355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Конюхов » Читая каменную летопись Земли... » Текст книги (страница 12)
Читая каменную летопись Земли...
  • Текст добавлен: 21 марта 2017, 19:30

Текст книги "Читая каменную летопись Земли..."


Автор книги: Александр Конюхов



сообщить о нарушении

Текущая страница: 12 (всего у книги 16 страниц)

Специализация пород

Каждая порода интересна по-своему. Почти с каждой из них связаны те или иные полезные ископаемые. Впрочем, и сами осадочные породы находят применение в различных отраслях народного хозяйства. Многие из них играют важную роль в процессах нефтегазообразования и нефтегазонакопления. Одни служат генераторами углеводородов, другие – коллекторами для них, третьи – породами-экранами, не допускающими разрушения залежей. Нефть по большому счету – это детище глин, хотя жидкие углеводороды продуцируются и другими породами, а именно теми, что содержат рассеянные и концентрированные формы органического вещества (силициты, сапропели, карбонатные образования и в небольших количествах даже угли). Однако в региональном масштабе, т. е. в пределах целого региона (осадочного бассейна), генерирование нефти протекает главным образом в глинистых породах, если, конечно, они обогащены органикой сапропелевого или смешанного типа, а при диагенезе в них господствовали восстановительные условия. Речь идет преимущественно о субаквальных осадках, которые быстро перекрывались более молодыми наносами и переставали контактировать с богатой кислородом водной средой. Хотя углеводороды нефтяного ряда образуются из органических остатков, сама нефть абиогенна. Имеется в виду, что подавляющая масса углеводородов возникла отнюдь не в процессе жизнедеятельности животных и растений, хотя в тканях некоторых организмов и накапливаются в небольшом количестве отдельные углеводороды или близкие к ним по строению структуры.

Нефть как полезное ископаемое рождается в земных недрах в основном на стадии катагенеза, т. е. на зрелой стадии существования пород, когда они попадают в область повышенных температур и давлений. Основной фактор, обеспечивающий и даже инициирующий генерацию нефтяных углеводородов, – температура. Уже в диапазоне 80-120 °C начинаются термолиз и термокатализ, благодаря которым из органического вещества выделяются углеводородные структуры разного типа – алканы, нафтены и арены. Важнейшим процессом, стимулирующим эти реакции, помимо температуры, является разрушение переуплотненной структуры межслоевой воды в разбухающих глинах. Воздействие этой воды на органические субстанции приводит к разложению сложных гетерополиконденсатов гуминовых кислот и молекул керогена, а также к образованию широкой гаммы легких углеводородов. Значительная их часть переносится ею из глины в коллектор, где происходит разделение фаз и нефть в виде пленок начинает мигрировать по пластам к местам концентрации. Из этих пленок по прошествии сотен тысяч, а то и миллионов лет формируется нефтяная залежь.

Роль природных резервуаров или накопителей углеводородов выполняют породы, сохранившие в недрах развитую систему пустот или трещин, связанных между собой. Чаще всего это песчаники и крупнозернистые органогенные известняки, хотя в роли коллектора нередко выступают диатомиты, вулканогенные породы (туфопесчаники) и даже полуразрушенные выветриванием магматические и метаморфические породы фундамента. Впрочем, последнее случается достаточно редко.

Как указывалось выше, самыми выдающимися емкостными возможностями обладают рифовые известняки, изначально характеризующиеся большим объемом порового пространства. На окраинах континентов с погребенными рифовыми массивами связаны крупные и даже гигантские скопления углеводородов (более 21,9 млрд т нефти и 5,3 трлн м3 газа). Однако первое место принадлежит песчаникам прибрежно-морского и дельтового генезиса (около 41,6 млрд т нефти и 19,4 трлн м3 газа). Второе место занимают лагунные и шельфовые известняки и доломиты (29,2 млрд т нефти и 16,7 трлн м3 газа) [Геодекян и др., 1988].

Нефть, подобно газу, собирается в залежь в так называемых ловушках, откуда углеводороды уже не могут уйти ни вверх, ни в стороны. Снизу залежь подпирается водой. Углеводородные флюиды всплывают над ней, как более легкие. Они никогда бы не создали залежей, если бы не были изолированы от вышележащих пластов-коллекторов и земной поверхности. В роли экранов выступают все те же глины, а также соли и глинистые известняки. Наиболее надежными породами-флюидоупорами считаются соли. Они не содержат пор, связанных друг с другом, потому через них не могут диффундировать даже самые легкие углеводороды, в том числе метан. В глинах множество микропор, но многие из них не сообщаются между собой либо соединены очень узкими канальцами, в которые не помещаются молекулы углеводородов. Оттого многие разности глин практически непроницаемы. Известняки могут служить довольно надежными экранами для нефтяных скоплений, но не для газа, особенно метана, который способен просачиваться по микротрещинам и уходить из залежи.

Таково распределение ролей между осадочными породами в генерации, аккумуляции и консервации важнейших для современной цивилизации полезных ископаемых – нефти и газа. Эта «творческая» специализация частично нарушается по мере «старения» основных участников процесса – глин и песчаников. Первые, превращаясь в аргиллиты, теряют непроницаемость вследствие появления трещиноватости – сетки микротрещин, нарушающих сложившуюся структуру. К этому времени их нефтематеринский потенциал в целом исчерпывается, хотя простейшие газообразные углеводороды, главным образом метан, еще образуются в породе. Песчаники утрачивают большую часть порового пространства и перестают быть коллекторами. Нередко в позднем катагенезе и метагенезе они становятся весьма слабопроницаемыми для углеводородов и могут играть роль горизонтов-экранов. Обычно это наблюдается в том же диапазоне глубин, где глинистые породы становятся трещиноватыми и могут исполнять функцию коллектора. Таким образом, на заключительной фазе эволюции некоторые осадочные породы как бы меняются местами. Впрочем, в реальной практике это случается не часто.

Следует подчеркнуть, что когда мы говорим о старении породы, то имеем в виду те необратимые изменения, которые происходят в ее структуре и минеральном составе по мере погружения в недра, в зону все более высоких температур и давлений. Речь, следовательно, не идет о геологическом возрасте осадочных образований. Например, кембрийские и даже позднепротерозойские (свыше 600 млн лет) отложения нередко остаются слабо преобразованными, так как не испытали воздействия глубинного жара и давлений. Обычно такие «молодцеватые старички» встречаются на платформах, например в окрестностях Балтийского щита, где осадочный покров тонок, а фанерозойский этап развития не был отмечен тектоническими катаклизмами.

Напротив, относительно молодые по возрасту породы, в том числе раннекайнозойские (60–30 млн лет), оказавшись в зоне активных тектонических взаимодействий, например в полосе столкновения литосферных плит, быстро изменяются. Этому способствует погружение на глубину нескольких километров, где господствуют температуры порядка 200–300 °C и давления 500–600 атм. В короткий отрезок времени такие породы превращаются в метаморфические образования.

Помимо обычного метаморфизма, связанного с влиянием высоких температур, в некоторых условиях, в основном при погружении океанической коры в зону Беньофа, наблюдается метаморфизм высоких давлений. Исходные осадочные породы при этом метаморфизуются также, однако приобретают совсем иной облик (и минеральный состав), чем при обычном метаморфизме.

В осадочных бассейнах, где в течение длительного времени в широких масштабах накапливались однородные глинистые осадки, наблюдается целый ряд интересных явлений. Отсутствие обычных спутников глин, а в этой роли чаще всего выступают песчаники, реже известняки, нарушает обычную саморегуляцию системы в недрах. Она становится замкнутой. Определенная часть седиментационных вод, отжимающихся из глин, успевает покинуть осадки в процессе их уплотнения. Однако огромные массы межслоевой воды, высвобождающейся в довольно узком диапазоне глубин с температурами 100–120 °C, оказываются как бы запечатанными в глубине осадочной толщи. Здесь возникают аномально высокие пластовые давления, не соответствующие геостатической нагрузке.

Строго говоря, абсолютно однородных толщ не бывает. В однородных глинах также обычно присутствуют, хотя и в подчиненном количестве, линзы и отдельные горизонты песчаников, которые все же не могут обеспечить разгрузку выделяющихся из глин поровых вод. Давление флюидов в редких изолированных песчаных телах становится настолько большим, что они превращаются в плывуны. Последние нередко продавливают вышележащие осадки. Их сплошность нарушается. В образовавшийся канал устремляется не только песчаная пульпа, но и масса разуплотненных глин. Со временем здесь образуются мощные глиняные диапиры, часто достигающие земной поверхности. В результате зарождаются грязевые вулканы. В частности, их много в Приазовье, Предкавказье, на Апшеронском полуострове и полуострове Челекен (восточное побережье Каспия). В последнее время были обнаружены подводные грязевые вулканы на дне западной котловины Черного моря на глубинах более 2000 м. Их диаметр не превышает 1–2 км, а высота колеблется от 30 до 80 м. В сопочной брекчии, поднятой с вершины одного из этих вулканов, были обнаружены кристаллы газогидратов.

Фрагменты из каменной летописи земли


Планета простейших

Планета Земля, как полагают ученые, сформировалась 4,6 млрд лет назад, когда из плотного облака космической пыли и газов конденсировалась земная твердь. С тех пор многое переменилось на успокоившейся планете. На ее поверхности понизилась температура. Водяные пары сгустились в потоки, заполнившие кратеры и понижения среди базальтовых скал. В мутной воде кратеров возникли первые сложно построенные углеродные соединения, включавшие аминокислотные основания, молекулы с длинной углеродной цепью – углеводороды, трансформировавшиеся вскоре в жирные кислоты. В кратеры – природные химические реакторы, куда вместе с водой и пылью стекали щелочи и кислоты, заносились и космические частицы. Здесь в процессе частых молекулярных взаимодействий появились структуры, напоминавшие белки и нуклеиновые кислоты, другие органические соединения самого невероятного строения. Однако это еще не было жизнью.

Откровенно говоря, мы не знаем точно, когда и как заработал биологический конвейер. Занес ли на Землю споры микроорганизмов космический ветер, или в органическом бульоне при неблагоприятных изменениях в среде сложные органические молекулы стали сбиваться в плотные скопления, защищенные извне относительно устойчивыми липидными структурами? Скорее всего, мы этого никогда и не узнаем. Если все же исходить из предположения о земном начале жизни, то неизбежная дифференциация органических молекул в какой-то момент привела к появлению протоплазматических образований, способных осуществлять обмен веществом с окружающей средой. Эти скопления распадались и соединялись вновь, так как еще отсутствовал аппарат наследственности. Однако внутри протоплазматических скоплений уже протекали обменные реакции, требовавшие для поддержания структуры в равновесии поступления «строительных материалов» в виде аминокислот, углеводов, липидов, простых химических соединений.

Вскоре началась борьба за эти материалы. Поэтому выживали скопления с элементами внутренней организации, способные хотя бы к частичному самовоспроизведению. Вероятно, прошли сотни миллионов лет, прежде чем из этих бесформенных комков с неопределенным периодом существования выделились первые клеточные структуры. Жизнь началась с изобретения природой первых механизмов наследственности. Какими они были на заре биологической эволюции, остается только догадываться. В конечном итоге победил и сохранился лишь аппарат гениально простой и изящный, устроенный на базе РНК и ДНК, вскоре ставший универсальным.

Когда первичный протоплазматический бульон был «съеден» простейшими организмами, большинство из них перешли на минеральное питание, научившись извлекать энергию путем перевода одних химических соединений в другие и применять ее для синтеза биохимических структур. Некоторые простейшие, вероятно, использовали для этих целей метан и иные растворенные в воде углеводородные газы. Но были и простейшие, что существовали за счет разложения отмерших клеток и возвращения в круговорот различных органических веществ.

Состав первичной земной атмосферы определялся газами, которые выделялись при столкновении с планетой многочисленных космических тел и частиц, еще остававшихся в пространстве между молодыми планетами Солнечной системы. Среди этих газов преобладали диоксид и оксид углерода, пары воды и сернистый газ. В начале аккреции – нарастания массы Земли и увеличения ее диаметра (за счет столкновения с малыми небесными телами и ассимиляции космической пыли) – происходил сильный разогрев планеты. Однако на рубеже 4,1–3,9 млрд лет назад аккреция в основном завершилась. Разогрев тем не менее сохранялся еще долго, так как при обилии углекислого газа в атмосфере, а его давление, по данным С. Аррениуса, достигало 20 бар, возник мощный парниковый эффект. Водород и гелий, выделявшиеся из недр Земли, улетучивались из земной атмосферы в космическое пространство. Аммиак и метан, присутствовавшие в ней в виде примеси, в верхних слоях разрушались под воздействием ультрафиолетового излучения Солнца. Свободный кислород практически отсутствовал, а пары воды, выпадая в виде жидкости на землю, создали первичный океан. Учитывая все сказанное, можно прийти к выводу, что в период зарождения жизни атмосфера Земли состояла из углекислого газа, оксида углерода и азота.

Отпечатки древнейших организмов были найдены недавно в породах архейского возраста. Судя по отпечаткам, эти простейшие уже были защищены клеточной мембраной, но не имели ядра. Такие организмы, находящиеся на самом примитивном уровне развития, называют прокариотами.

На Земле, выносившей жизнь, завершался этап образования первичной континентальной и океанической коры.

Крупные массивы с протоконтинентальным строением поднимались в виде островов над безбрежным пространством воды. Они стали теми ядрами, вокруг которых впоследствии сложились первые материки. Несмотря на то что вода занимала в то время большую часть земной поверхности, это еще не был океан в современном понимании. Неглубокое его дно было сложено гетерогенными породами, а мантия находилась совсем недалеко от поверхности. Тут и там из воды поднимались жерла огнедышащих вулканов, а спрединг – формирование молодой океанической коры – носил преимущественно рассеянный характер. Протоматерики представляли собой пустынные пространства, изрезанные многочисленными руслами пересыхающих потоков. В периоды выпадения обильных дождей они заполнялись водой. Грунтовые воды еще не играли заметной роли, так как непрерывный осадочный чехол отсутствовал. Выветривание носило в основном физический характер в результате преобладания ветровой и водной эрозии. Ледники на вершинах гор еще не существовали, зато важным фактором, усиливавшим денудацию суши, были удары крупных и мелких небесных тел. Поэтому поверхность Земли изобиловала, словно оспинами, метеоритными кратерами, в которых образовывались озера. Несмотря на скромные масштабы химических процессов выветривания, вынос с суши обломочного материала был весьма значительным. Высокий уровень испарения влаги в аридных зонах приводил к формированию эвапоритов. Древнейшие соленосные отложения (возрастом около 3,5 млрд лет) недавно были идентифицированы в Австралии. В зонах с гумидным климатом реки сбрасывали обломочный материал прямо на континентальный склон (шельфы были неразвиты), к которому, видимо, и были приурочены первые крупные осадочные бассейны.

В отсутствие организмов с карбонатной и кремневой функцией седиментационная палитра архея оставалась небогатой: повсеместно накапливались лишь терригенные и вулканогенные отложения. Причем среди первых наибольшее распространение получили щебнистые осадки, песчаники, алевролиты, гравелиты и конгломераты. Глины играли меньшую роль, чем на фанерозойском этапе развития, так как в большинстве своем они образуются в корах выветривания. Для возникновения последних условия, господствовавшие в архейскую эру, были малоблагоприятными. Основная масса глинистых минералов формировалась в водной среде в процессе разложения вулканического пепла и гидратации чешуек слюд.

К позднему архею в результате длительных и сложных тектонических взаимодействий завершилось формирование первичной континентальной и океанической коры. Перепад рельефа на границе праматериков и океана стал довольно большим (не менее 500-1000 м), что вызвало распространение на континентальных склонах оползней. Обычным явлением стали различные гравитационные течения. Вдоль контура праматериков возникли мощные терригенные и вулканотерригенные комплексы флишевого или флишоидного строения. Некоторые из них недавно были выявлены среди метаморфических образований, обнажающихся на Канадском щите, в Фенноскандии и Южной Африке. Таким образом, уже в позднем архее сложились важнейшие элементы той тектоносферы, которые развиваются и поныне: долгоживущие ядра континентальной коры, разрастающиеся по периферии и «плавающие» среди «зыбкого моря» недолговечной океанической коры. Можно предположить, что уже в архее сложилась система литосферных плит и заработал механизм спрединга, реализующийся в срединно-океанических рифтовых зонах.

С углублением дна океана первичные формы жизни сконцентрировались на мелководье и в придонном слое замкнутых водоемов. Здесь сохранялись благоприятные для хемосинтеза условия: из донных осадков поступали метан и другие газы, обилие же серы позволяло развиваться организмам, способным осуществлять сульфатредукцию. Другими зонами, где буйно расцветала жизнь, продолжали оставаться окрестности вулканов, поставлявших во внешнюю среду разнообразные минеральные соединения и газы. Однако вулканы располагались теперь не хаотично на поверхности Земли, как в прежние времена, а были сосредоточены в системах островных вулканических дуг, на активных континентальных окраинах, в срединно-океанических рифтах, гребни которых из-за малой глубины океана возвышались над его поверхностью. Свидетельством широкого распространения жизни в зонах перехода от континента к океану являются древнейшие из осадочных и вулканогенно-осадочных толщ, обогащенных органическим углеродом (так называемые черносланцевые формации).

Великая революция

Еще в архее случилось событие, которому было суждено со временем изменить не только состав земной атмосферы, но и облик нашей планеты. Виновником этого были мельчайшие живые существа, которые изобрели хлорофилл и родственные ему структуры. В основе фотосинтеза лежит фотохимическая реакция, сопровождающаяся поглощением и разложением углекислого газа, находящегося в воде или в воздухе, и высвобождением кислорода. Захваченный углерод используется для синтеза углеродных цепей, лежащих в основе углеводов, аминокислот, жирных кислот и других соединений. С появлением фотосинтеза любая клетка, содержащая хлорофилл, черпала из окружающей среды солнечную энергию, углекислый газ, воду, а также биогенные элементы в форме нитратов, фосфатов и ряда микроэлементов, превращаясь в крошечную фабрику по изготовлению необходимых для жизни и воспроизводства самой себя компонентов. Преимущества подобного питания перед хемосинтезом были настолько велики, что популяции микроорганизмов, способные использовать солнечную энергию, вытеснили или загнали в экологические ниши другие, нефотосинтезирующие организмы. Биологическая продукция в зонах обитания этих примитивных водорослей возросла во много раз по сравнению с тем уровнем, который был характерен для их предшественников. Со временем водоросли расселились по земному шару. Однако основным их ареалом остались мелководные зоны – эпиконтинентальные моря и прибрежные районы шельфа. В центральных же котловинах океана жизнь, видимо, была развита спорадически. Она концентрировалась вокруг выходов горячих гидротерм.

Первые фотосинтезирующие организмы, вероятно, появились еще 3,9–3,8 млрд лет назад, т. е. в раннем архее.

Об этом свидетельствует исследование древнейших из известных в настоящее время строматолитов, описанных М. Шидловски в северо-западной части Австралии (Schidlowsky, 1988]. Как отмечалось, строматолиты – это карбонатные постройки органического происхождения, формирующиеся в результате жизнедеятельности многих поколений микроорганизмов – цианобактерий. В процессе фотосинтеза они выделяют карбонат кальция, связывая избыточный диоксид углерода с ионами кальция, находящимися в морской воде, и с кислородом, который высвобождается при фотохимических реакциях, протекающих в клетке. Оказалось, что изотопный состав углерода в строматолитовых известняках архейского возраста значительно сдвинут в сторону более тяжелого изотопа 13С. Избирательное потребление этого изотопа низшими и высшими растениями при фотосинтезе – давно установленный факт. Вследствие этого по величине изотопного отношения углерода судят об органическом или неорганическом генезисе осадочных образований, содержащих углерод в структуре. Следовательно, утяжеленный состав углерода в архейских строматолитах указывает на то, что он отложен древнейшими микроорганизмами, способными осуществлять фотосинтез.

Открытие строматолитов с возрастом 3,8 млрд лет во многом меняет наши представления о развитии жизни на Земле. Оно свидетельствует о невероятно быстрой ее эволюции на ранней стадии существования планеты. Ведь древнейшие породы на Земле имеют возраст 4,6 млрд лет. Таким образом, спустя всего 800 млн лет уже появились относительно высокоорганизованные формы жизни. Следовательно, сама жизнь зародилась гораздо раньше, чем предполагалось до сих пор. Этот рубеж отодвигается теперь чуть ли не в предысторию планеты, о которой нам почти ничего неизвестно. Однако если жизнь зарождается чуть ли не одновременно с образованием небесного тела (планеты), то не праздными будут вопросы: не является ли она закономерным атрибутом планет земного типа, а если так, то не находились ли в составе космической пыли, сгустившейся и ставшей Землей, носители будущей жизни?

Другим фактом, который может привести к пересмотру наших взглядов на раннюю историю Земли, является обнаружение архейских эвапоритов с возрастом 3,5 млрд лет [Buick, Dunlop, 1990]. Эти древнейшие соленосные отложения недавно описаны в составе группы Уоррауома в Западной Австралии. Несмотря на то что многие исходные минералы впоследствии заместились под влиянием гидротерм, тектонических деформаций и метаморфизма, в толще этих древних пород сохранились реликты первичных седиментационных текстур и структур. Среди них Р. Бьюик и Дж. Данлоп выделили карбонатные илы и седиментационные сульфаты. Кроме того, ими были идентифицированы сульфатные конкреции, а также диагенетические формы карбонатов и сульфатов. По мнению этих исследователей, сульфаты, представленные гипсом и баритом, формировались в небольших выемках, затоплявшихся время от времени морской водой. От открытого моря эти участки дна отделялись островами-барами, сложенными обломками пемзы. Илистые площадки прорезали небольшие русла, в которых аккумулировались кальцитовые и арагонитовые илы, в дальнейшем подвергшиеся окремнению. В периоды частичного осыхания осадка в его поровом пространстве кристаллизовались железистый доломит и гипсовые конкреции. Не правда ли, знакомая картина? Ведь речь идет о приливно-отливных площадках и себхах. Оказывается, они существовали уже в раннем архее. В разрезе той же группы Уоррауома были описаны и строматолиты. В настоящее время они, как известно, формируются на приливно-отливных равнинах в глубине мелких лагун. Следовательно, в далеком от нас архее можно было найти многие из седиментационных обстановок, характерных и для современной геологической эпохи.

Самым интригующим, однако, является другое: архейские эвапориты представлены сульфатами, в структуре которых участвует кислород. Откуда же он брался в условиях бескислородной среды? Ведь по современным воззрениям и воздух и вода были лишены свободного кислорода. Для формирования седиментационных карбонатов, ассоциированных с сульфатами, также был необходим молекулярный кислород. Не исключено, что часть карбонатных осадков возникла в результате разрушения строматолитовых построек. Однако эвапориты – это хемогенные образования, выпадающие из воды, пересыщенной по отношению к той или иной соли, в данном случае к карбонату кальция. В современных лагунах и соляных «ваннах» на побережье Красного моря и Персидского залива в засушливые сезоны первыми выпадают на дно кристаллы арагонита и гипса. То же самое, видимо, происходило и в раннем архее. Следовательно, состав морской воды уже тогда был весьма близок к современному. Главное же заключается в том, что в воде, остававшейся в архейских соляных «ваннах», находился растворенный кислород, а значит, он, скорее всего, присутствовал и в атмосфере.

Был ли этот кислород биогенным, т. е. появился ли он за счет разложения углекислого газа фотосинтезирующими организмами, или возник под действием ультрафиолетового излучения в результате диссоциации в верхних слоях атмосферы паров воды на водород и кислород? Точного ответа на этот вопрос пока нет. Вероятно, имело место и то и другое. Надо учитывать, что протяженность береговой линии вокруг небольших по площади архейских континентов была невелика. К тому же, если подразумевать высокую активность тектоносферы на ранних этапах ее развития, должен был преобладать скалистый тип берегов. А с ним, как известно, связаны лишь небольшие лагуны и отдельные заливы, но не обширные приливно-отливные равнины. Таким образом, строматолитовые постройки не могли иметь глобальное распространение, а значит, деятельность фотосинтезирующих микроорганизмов в раннем архее не могла серьезно влиять на состав атмосферы. Да и само существование строматолитов, большая часть которых выступает из воды во время отлива, было бы вряд ли возможно при отсутствии хотя бы призрачного озонового экрана. Без него ультрафиолетовое солнечное излучение неминуемо уничтожило бы микроорганизмы. Озон же в верхних слоях атмосферы возникает за счет кислорода, появляющегося вследствие распада водных паров.

Все сказанное свидетельствует о том, что уже в раннеархейской атмосфере и в верхних слоях водной толщи океана мог быть свободный кислород, хотя наверняка неповсеместно и в довольно ограниченном количестве. Считается, что так называемая точка Пастера, когда содержание свободного кислорода в воздухе составило 1 % от нынешнего, была достигнута лишь 1,6–1,4 млрд лет назад [Kershaw, 1990], т. е. спустя более 2 млрд лет после появления первых строматолитовых построек. Если это так, то накопление свободного кислорода в атмосфере происходило в архее и в раннем протерозое чрезвычайно медленно. Впрочем, последнее может показаться вполне объяснимым, если учесть, что он расходовался не только на образование карбонатов и сульфатов, но и на окисление огромного количества металлов, железа и марганца прежде всего, находившихся преимущественно в закисной форме. Считается, что первичная земная кора была обогащена железом и марганцем.

Загадочным остается, однако, то обстоятельство, что при незначительной концентрации кислорода в атмосфере и подразумеваемом высоком содержании углекислого газа парниковый эффект над планетой оказался весьма неустойчивым. Дело в том, что уже в раннем протерозое на Земле произошло широкомасштабное оледенение, следы которого фиксируются в слоях с возрастом 2,3 млрд лет назад. Чем же было вызвано это, называемое гуронским, оледенение? Резким ли снижением содержания углекислого газа в раннепротерозойской атмосфере или другими причинами, способными вызвать похолодание? Так, за столкновением с крупным небесным телом или поясом астероидов могло последовать явление, близкое к эффекту «ядерной зимы». Тот же результат возможен при длительной активизации вулканических процессов с выбросом в верхние слои атмосферы огромных масс пепла и других продуктов. Сейчас мы этого не знаем.

Надо сказать, что отложения гуронского комплекса на Канадском щите, включающие типичные ледниковые образования (так называемые диамиктиты), не содержат никаких «экзотических» продуктов, хотя в разрезе нижних толщ комплекса описаны горизонты и пачки вулканогенных отложений. В целом гуронский комплекс сложен преимущественно песчаниками и конгломератами аллювиального и дельтового происхождения, а также диамиктитами.

Рис. 7. Докембрийские формы прокариотов и эукариотов [Buick, Dunlop, 1990] 1 – древнейшие биогенные остатки – сфероиды в породах толщи Уоррауом, Австралия; 2 – строматолиты различных форм и размеров; 3 – нитевидные формы и сфероиды цианобактерий из кремнистых отложений Ганфлинт в Канаде; 4 – реконструкция способа деления клеток водоросли Glenobotrydion (эукариота) из отложений Биттер-Спрингс в Австралии; 5 – мягкотелые животные позднего докембрия, реконструированные по отпечаткам в отложениях с возрастом 700 млн лет из Австралии и Англии

Скорее всего, похолодание, повлекшее за собой оледенение, было вызвано теми же причинами, что и более поздние оледенения. Среди них едва ли не главным могло быть понижение концентрации диоксида углерода в воздухе на рубеже архея и протерозоя, что привело к уничтожению существовавшего парникового эффекта. Одной из причин этого, вероятно, была жизнедеятельность примитивных фотосинтезирующих организмов – прокариотов (в их клетках отсутствовало ядро), в буквальном смысле «съевших» избыточный углекислый газ и выделивших значительное количество кислорода (рис. 7). Их распространению способствовало значительное увеличение площади континентов 3–2 млрд лет назад и соответственно площади прибрежного мелководья, где обитали фотосинтезирующие микроорганизмы. Таким образом, чтобы свести на нет парниковый эффект и существенно понизить среднюю температуру на поверхности Земли, первым фотосинтезирующим организмам потребовалось 1,5 млрд лет. Хотя самые значительные следы гуронского оледенения обнаружены в Северной Америке, в районе Канадского щита, оно затронуло и ряд других континентов, существовавших в протерозое. Длительность этого эпизода в истории Земли еще не определена.


    Ваша оценка произведения:

Популярные книги за неделю