и образует кругом последней сравнительно неширокий слой.
Рис. 129. Крылатое Солнце – священный символ в Древнем Египте, по-видимому, изображало Солнце с протуберанцами и лучами короны
Внешняя корона дает спектр, который является копией спектра Солнца – непрерывный и с теми же темными линиями. Предполагают, что внешняя корона состоит из электронов, а дальше от Солнца – и из твердых частиц метеоритной пыли, рассеивающих солнечный свет. Академик В. Г. Фесенков указывал, что внешнюю корону в части ее, состоящей из приближающейся к Солнцу метеоритной пыли, нет нужды представлять себе доходящей почти до самой поверхности Солнца. Она может обрываться на расстоянии около 0,1 астрономической единицы от него, так как ближе метеоритные частички будут уже испаряться. Это, однако, не помешает нам видеть корону в Качестве сияния, окружающего Солнце, и медленно растущей в яркости с кажущимся приближением к поверхности Солнца в проекции на небесную сферу.
Еще одну загадку представлял собой спектр внутренней короны, состоящий из ярких линий. Но о ней мы расскажем ниже.
Наконец несколько лет назад радионаблюдения обнаружили, что корона Солнца окружена невидимым грандиозным продолжением – внешней короной. Ее радиоизлучение слишком слабо, чтобы его можно было измерить. Но концентрация электронов в в этой короне достаточна для того, чтобы в ней происходило преломление радиолучей. В. В. Виткевич предложил наблюдать ежегодные случаи, когда очень мощный источник радиоизлучения – Крабовидная туманность (о которой говорится в разделе «Сверхвзрывы сверхновых звезд») покрывается этой короной при движении Солнца по эклиптике. Из-за рефракции радиолучей в короне «видимое» радиотелескопом положение Крабовидной туманности и ее форма временно меняются. Так и было открыто существование внешней короны, прослеженной к 1967 г. на расстоянии до 100 радиусов Солнца, что составляет половину его расстояния от Земли!
Как три астронома обманули природу
Этот «обман», как и многие другие «обманы», был основан на глубоком знании свойств той же природы. Помехи, создаваемые нашему исследованию одними свойствами природы, мы обходим, используя другие ее свойства.
26 октября 1868 г. на заседании Парижской Академии наук было зачитано только что полученное письмо английского астрофизика Нормана Локьера. Оно было датировано 20 октября и содержало описание способа, который Локьер изобрел для наблюдения протуберанцев в любое время, а не только во время полных затмений.
Этим способом Локьер с успехом наблюдал ежедневно то, что раньше удавалось наблюдать в течение нескольких минут затмения, однажды в несколько лет, да и то лишь предпринимая для этого далекие путешествия в полосу полного затмения.
Не успели еще присутствующие прийти в себя от восторга и изумления от этого ценного изобретения Локьера, как секретарь Академии взял второй конверт с почтовым штемпелем Гунтур (Индия) и зачитал письмо, вынутое им из этого конверта. Его написал французский ученый Жюль Жансен еще 19 августа, но оно только что добралось до Парижа. Жансен сообщал об открытом им способе наблюдать протуберанцы ежедневно, вне солнечного затмения. Способ Жансена оказался совершенно тождественным способу, независимо от него и в то же время открытому Локьером. Обоих ученых разделяло расстояние в четверть земной окружности.
Жансен отправился в далекое морское путешествие в Индию с целью наблюдать полное затмение Солнца 18 августа 1868 г. Наведя спектроскоп на протуберанцы, вздымавшиеся над краем Солнца и ставшие видимыми, как только Луна скрыла Солнце, Жансен увидел, что спектр протуберанцев состоит из ярких линий.
В его мозгу блеснула неожиданная мысль, и он тотчас же крикнул откружающим: «Я увижу эти протуберанцы и без затмения!». И действительно: на следующее утро он уже показывал их всем желающим, хотя затмение давно кончилось.
Рис. 130. Наблюдения протуберанцев с помощью спектроскопа
Идея Жансена и Локьера состояла в увеличении контраста между протуберанцами и небом вблизи солнечного края за счет различия их спектров. В обычное время видеть протуберанцы мешает яркий фон неба, освещенного Солнцем.
Установим широкую щель спектроскопа (S на рис. 130) касательно к изображению Солнца (RPR) в фокусе телескопа так, чтобы в нее попадало изображение протуберанца. Тогда свет протуберанца распределится по нескольким его ярким цветным изображениям (например С в спектре, изображенном справа) соответственно испускаемым им длинам волн. Свет же неба, также попавший в щель спектроскопа, распределится по всему непрерывному спектру, ибо свет неба – это рассеянный свет Солнца и его спектр – это спектр Солнца.
В результате яркость цветных изображений протуберанца на фоне непрерывного спектра повысится, контраст будет сильнее, чем при обычном наблюдении, и протуберанцы станут видны. Мало того, что они становятся видны, видно еще, из каких газов они состоят, так как изображения протуберанцев в спектре получаются лишь в тех длинах волн, которые испускаются составляющими их газами.
В память этого поразительного совпадения Парижская Академия наук выбила золотую медаль с портретами Жансена и Локьера на одной стороне. На другой был изображен бог Солнца Аполлон в колеснице, запряженной четверкой коней, и надпись: «Анализ солнечных протуберанцев 18 августа 1868 года». Но где же третий ученый, – спросите вы, так как в заголовке этого параграфа говорилось о трех ученых.
Третий ученый выступил на сцену шестьюдесятью годами позднее, и сценой этой была вершина «Полуденный пик» (Пик дю-Миди) во Французских Альпах. Ее высота 2800 м. Но прежде чем этот ученый достиг своего успеха, много других билось над той же проблемой и всех их постигло жестокое разочарование.
Всем хотелось увидеть протуберанцы непосредственно и сразу кругом всего Солнца, а не в спектроскоп и не обводя его щелью шаг за шагом солнечный диск. Еще больше мечтали увидеть или сфотографировать солнечную корону вне затмения.
После многих попыток и неудач ученых всех стран неизвестный дотоле немецкий астроном-любитель Блюнк в 1930 г., казалось, разрешил эту задачу. Он рассчитывал сфотографировать корону через стекло, пропускающее только инфракрасные лучи, надеясь, что в них контраст между светом короны и светом неба больше, чем в обычных лучах. После упорной работы в течение ряда лет ему удалось изготовить специального рода пластинки и опубликовать фотографию солнечной короны вне затмения. К концу своих трудов изобретатель тяжело заболел, отравившись парами ядовитых веществ, с которыми он имел дело в своих опытах. Увы, его жертва была напрасна, так как вскоре было доказано, что Блюнк сфотографировал не корону..., а тот ореол, который создают вокруг Солнца пылинки нашей атмосферы и который можно видеть невооруженным глазом без всяких затей.
После неудачи Блюнка успех казался невозможным, но в 1930 г. француз Лио описал опыты с построенным им коронографом. С помощью него на вершинах гор, где небо темнее и чище, чем внизу, можно ежедневно видеть кругом Солнца протуберанцы и наблюдать в спектроскоп яркие линии солнечной короны, хотя ее саму непосредственно и не видно.
Лио решил, что контраст между фоном неба и протуберанцами, а также короной, будет повышен, если уменьшить рассеяние света в телескопе, поскольку нельзя в достаточной мере уменьшить его рассеяние в земной атмосфере.
Влияние последнего можно ослабить, только поднявшись на гору, оставив ниже себя наиболее сильно рассеивающие свет слои воздуха.
Как сильно уменьшает контрасты рассеяние света между источником его и наблюдателем, показывает следующий интересный опыт. Возьмите ящик и вместо одной из его стенок вставьте диапозитив светлой солнечной короны на темном фоне. Место, занятое черным диском Луны на диапозитиве, выскоблите и вставьте в ящик электрическую лампочку. Повесьте перед ящиком кусок марли, сетка которой рассеивает наподобие атмосферы идущий через нее к наблюдателю свет лампы. Закрывайте теперь понемногу прозрачный круг, освещенный изнутри лампой и изображающий Солнце. Пока на марлю (атмосферу) падает хоть единый луч лампы (Солнца), корона невидима. Как только круг Солнца вы вполне закроете подходящим непрозрачным кружком картона, так тотчас же вокруг «затмившегося Солнца» вспыхивает слабое сияние короны. Повесьте более редкую марлю, дающую меньшее рассеяние, и корона выступит еще отчетливее.
Чтобы уменьшить рассеяние света в телескопе, Лио делал объектив из наиболее прозрачного стекла, оберегал его от самых микроскопических царапин и пылинок, устранял каждую пылинку из воздуха внутри трубы. Каждая из этих мелочей, складываясь с другими, уже заметно уменьшала рассеяние света на пути от Солнца к глазу наблюдателя и оправдывала поговорку: «с миру по нитке – голому рубашка». Установив в фокусе телескопа черный кружок, который только-только закрывал изображение Солнца, Лио мог прямо в окуляр своего коронографа видеть вокруг Солнца розовые протуберанцы.
Так трое ученых обманули природу, мешавшую нам изучать протуберанцы и корону.
В настоящее время на обсерваториях Советского Союза ведется исследование протуберанцев и короны вне затмения при помощи коронографов типа Лио, построенных в СССР.
Химия Солнца
Спектр нижних частей хромосферы, наблюдаемый в течение одной-двух секунд во время полных затмений (отчего он и получил название спектра вспышки), и темные фраунгоферовы линии в обычном спектре Солнца позволяют определить химический состав солнечной атмосферы. Надо твердо это помнить. Химический состав недр Солнца по спектру определить нельзя: мы видим спектр только атмосферы.
На Солнце мы по его спектру находим только те элементы, которые нам известны на Земле, но не все. Из 92 (104, считая искусственно полученные элементы, более тяжелые, чем уран)) элементов периодической системы Менделеева в атмосфере Солнца открыто 67, или 2/3.
В любой прежней книжке по астрономии говорилось, что Солнце, «золотое Солнце», не содержит золота. Но из этой книги вы узнаете, что золото на Солнце есть, хотя и в ничтожной доле. Его нашли в 1942 г. по крайне слабой линии, происхождение которой раньше было неясно.
Химические элементы, отсутствующие в солнечном спектре, могут, конечно, отсутствовать в солнечной атмосфере, но могут быть и другие причины отсутствия заметных линий в спектре. Например, последнее может быть обусловлено малым содержанием этого элемента, сопровождаемым чрезмерной слабостью линий, либо действительным отсутствием его линий в доступной наблюдениям части спектра, или недостаточной изученостью спектра данного элемента в лаборатории.
В спектре Солнца отсутствуют линии большинства тяжелых радиоактивных элементов, редких земель, инертных газов (кроме гелия и неона) и галоидов, но обнаружен радиоактивный технеций.
Кроме атомов многих элементов, в атмосфере Солнца, преимущественно в области пятен (обладающих более низкой температурой), обнаружены простейшие молекулы: углерода, циана, водородных соединений и многих других. Кроме того, в пятнах есть еще окись титана, гидриды магния, алюминия и кальция, окислы алюминия, циркония и другие соединения.
Изучение интенсивности линий спектра Солнца позволило, не ограничиваясь установлением наличия разных элементов в солнечной атмосфере, определить их количественное содержание. Так, установлено (Эти данные непрерывно уточняются)), что солнечная атмосфера содержит:
Из этих данных следует, что на водород по массе приходится более 70 %, а на гелий 28 %.
Недра Солнца согласно теоретическим расчетам должны быть беднее водородом.
История двух незнакомцев
В 1868 г. астрономы обратили внимание на то, что в спектре протуберанцев есть яркая желтая линия, которая никогда и нигде до этого не наблюдалась. Очевидно, она принадлежит какому-то веществу, которого нет на Земле и которое есть только на Солнце. Предложили назвать это вещество «гелий», от греческого слова «гелиос», что значит Солнце. Астрономы предположили, что это должен быть очень легкий газ, потому что он поднимается высоко в атмосфере Солнца.
25 лет протекло на Земле, в течение которых считали, что на Солнце есть свое особое «солнечное вещество» – гелий.
В 1893 г. при новом точном определении веса азота английский физик Рэлей обнаружил расхождение между весом азота, добытого из аммиака и из воздуха. На литр газа расхождение в весе равнялось весу блохи. Но примириться с ним Рэлей не мог и стал доискиваться причины. Чтобы скорее справиться с задачей, пригласили для сотрудничества известного химика Рамзея, и он заподозрил, что азот, добытый из воздуха, не чистый. К нему, должно быть, подмешан какой-то газ, который тяжелее азота, оттого и вес «воздушного» азота тяжелее; так, грязная соль с примесью песка тяжелее чистой соли в том же объеме.
Ломая голову над этой задачей, Рамзей вспомнил описание Кавендишем одного из своих опытов, о котором он читал еще в студенческие годы. Кавендиш делал его еще в 1785 г., но на него не обратили внимания. Опыт состоял в том, что с помощью электрических разрядов Кавендиш соединял азот с кислородом, получая окислы азота. Как он ни бился, у него в сосуде с ртутью, занявшей место азота, бывшего там ранее и перешедшего в состав окислов, остался крохотный пузырек газа. Этот пузырек газа никак не хотел соединиться с кислородом. Кавендиш свой азот брал из воздуха, и потому Рамзей заподозрил, что Кавендиш столкнулся с тем же газом, который причиняет столько забот его другу Рэлею. Взялись за расшифровку воздушного пузырька. Для этого в большом масштабе повторили опыт Кавендиша и получили упрямый газ, не желавший соединяться с кислородом, уже не в объеме пузырька, а в объеме, допускавшем точное определение его веса. Поступили еще и иначе, прогоняя «воздушный» азот сквозь раскаленный магний, пока они не соединились полностью. В остатке получился тот же самый, не желающий соединяться, или инертный, газ. Он оказался в полтора раза тяжелее азота.
Новый газ не желал соединяться ни с каким другим веществом. За его химическую лень назвали его «ленивым» или, по-гречески, «аргоном». Аргон оказался новым химическим элементом. Аргон был бы открыт на сто с лишним лет раньше, если бы Кавендиш, «державший его в руках», имел точные весы, чтобы взвесить свой пузырек газа.
После своего открытия Рэлей и Рамзей успокоились, но покою их не пришлось быть долгим. Один химик написал в феврале 1895 г., что известный путешественник Норденшельд уже давно привез из Норвегии новый минерал – клевеит. Из этого черного минерала можно было выделить газ, который не соединяется с кислородом. «Геолог, описавший этот минерал, считает его азотом, но, быть может, на самом деле это не азот, а аргон», – писал химик.
Тогда Рамзей достал клевеит, выделил из него газ и посмотрел, какой у него спектр. Спектр вовсе не был спектром аргона. Это было что-то новое, с яркой желтой линией.
Долго думая, он вспомнил, что такую линию четверть века тому назад астрономы открыли в спектре протуберанцев, и с тех пор наблюдают ее ежедневно, приписывая ее неземному газу – гелию. Почти в то же время гелий был открыт в Швеции физиком Лангле. Так открыли солнечное вещество – гелий – на Земле.
Астрономы оказались правы. Гелий – легкий газ, самый легкий после водорода. В небольшом количестве гелий был открыт и в воздухе. Гелий обладает множеством интереснейших свойств и, в частности, для его сжижения нужна очень низкая температура (269° ниже нуля). Любопытно, что при изучении гелия были открыты еще три новых инертных газа.
В 1914 г. английская артиллерия безуспешно обстреляла германский цеппелин, направлявшийся к Парижу. Он, хотя и пробитый осколками снарядов, не загорался, как все дирижабли, наполнявшиеся водородом. Английские химики догадались, что немцы наполнили свой цеппелин гелием, но возникала загадка, откуда они его добывают. В то время лишь немного гелия, добытого с большим трудом, находилось в руках ученых. Английское правительство бросило все силы на поиски природного гелия в своих владениях, и в 1918 г. его нашли в составе нефтяных газов в Канаде, откуда его и стали добывать для военных целей. Только к 1930 г. англичане накопили гелия достаточно для наполнения дирижабля «R-100». Германия, как выяснилось, добывала гелий из монацитового песка, который она в течение многих лет ввозила на пароходах вместо балласта из Индии и Бразилии.
На Солнце гелия чрезвычайно много, но, увы, он для нас там недосягаем. Через 40 лет после того как гелий был открыт на Земле, он представлял еще чрезвычайную редкость, а теперь этот солнечный газ сверкает на Земле желтовато-розовым цветом в витринах московских магазинов, где в длинных стеклянных трубках электрический разряд заставляет его привлекать покупателей. Солнечное вещество стало совершенно прирученным, земным.