355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Конюхов » Читая каменную летопись Земли... » Текст книги (страница 7)
Читая каменную летопись Земли...
  • Текст добавлен: 21 марта 2017, 19:30

Текст книги "Читая каменную летопись Земли..."


Автор книги: Александр Конюхов



сообщить о нарушении

Текущая страница: 7 (всего у книги 16 страниц)

Главные персонажи

Как и во всяком другом сообществе, среди осадочных частиц очевидно отчетливое расслоение на классы. В данном случае речь идет о классах гранулометрических, выделяемых в соответствии с размерами частиц. На вершине пирамиды находятся самые весомые в прямом смысле этого слова члены сообщества – валуны, гольцы и блоки древних пород, иногда имеющие весьма впечатляющие размеры (десятки метров в поперечнике). В отличие от валунов блоки характеризуются неокатанной формой, резкими очертаниями, обилием трещин. В геологической литературе их называют олистолитами. Такая «частица» может весить несколько десятков тонн, она способна перегородить русло небольшого горного потока. Именно горного, так как встречаются подобные образования почти исключительно в горах, недалеко от обнажений горных пород – уступов, от которых они оторвались, съехав вниз по склону.

Валуны – гиганты в мире осадочных частиц. Их размеры меняются в пределах от нескольких десятков сантиметров до нескольких метров. Контуры валунов не так резки и прямолинейны, хотя и у них можно заметить много выступов и острых углов, говорящих о «сильном характере». Они способны противостоять стихиям, и за ними часто скапливается более мелкий материал: гальки, гравий, песок. Валунов особенно много в горной местности, где они катились по склонам и вдоль русел горных рек. В последнем случае они перемещались под давлением мощных водных струй во время паводков. Валуны рассеяны и по северным равнинам, куда их занесли грозные плейстоценовые ледники.

Ступенью пониже на иерархической лестнице располагаются галька, дресва и просто камни. Они составляют класс частиц с размерами от 2 до 30 см по длинной оси. Камни выглядят настоящими увальнями по сравнению с изящной галькой. Пожалуй, это цвет общества осадочных частиц. Округлая эллипсоидальная форма, гладкая поверхность, на которой зачастую проявляются сложные узоры (элементы внутреннего строения материнской породы), разнообразие окраски – свидетельства бурно прожитой жизни. Гальку точила речная вода, били морские волны. Они терлись одна о другую. Полная опасностей судьба вынесла многие из них на берег моря, где под скалистыми уступами гальки выстилают неширокие пляжи и недовольно ропщут, когда большая волна, обрушившись на берег, начинает катить и сдвигать их сначала в сторону суши, а затем обратно к урезу воды. В штормовой день за воем ветра и ударами наката слышится их возмущенный говор. Гальки словно спорят друг с другом, кому занять место подальше и повыше на пляже. Главное – не оказаться у уреза воды и глубже, где неумолимая волна будет швырять их туда и обратно, пока не изотрет в порошок или до гравия, переведя их в разряд более мелких частиц, иначе говоря вырвав из «светского» круга.

Галька речная отличается от морской на первый взгляд не очень существенно. Она также округла и выглажена, имеет разноцветный наряд, но… толстовата и в силу этого неповоротлива. Да и окружение у нее не самое приятное – грубые валуны да камни, которым еще предстоит после долгих столетий шлифовки превратиться в гальку.

Гравийные зерна в мире обломочных частиц – это своего рода слой разночинцев. Они почти всегда сопровождают гальку или находятся невдалеке от нее. В просторечье гравием часто именуют мелкообломочную разнокалиберную массу, отличающуюся угловатыми очертаниями отдельных обломков. На самом деле это щебень, соответствующий по размерам мелкой гальке. К гравийным же относятся зерна и обломки строго определенной величины – от 1 до 10 мм. Гравий чаще всего представлен обломками разнообразных горных пород, слабо окатан, имеет угловатые или округлые очертания, а также зализанные углы. Он обычно встречается в руслах и по берегам рек, там, где сильное течение уносит более мелкие частицы. Им сложены и многие пляжи или же те их участки, которые находятся в волноприбойной зоне. Если галька скрежещет, то гравий шелестит под ударами волн, словно листья на сильном ветру. Этот шелест вписывается в многоголосый оркестр прибоя. Похоже, гравийные зерна «вспоминают» о том времени, когда они были галькой. В строго упорядоченном сообществе обломочных частиц очень легко оказаться в более низком на иерархической лестнице классе.

Подняться же «наверх», увы, нельзя. Хотя как мы увидим дальше, возможны варианты.

Гравийные зерна не обладают заносчивым нравом. Они часто находятся в гуще «народа», особенно же тяготеют к обществу песчаных частиц. Это класс ремесленников, солдат и купцов – наиболее «предприимчивых» индивидуумов, легких на подъем и неутомимых. Именно песок, поднятый сильным ветром, обтачивает скалы. Им сложены береговые дюны и барханы в пустыне, медленно движущиеся, будто римские когорты, по «чужой» территории. Они засыпают водоемы и оазисы, срезают провода, иссушают землю. Остановить их может только растительность, успевшая пустить на гребне дюны глубокие корни. Песчинки – это солдаты пустыни. Не менее опасны они на дне морском, где, вымываемые подводными течениями из-под бетонных опор, они становятся причиной катастроф с морскими буровыми платформами. Песчаный материал в составе мощного гравитационного потока на континентальном склоне рвет подводные телефонные и телеграфные кабели, а на шельфе сметает или засыпает различные научные приборы, установленные на дне.

Эта «воинственность» обусловлена свойствами песчаных частиц, прежде всего их устойчивостью к истиранию и малым весом. Последнее обстоятельство делает возможным их перемещение не только волоком, как большинство других крупных частиц, но и в виде взвеси. Другими словами, они поднимаются потоком над ложем, на короткое время оказываясь взвешенными в воде. Им доступен и совсем уже экзотический способ перемещения – сальтация: песчинки как бы совершают небольшие прыжки после соударения. Сальтация возможна как в воздушной, так и в водной среде. Сальтирующие частицы создают ковер летящих зерен, способных покрыть значительные расстояния. От таких прыжков, вызванных соударением, на поверхности песчаных зерен появляются вмятины и дырочки. Однако разглядеть их удается только в поле сканирующего электронного микроскопа. Ведь размерность песчаных зерен от 0,1 до 1 мм, и требуются большие увеличения, чтобы исследовать их поверхность.

Пески разнообразны по составу. Наиболее частым их компонентом является кварц – удивительно стойкий в условиях земной поверхности минерал, выдерживающий воздействие как физических, так и химических факторов выветривания. Прозрачные и полупрозрачные зерна кварца в поле бинокулярной лупы похожи на кусочки хрусталя. Поверхность многих кварцевых зерен – увлекательный объект исследования. Она хранит шрамы – следы перемещений зерен бурным водным потоком, а также оспины и выемки, оставшиеся от их соударений. Зерна могут носить и своеобразную рубашку из оксидов железа, называемую, как уже говорилось, «пустынным загаром». Другие компоненты, обычные для песка, были описаны выше.

Песчинки, попав в новую для них среду, нередко обретают яркий наряд. Они способны обрастать лептохлоритом – зеленым железистым минералом или одевать черную рубашку, состоящую из вещества фосфатной природы, или пирита. Очень часто песчинки обрастают карбонатом кальция, как бы облачаются в многослойные наряды и переливаются многоцветьем радуги. Размер таких песчинок – их называют оолитами – возрастает в несколько раз. Они даже могут перейти в другой разряд, в класс гравийных частиц.

Однако чаще всего песчаным зернам уготована другая судьба. Истираясь и дробясь в многочисленных столкновениях, они уменьшаются в размерах и опускаются по иерархической лестнице на следующую ступень, в разряд алевритов. Эти частички размером от 0,01 до 0,1 мм обладают другими свойствами и иной судьбой. В сообществе обломочных частиц они никак себя не проявляют. Алевритовые зерна присутствуют в любом осадке, но редко формируют «чистую», т. е. состоящую из частиц только данной размерности, породу. Будучи в примеси, они выполняют роль балласта или наполнителя, забивая крупные поры и мелкие трещины. Они не воители, как песчаные зерна, и не созидатели, каковыми являются глинистые частицы. Однако, собравшись в огромную массу, алеврит способен создавать плодороднейшие почвы – лёссы. На лёссах Великой Китайской равнины зародилась и успешно развивалась одна из древнейших земледельческих цивилизаций мира. Лёссы образуются на границах аридных и гумидных зон в полосе полупустынь, куда выносится ветрами, дующими из соседней пустыни, алевритовый материал – тончайшие зерна кварца, полевых шпатов и слюд. В условиях активного химического выветривания эти зерна частично разлагаются. При этом высвобождаются химические соединения, благотворно влияющие на рост растений.

Из-за малого веса многим алевритовым частицам уготована судьба скитальцев. Это они во время пыльных бурь в Сахаре переносятся ветрами через Атлантический океан, попадая в специальные ловушки, устанавливаемые на Багамских островах и во Флориде. Поднявшись в верхние слои воздушной оболочки, алевритовые частицы вместе с тропосферными вихрями огибают по нескольку раз земной шар. Наряду с тонкой пелитовой взвесью они находятся в составе нефелоидных обвалов в водной толще океана, а у его дна их переносят мутьевые и придонные течения на огромные расстояния. Алеврит заполняет мелкие промоины и бороздины на дне либо образует аккумулятивные валы на границе континентального подножия с абиссальными равнинами океана.

Странная судьба у алеврита. Он может измельчиться до состояния крупного пелита, а затем и вовсе исчезнуть. Большинство алевритовых зерен разлагается, давая начало простейшим химическим соединениям: SiO2, AI2O3, FeO3 и др. А уже из них образуются частицы, составляющие последний и самый многочисленный класс – пелиты (‹0,01 мм) которые в группе обломочных частиц, по-видимому, на 90 % представлены агрегатами глинистых минералов.

Если сравнивать гранулометрические классы осадочных частиц с ранними людскими сообществами, то пелитовые частицы, лежащие в основании гранулометрической пирамиды, можно сопоставить с самым многочисленным их пластом – классом земледельцев. И в этом есть глубокий смысл: ведь глинистое тонкодисперсное вещество составляет каркас разнообразных почв. Глинистые чешуйки вездесущи. Они встречаются во всех обстановках – в воде, в воздухе и на дне океана. В отличие от алевритовых и других обломочных частиц, никак не сцепливающихся друг с другом, чешуйки глин способны слипаться и образовывать более крупные агрегаты. Таким образом они лучше противостоят воздействию различных механических и химических агентов.

Другие персонажи

В природе распространены не только обломочные частицы. Другая, самая разнообразная их группа порождена жизнью. Многообразие ее форм находит отражение в структуре этой группы. В нее входят карбонатные, кремнистые и углеродистые остатки различных организмов, живших в разных средах – на поверхности суши, в реках, озерах, болотах, морях, в различных зонах океана. При этом карбонатные и кремнистые остатки имеют для геолога особую значимость, так как в них фиксируются прижизненные черты обитавших в ту или иную эпоху животных и микроорганизмов.

Органический мир находится в непрерывном развитии, и новые формы в меняющихся условиях среды обитания вытесняли (и вытесняют сейчас) архаичные и нежизнеспособные виды, постепенно, а то и очень резко изменяя облик био– и танатоценозов. Однако и новые формы не вечны. С течением времени они также сходят со сцены, оставляя как память о себе раковины, скелетные фрагменты минерального каркаса, прижизненные отпечатки в осадочных породах. Наиболее характерные из подобных остатков становятся символами временного интервала, в котором жили их хозяева.

Впрочем, хорошо сохранившиеся палеонтологические остатки – символы или «метки» своего времени, встречаясь в изобилии в одних слоях осадочного разреза, зачастую совершенно отсутствуют в других. Хороший образец древней фауны сродни княжескому захоронению в степном кургане: оно одно на тысячи других, безвестных могил. Так же обстоит дело с остатками карбонатстроящих и других древних организмов. Огромные их массы, скопившиеся на ограниченном пространстве, могут в силу плохой сохранности не нести значительной научной информации. Однако ими сложены пласты и толщи органогенных пород, которые скрыты в недрах осадочных бассейнов либо выступают в виде горных хребтов. Они интересны тем, что способны вмещать залежи фосфоритов и бокситов, различных металлов, а главное, скопления нефти и газа.

Жизнь пронизывает всю поверхностную оболочку Земли. Здесь также выстраивается своя пирамида. В водной среде в ее основании находятся мельчайшие фотосинтезирующие организмы (планктон), защищающие свои тела кремнистой или карбонатной оболочкой. Именно их остатки микронных и субмикронных размеров, попадающие в алевритовую и пелитовую фракции, составляют основную массу органогенных частиц, взвешенных в водной толще морей и океанов. Они либо растворяются при опускании на дно, либо образуют рыхлые осадки.

Поражают многообразие форм, неистощимость выдумки природы. Рассмотрим для примера группу диатомей и радиолярий. Эти мельчайшие кремнестроящие организмы обитают в поверхностных водах не только океана, но и пресноводных озер, осолоненных лагун, других водоемов. Некоторые из них можно встретить даже в поде одиноких колодцев, разбросанных в пустыне: идеальные сферы с шиповидными отростками, изящные рюмочки, перевернутые ножкой вверх, разнообразные шлемы и кубки, мыльницы и т. д. Эти формы позволяют их владельцам выжить в конкурентной борьбе за пищу и пространство. Не менее удачным дизайном отличаются те многокомнатные плавающие «квартиры» фораминифер, которые они строят в течение всей своей жизни, предпочитая кремнезему карбонатный материал. В этом микромире есть свои карлики и настоящие гиганты. К числу последних можно отнести птеропод, чьи арагонитовые раковинки с игольчатыми выступами, напоминающими антенны, видны невооруженным глазом. Птероподы – типичные обитатели средиземноморских карбонатных илов (их размер от 0,3 до 1 см).

Далекие предки фораминифер – швагерины были еще более искусными строителями. Если раковины современных глобигерин и глобороталий можно сравнить с космическим модулем, к которому «пристыкованы» различной величины жилые отсеки, то швагерины создавали многокамерные диски. В них верхние ряды наслаиваются на нижние и являются одновременно их продолжением наподобие свернутой кинопленки. Подобные образования, плававшие в морской воде, были похожи на космические станции будущего, как их представляют писатели-фантасты.

Однако не только (и не столько) остатки этих гигантов микромира слагают массу тонкозернистых карбонатных отложений, например пласты обыкновенного мела. Как показали исследования в поле электронного сканирующего микроскопа, внедренного не так давно в научную практику, они состоят из фрагментов мельчайших растений, объединенных в группу нанопланктона. Это кокколитофориды – крошечные существа, не способные слепить раковинку и защищающие себя с помощью отдельных кальцитовых дисков. Последние скрепляются органическими молекулами в единое целое. В группу нанопланктона входят и организмы, предпочитающие использовать кремнезем для построения внутреннего каркаса. Он обычно представляет собой кольцо с перекладинами разного вида. Вокруг кольца располагается водорослевая клетка с нитевидными выступами для перемещения в водной среде. Благодаря нитевидным отросткам и кремневому каркасу эти организмы были названы силикофлагсллятами. В нанопланктон включают также динофлагелляты и перидинисвые водоросли.

Естественно, на дно попадают только устойчивые фрагменты организмов, которые в условиях малого поступления с континента или островов обломочного материала становятся ведущими компонентами донных осадков. По размерам остатки нанопланктона соответствуют тонкому пелиту, т. е. в гранулометрическом отношении принадлежат к тому же классу, что и глинистые частицы. Панцири диатомовых и перидиниевых водорослей и раковинки мелких фораминифер примерно на порядок-два крупнее, а многие фораминиферы обладают размерами песчинок. В тех частях моря, где происходит дифференциация осадочного материала по крупности, они, как правило, встречаются вместе с терригенным песком. В то же время тонкие органогенные частицы распространяются и оседают вместе с чешуйками глин.

Зоопланктон и рыбы, питающиеся фитопланктоном, а также другие рыбы и кальмары, живущие за счет зоопланктона и мелкой рыбешки, сохраняются чаще всего в виде отпечатков в породах, редко можно найти части скелета (например, зубы акул). Мезозойские родственники кальмаров – белемниты являлись одной из широко распространенных в юрское и меловое время групп морских организмов. Она хорошо изучена благодаря особому кальцитовому ростру – элементу хвостовой части организма, часто сохраняющемуся в окаменелом состоянии. По их находкам устанавливается возраст вмещающих отложений.

Широко распространены и бентосные, т. е. живущие на дне, организмы: моллюски, мшанки, известь выделяющие водоросли, морские ежи и лилии, кораллы, полихеты и др. У большинства из них тело защищено наружными известковыми покровами, другие имеют внутренний карбонатный скелет, у третьих (водорослей) метаболизм сопровождается выделениями извести. После гибели организмов минеральные форменные элементы оставались на дне, где при благоприятных условиях накапливались огромные массы карбонатных остатков, которыми сложены пласты и мощные толщи известняков.

Бентосом особенно плотно населен шельф – затопленный морскими водами край континента, и прежде всего его прибрежная зона с глубинами дна до 60–70 м. Это область с активным гидродинамическим режимом, где действуют штормовые волны, океанская зыбь, приливно-отливные и разрывные течения. Все они воздействуют на донные осадки, перемещая отдельные его компоненты. Особенно велика роль штормовых волн и зыби, разрушающих и перетирающих в зоне прибоя огромные массы крупнозернистого материала, в том числе раковины, кусочки кораллов и др. Образующиеся при этом разнокалиберные обломки раковин и другие фрагменты организмов получили название органогенного детрита. В количественном отношении детрит обычно преобладает над целыми, с ненарушенной структурой, скелетными остатками, хотя такие устойчивые образования, как коралловые и водорослевые рифы, устричные и другие банки, строматолитовые постройки, как правило, переходят в ископаемое состояние, претерпев лишь частичное разрушение.

Органогенный детрит, имея самые разные размеры, разбивается на те же гранулометрические классы, что и обломочные частицы. Крупные глыбы и отдельные обломки строматолитов или коралловых рифов по форме и размерам нередко соответствуют обычным валунам. Остроугольные обломки, встречающиеся в зоне осушки в лагунах аридных областей, называются интеркластами. Большинство современных органогенных построек сложено пористым, малопрочным материалом. Из них не получается хорошо окатанных, полированных галек. В то же время очень широко распространен карбонатный детрит гравийной и песчаной размерности. Та карбонатная галька, которой изобилуют морские побережья, образовалась из древних плотных и прочных известняков и доломитов, т. е. по своему генезису является обломочной.

Органогенные частицы карбонатного и кремнистого состава не так сильно разнятся по свойствам и поведению в разных средах, как терригенные частицы, о которых говорилось выше. Они сохраняют однородный минеральный и химический состав, попадая в разные гранулометрические фракции. Если обломочные терригенные частицы вездесущи, то органогенный детрит принадлежит водной среде, как и те организмы, производными от которых он является. В основном карбонатный и кремнистый материал «путешествует» водным путем, используя такие транспортные средства, как волны, течения, мутьевые и зерновые потоки.

Существуют, однако, «пассажиры», которые предпочитают воздушный транспорт. Это частицы вулканического происхождения. Они также могут иметь самые разные размеры. При этом самые крупные – глыбы и вулканические бомбы, называемые лапилли, встречаются лишь вокруг жерла вулкана, из которого они были выброшены при извержениях. Это камни неправильной формы со спекшейся ноздреватой поверхностью и застывшие в воздухе сгустки магмы. Для них характерны самые причудливые очертания, черный цвет, оплавленные края, сложная система каверн и канальцев.

Основные продукты извержений – вулканический пепел и пемза могут разноситься на огромные расстояния потоками ветра. Естественно, что большая часть этого вещества оседает в радиусе нескольких десятков – первых сотен километров от вулкана. Однако при некоторых сильнейших извержениях, когда выбросы направлены вверх и не отклоняются ветром, огромные массы тонких частиц поднимаются в верхние слои стратосферы и огибают весь земной шар, сначала в пределах определенной широтной зоны, а затем, распространяясь и над другими районами, от полюса до полюса. Именно таковым было в недавнем прошлом извержение мексиканского вулкана Эль-Чичон, вызвавшее необычные атмосферные явления, похожие на северное сияние, но наблюдались они в средних широтах (в частности, осенью 1984 г. в Париже). Это эксплозивное извержение большой силы привело к изменению в последующие два года климата во многих странах, и прежде всего расположенных в пределах Тихоокеанского кольца.

Пепел – это в основном частички вулканического стекла с размерами от мелкопесчаных до пелитовых. В зависимости от силы вулканического извержения и направления ветра они покрывают черным шлейфом территорию, засыпая посевы, вызывая пожары и гибель людей. Этот воздушный десант опускается и над морем, где вулканические частицы подхватываются волнами, течениями и разносятся наряду с другим материалом, терригенным и органогенным. Большинство частиц вскоре достигает дна, где на огромных пространствах образуется пласт или прослой, датирующий вмещающие осадки.

Таковы три основных источника осадочного материала, из которого построена верхняя оболочка стратисферы, получившая название земной коры. В современных и плейстоценовых рыхлых осадках встречаются и редкие следы космических «пришельцев». Это мелкие, различимые только под электронным сканирующим микроскопом шарики – продукты сгорания в земной атмосфере метеоритов и других мелких небесных тел. Их, как правило, наблюдают при исследовании глубоководных океанических осадков, отличающихся очень низкими скоростями накопления.


    Ваша оценка произведения:

Популярные книги за неделю