355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Конюхов » Читая каменную летопись Земли... » Текст книги (страница 4)
Читая каменную летопись Земли...
  • Текст добавлен: 21 марта 2017, 19:30

Текст книги "Читая каменную летопись Земли..."


Автор книги: Александр Конюхов



сообщить о нарушении

Текущая страница: 4 (всего у книги 16 страниц)

Камни вокруг нас

Песчаники – застывшие русла рек, окаменевшие дюны и пляжи

Песчаник относится к числу самых обыкновенных и широко используемых в хозяйстве типов пород. Его применяли испокон веков, в частности, как точильный камень. Впрочем, песчаник прежде всего строительный материал. В этом качестве он уступает разве что известняку. В странах, где последний достаточно редок, из песчаника строили дома и храмы, мостили дороги, складывали опоры мостов. Среди наиболее известных сооружений из песчаника храм Абу Симбел в Верхнем Египте, построенный в XIII в. до н. э. во времена Нового царства. Сам храм – пещерное сооружение, выдолбленное в скалистом уступе нильского берега и развернутое в широтном направлении. В двух залах и в святилище общей протяженностью 55 м обычно царил полумрак. Лишь лучи восходящего солнца два раза в году освещали его глубины. Потолочный свод первого зала поддерживался прямоугольными столбами высотой более 10 м, к которым были прислонены статуи Рамсеса II – одного из знаменитейших фараонов Египта. В честь его, а также богов Амона, Птаха и др. построен этот храм. Вход как бы охраняли высеченные из монолитов песчаника статуи самого фараона и его жены Нефертари высотой 20 м [Лебединский, Кириченко, 1988]. В период строительства высотной Асуанской плотины пещерный храм и статуи фараона были распилены на крупные блоки и перенесены на более высокое место, где им не угрожало затопление.

Византийский историк Исидор, упоминая среди основных строительных материалов «мельничный камень», т. е. песчаник, считал, что он особенно пригоден для кладки стен домов и храмов. В его времена тесаный камень стал вытеснять бетон, широко применявшийся в строительном деле в период расцвета Римской империи. Песчаник не значился в ряду особо прочных или красивых материалов. Как и другие сорта камня, его рекомендовалось применять для вполне определенного элемента конструкции или декора. Так, фундамент собора Парижской богоматери сложен из бутовой плиты и блоков зеленого песчаника.

Песчаник, устойчивый к выветриванию в областях с пустынным климатом, во влажных тропиках не столь прочен. Дело в том, что эта порода состоит из множества мелких и близких по размеру зерен, образующих ее каркас, и связующего более тонкого вещества, которое играет роль цемента. В зависимости от состава зерен и цемента прочность этой породы довольно резко меняется. Размеры песчинок колеблются от 0,1 до 1 мм. В большинстве своем они имеют округлую форму, правда далекую от идеальной, сферической. При изучении в шлифах под микроскопом обычно различают зерна остроугольной, угловатой и сферической, окатанной формы. В песчанике, лишенном цемента и стоженном однородным по величине материалом, зерна уложены примерно так же, как шары на бархате биллиардного стола перед началом партии. Эта идеальная упаковка зерен достигается в реальной породе очень редко.

В пустотах (их называют порами) могут находиться более мелкие частицы. Они обычно не выполняют опорной, несущей функции и потому относятся к заполнителю (цементу). Иногда, правда, цементирующего вещества настолько много, что песчинки как бы плавают в нем. Такой цемент называют базальным. Его разложение ведет обычно к разрушению всей породы. Чаще всего это происходит в результате выщелачивания фильтрационными водами. Песчаник – пористый материал, играющий обычно роль коллектора грунтовых вод. В него легко проникают и метеорные воды. Если цемент в этой породе представлен карбонатами, под действием этих вод он скоро распадается. Более устойчив глинистый либо кремнистый цемент.

Всякая порода – это зрелая форма существования осадка, некогда мягкого и рыхлого. Прежде чем осесть, песчинки обычно долго путешествуют. Их поверхность испещрена различными отметинами. В поле электронного сканирующего микроскопа ее можно читать, как паспорт дипломата с визами разных стран. Песчаное зерно из пустыни покрыто мелкими вмятинами, возникшими от ударов при столкновении поднятых в воздух частиц. Само зерно обычно одето в тонкую непрозрачную «рубашку» из оксидов железа. Это так называемый «пустынный загар», появляющийся при испарении поднимающихся к поверхности через песок грунтовых вод, несущих растворенные и взвешенные вещества.

А вот зерно кварца из устьевого бара в дельте реки, как правило, отполировано и окатано до такой степени, что похоже под бинокуляром на маленький блестящий шарик. Однако и на его поверхности есть темные оспины – ямочки растворения. Если такое зерно окажется на приливно-отливной площадке, каких много в дельтах и эстуариях рек, то спустя какое-то время в этих порах-ямочках мы обнаружим мельчайшие кристаллики гипса или других солей. Они выросли здесь в фазы осушки, во время отлива, когда основная масса воды скатывается с площадок в реку или в море, а в остаточной поровой влаге резко подскакивают при испарении концентрации растворенных солей. В бухтах и лагунах, расположенных на побережье некоторых аридных областей, например Юго-Западной Африки, в кавернах, которыми изобилует поверхность кварцевых зерен, обнаруживаются панцири мелких диатомей – одноклеточных водорослей, обитающих в зонах с повышенной биологической продуктивностью вод. В то же время во влажных тропиках, где в береговой зоне широко распространены мангровые заросли, песчаные частицы, галька и раковины моллюсков покрываются черным налетом. Это органо-минеральные пленки, содержащие восстановленные формы металлов.

Однако самое суровое испытание ожидает песчаные частицы там, где основным агентом переноса является ледник. Под давлением движущегося льда зерна растрескиваются и распадаются на более мелкие частицы, различающиеся исключительно неправильной формой с острыми углами и отчетливо выраженными поверхностями скола. На крупных обломках и гальке остаются борозды – характерные следы волочения, на зернах песчаной размерности наблюдаются насечки и трещинки.

Таким образом, бесчисленные песчинки, прилипающие к нашему телу на пляже, это не скопление одинаковых безымянных частиц, а собрание индивидуальностей с различной судьбой, отраженной в их форме и структуре поверхности. И все-таки самая последняя фаза их жизни на свободе – наиболее важная. Именно в это время стираются или затушевываются старые отметины и появляются новые. Поэтому в барханах пустыни множество песчинок с «пустынным загаром» и почти нет зерен с типичным для ледниковых отложений обликом. А вот в морских наносах субтропических и аридных зон вместе с хорошо отполированными под ударами волн частицами можно увидеть зерна с «рубашкой» из оксидов железа. Их приносит сюда ветер из соседних пустынь и полупустынь. На шельфах некоторых других аридных областей встречаются пески, где большинство зерен одето в черную «рубашку» из фосфатов. Это зачаточные ядра будущих фосфоритовых конкреций – ценного полезного ископаемого. Самый же однородный по составу, отполированный и чистый (без рубашек и примесей) песчаный материал накапливается в дельтах крупных рек. Он почти нацело состоит из хорошо окатанных кварцевых зерен. Река так долго несла песчинки по равнинам, что на этом пути потерялись, истерлись минеральные компоненты, малоустойчивые к переносу. Так, отношение кварцевых частиц к зернам полевых шпатов – второго по распространенности компонента в составе песков – в дельте реки Амазонки, например, колеблется от 40: 1 до 98: 1, тогда как во многих песках морского генезиса оно не превышает 10:1 и даже 4: 1. В некоторых же седиментационных обстановках полевые шпаты могут преобладать над кварцем. Пески с высоким содержанием полевых шпатов называют аркозовыми. Чистые кварцевые пески такое же полезное ископаемое, как и руды. Знаменитое венецианское стекло во многом обязано своей славой кварцевым пескам с небольшого островка Мурано, который находится в глубине венецианской лагуны. Эта последняя возникла, как показали палеогеографические исследования, на месте отмершего участка древней дельты реки По.

Те речки, у которых короткий пробег, доставляют к морскому побережью обломки многих пород, обнажающихся на водосборах, вдоль притоков и основного русла. Если это граниты, то среди песчаных частиц будут преобладать кварц, полевые шпаты и слюды. Если в пределах водосборной площади преобладают магматические образования, то песок в устье реки будет иметь темный цвет, так как в его составе основную роль играют обломки базальтов, андезитов или ультрамафитов, окрашенных, как правило, в темные цвета. Эти пески не годятся для производства стекла. Из-за своей окраски они получили название граувакк (темно-серый песчаный осадок) и встречаются в областях активного вулканизма, например на островах вулканического происхождения в центральных частях океана.

Таким образом, песок песку рознь. Самыми распространенными являются полевошпат-кварцевые пески, которые объединяются в группу аркозов и субаркозов (в аркозах от 10 до 25 % приходится на зерна полевых шпатов, в субаркозах – от 5 до 15 %, почти все остальное – кварц). Такие пески в изобилии присутствуют на морских побережьях, на открытых шельфах. Много их и на суше, особенно в окрестностях так называемых платформенных щитов, где на поверхность выходят породы гранитного фундамента. Кварцевые пески встречаются как в устьях крупных рек, так и на равнине, где они выполняют древние отмершие речные русла или слагают погребенные дюны, некогда мигрировавшие вдоль берегов озер. Песок в пустыне также в основном кварцевый, хотя и имеет желтый цвет из-за пленки «пустынного загара». В горах и вблизи горных массивов распространены пески многокомпонентного (полимиктового) состава, включающие обломки пород, зерна кварца и полевых шпатов в разных сочетаниях.

На небольших островках близ Атлантического побережья Франции описаны «поющие» пески: под ногами идущего по пляжу человека они издают мелодичное поскрипывание, которое можно услышать лишь в тихую погоду. Дело в том, что между песчинками в порах находятся мелкие кристаллики гипса. Ломаясь под тяжестью ступни человека, они издают звук, похожий на звон стеклянной посуды на столике в купе движущегося поезда. Гипс и другие соли кристаллизуются в поровом пространстве пляжевых песков при испарении морской воды, насытившей осадок при заплесках волн во время шторма.

В песках, захороненных под плащом других, более молодых осадков, сохраняется не только исходный состав, иначе говоря минеральная структура, но и другие специфические признаки, позволяющие судить об условиях их формирования. Эти признаки, называемые текстурными, включают слоистость, различные знаки и неровности на поверхности пластов, а также следы жизнедеятельности древних организмов: ходы илоедов, копролиты и т. д. По этим признакам можно воссоздавать палеоландшафты, определять направление водных течений, розу ветров, если речь идет об эоловых наносах, климатические особенности эпохи. В песках прекрасно фиксируется косая, волнистая, перекрестная и бугристая слоистость. Первая типична для песков из речных русел, вторая и третья наблюдаются в подводной части пляжа и на открытых участках шельфа, четвертая – на приливно-отливных площадках.

По комплексу этих признаков, иначе говоря текстур, можно судить об обстановках аккумуляции песков и проследить их изменение во времени. Так, в обнажениях киргизской части Ферганской долины в песчаниках раннемелового возраста прекрасно выражена крутопадающая косая слоистость, характерная для мигрирующих под действием ветра песчаных дюн. Поля этих дюн погребены под наносами, отложенными водными потоками. Гребни дюн оказались срезаны водой, и остались лишь их основания, слившиеся вместе. Таким образом, в недрах был захоронен пустынный ландшафт, существовавший в Средней Азии в начале мелового периода.

Древние песчаные дюны и барханы недавно идентифицированы в толще Красного Лежня – в песчаниках триасового возраста (около 200 млн лет назад). Они распространены в акватории Северного моря и были вскрыты нефтепоисковыми скважинами под дном на глубинах нескольких тысяч метров. Выяснилось, что около 200 млн лет назад здесь существовала пустыня. Подобных примеров можно привести множество.

Волна легко смывает следы, оставленные ступней человека на песке. У Р. Брэдбери есть рассказ о рисунках, сделанных на пляже известным художником. В задумчивости он рисовал их тростью на песке во время ночной прогулки вдоль моря. К утру разыгравшийся шторм уничтожил рисунки, и только один, случайный свидетель успел насладиться зрелищем нечаянного шедевра. Оказалось, однако, что волна, смывая различные следы, оставляет собственные отпечатки в виде крупной и мелкой ряби, желобков, проложенных стекающей водой, волноприбойных знаков.

В районах, где пески залегают среди пластов мощных влагонасыщенных глин, при погружении в недра наблюдаются интересные явления. Вода, выдавливаемая из глин в процессе их уплотнения, переходит в соседние пески, сохранившие высокую пористость. Возникает аномально высокое давление. Песчаный пласт превращается в плывун, обладающий огромной «таранной» силой. Через ослабленные зоны, например вдоль разломов, он прорывается к поверхности, образуя так называемые нептунические дайки. Одновременно происходит разгрузка излишней воды, уже не помещающейся в песчаном горизонте. Подобные дайки широко распространены на полуострове Челекен в Западной Туркмении, где их прекрасно описал известный литолог В. Н. Холодов.

Другой интересный феномен, наблюдаемый уже в горных районах Дагестана, – это септариевые конкреции – крупные круглые шары, словно ядра торчащие в вертикальных откосах над дорогами. Они возникли в песчаниках и в близких к ним породах – алевролитах альбского возраста. Исследования ученых показали, что речь идет о конкрециях – стяжениях, сложенных железистым карбонатом (сидеритом) и сформировавшихся в песчаниках уже после погружения в недра на стадии диагенеза, с которой связано превращение осадка в породу.

Что такое глина?

Глина в повседневной жизни у многих людей ассоциируется с обыкновенной липкой грязью. Чтобы смыть ее с обуви, надо приложить изрядные усилия. Это досаждающее в быту свойство глин является одним из самых ценных в индустриальном производстве.

Важнейшие качества глин – это связность и пластичность. Если другие рыхлые отложения легко распадаются на отдельные ингредиенты (зерна, обломки, комочки), то агрегаты, составляющие глину, как бы сцеплены друг с другом и, будучи разъединенными, легко связываются вновь при контакте. Хотя глина не обладает магнитными свойствами, на ее поверхности легко адсорбируются разные тонкие частицы, а сама она запросто пристает к нашим рукам и одежде.

Еще одним качеством, отличающим глину от других осадочных образований, является способность размокать в воде. Если мы размешаем комок глины в стакане воды, она быстро помутнеет и будет оставаться такой в течение многих часов, а иногда и дней. Любой же другой осадок, размешанный в воде, почти сразу оказывается на дне. Чтобы заставить опуститься глинистые частицы, приходится добавлять в воду вещества – коагулянты, например сильные электролиты. В лабораториях глинистую суспензию осаждают в центрифугах.

Необычна и способность некоторых глин к разбуханию. Если нанести на поверхность препарата из такой глины глицерин или этиленгликоль – тяжелые неполярные жидкости, то этот препарат на глазах начинает вспухать. Объем некоторых разновидностей глин при этом способен возрасти в несколько раз.

Пластичностью можно объяснить способность глины сохранять приданную ей форму. Кто из нас не лепил в детстве забавных зверушек из пластилина? А ведь в его основе лучшие сорта формовочных глин. Можно еще много рассказывать о специфических свойствах глин и слагающих их минералов, которые определяют широкий спектр применения этих образований в народном хозяйстве. Вначале, однако, полезно познакомиться с их внутренней структурой, определяющей отмеченные выше необыкновенные качества.

Глины и производные от них глинистые породы – аргиллиты, сланцы, филлиты – чрезвычайно широко распространены в осадочной оболочке Земли. Они составляют от 50 до 70 % ее объема. Это связано с высокой устойчивостью глинистых минералов в условиях земной поверхности и относительно глубоких ее недр (7-10 км). Подобная устойчивость обусловлена лабильностью кристаллической решетки слоистых силикатов, к которым принадлежит большинство глинистых минералов, ее способностью к трансформациям при изменении температур и давлений, других физико-химических параметров среды. Конечным продуктом на пути превращения глинистых минералов при погружении в недра являются слюды. Последние, отличаясь значительной устойчивостью к высоким температурам и давлениям, в поверхностных условиях, как правило, легко преобразуются обратно в глинистые минералы.

Кристаллическая решетка слоистых силикатов устроена наподобие слоеного торта: примерно одинаковые по толщине его листы наложены один на другой, а между ними помещается «начинка». В структуре глинистых минералов роль теста играют двух-, трехэтажные пакеты, построенные октаэдрами и тетраэдрами. И те и другие образуют самостоятельные слои, жестко сцепленные между собой. Наиболее широко распространены две комбинации таких слоев-сеток: сочетание тетраэдрического и октаэдрического слоев, формирующих двухслойный тип пакета, и сочетание двух тетраэдрических сеток с октаэдрической между ними, что позволяет говорить о трехслойной структуре единичного пакета.

Не разбирая подробно, как устроены тетраэдры и октаэдры, отмстим, что в вершинах тех и других находятся анионы, тогда как внутри каждой (или почти каждой) ячейки расположены катионы. Анионы – обычно жестко связанные друг с другом О—2 и ОН – играют роль стенок в блочном доме. Некоторые даже являются общими для соседних «квартир». В качестве же «постояльцев» в этих «квартирах» выступают двухвалентные магний и железо, трехвалентные железо и алюминий, а также четырехвалентный кремний. Для первых трех из перечисленных катионов в качестве жилища годятся только октаэдры, для последнего, кремния, – только тетраэдры. Лишь алюминий может располагаться (в определенном количестве) и в тех и в других.

Интересно, что если «квартирки» в тетраэдрических этажах все до одной заняты «жильцами», то октаэдрический этаж может быть полностью заселен только двухвалентными катионами – Fe2+ и Mg2+. Трехвалентные алюминий и железо требуют для себя улучшенных условий и размещаются лишь в двух из каждых трех «комнат» октаэдрического этажа. Это обусловлено необходимостью соблюдения относительного баланса отрицательных и положительных зарядов в каждом домике-пакете. Если оно не будет соблюдено, домик рассыпется. Естественно, что при преобладании трехвалентных катионов в октаэдрах общий баланс зарядов поддерживается меньшим их количеством, чем в случае, если «квартирантами» в этом этаже будут двухвалентные железо и магний.

Минералы, в структуре которых находятся пакеты-домики повышенной комфортности (с заселенными на две трети комнатами в октаэдрическом этаже), получили название диоктаэдрических. Соответственно минералы с пакетами, заселенными «под завязку», называются триоктаэдрическими. Это важные понятия, так как и ди– и триоктаэдрические минералы образуются в строго определенных физико-химических условиях среды на поверхности Земли или в ее недрах.

В отличие от анионов, изъятие которых из структуры приводит к ее разрушению, катионы обладают большей свободой. Например, они могут в определенных условиях меняться «квартирами» или выезжать из них с последующим заселением новыми «жильцами». Эти изменения в составе катионов называются изоморфными замещениями. Так, Mg2+ может заместиться Fe2+ и, наоборот, Аl3+ нередко сменяется Fe3+. Речь в данном случае идет о более просторных, октаэдрических «квартирах». Что же касается тетраэдров, то тут обмен жилплощадью может происходить только между кремнием и алюминием. Последний отличается неприхотливым нравом и частично замещает кремний при постепенном погружении глинистых отложений в недра, где этому четырехвалентному катиону становится тесно в сузившейся каморке – тетраэдре, и он стремится покинуть ее.

Вот таковы основные правила общежития в домиках-пакетах, которыми составлены глинистые минералы. Если вернуться к сравнению структуры глин со слоеным тортом, то придется упомянуть и о «начинке», находящейся между отдельными пакетами. В этом отношении глинистые минералы выпечены по разным рецептам. В одних роль «крема» играет обособленный октаэдрический слой. Таковы минералы группы хлорита. В других – это слои из упорядоченных молекул воды с обменными катионами (смектиты), в третьих – катионы калия (иллиты или гидрослюды). Четвертая группа минералов – каолинит, диккит, галлуазит вообще лишены «крема». Это – «сухое печенье». Отдельные пакеты, а они, кстати, имеют необычное двухслойное строение (один тетраэдрический на один октаэдрический слой), сцеплены вместе ван-дер-ваальсовыми силами чисто электрической природы (рис. 1). Впрочем, во многих каолинитах отмечается присутствие небольшого количества сорбированной воды и обменных катионов.

Рис. 1. Структура двухэтажного пакета каолинита (Грим, 1956 г.) 1 – атомы кислорода; 2 – гидроксильные группы; 3 – атомы алюминия. 4 – атомы кремния

Межпакетное, или, как чаще его называют, межслоевое, пространство играет в глинистых минералах огромную роль. В сущности, его содержимое во многом определяет различия между отдельными их группами и видами.

Свойства и содержимое межслоевого пространства зависят от общего электрического заряда соседних двух– или трехэтажных пакетов («домиков с жильцами»). Так как в структуре слоистых силикатов преобладают анионы, несущие электрический заряд, а катионы в глубине тетраэдров и октаэдров лишь компенсируют его (в глинистых минералах далеко не полностью), то и суммарный заряд единичного пакета является отрицательным. Для того чтобы структура минерала была полностью уравновешенной, необходима полная компенсация общего заряда. Эту функцию в глинах выполняют межслоевые катионы. Они располагаются в углублениях тетраэдрической сетки, внешняя поверхность которой сложена основаниями тетраэдров. Вершины же их обращены в сторону октаэдров и частично являются общими для них.

Большинство межслоевых катионов играют роль «молнии» или своего рода «липучек». Некоторые из них, например Са2+ или Mg2+, стягивают соседние пакеты совсем нежестко. Другие связывают пакеты более крепко (Na+). Все эти катионы относятся к обменным. С помощью нехитрой химической обработки их можно вывести наружу, заменив другими, скажем Li+, Н+, NH4+. Благодаря небольшому отрицательному заряду, рассеянному по поверхности трехэтажных пакетов и в основном компенсированному обменными катионами, в межслоевом пространстве может помещаться вода, образующая слои или сетки. Последние составлены ориентированными молекулами воды, находящимися в состоянии жидкого кристалла. Возникает структура более плотная по сравнению со структурой льда. Такая вода называется переуплотненной. Полагают, что она является химически чистой, т. е. не содержит примесей, а потому агрессивна в химическом отношении.

В зависимости от типа обменного катиона, находящегося в межслоевом пространстве, там может образоваться один, два или более слоя структурированной воды: при преобладании натрия – один слой, при наличии кальция или магния – два слоя. Присутствие воды значительно растягивает межслоевое пространство. Высота двухслойного пакета (по оси с) равна 7,14 Ао, трехслойного – около 10 Ао. Но так как единичные пакеты разделены довольно широким межслоевым промежутком, в котором находятся вода и обменные катионы, то реальное расстояние между нижними поверхностями двух соседних трехэтажных пакетов возрастает до 12,4 или даже до 15,4 Ао. Это расстояние называется межплоскостным и широко используется для идентификации (диагностики) глинистых минералов.

Более того, в широкие межслоевые промежутки легко проникают тяжелые неполярные органические молекулы, например этиленгликоля или глицерина. И тогда межплоскостное расстояние увеличивается до 16,5 Ао в первом случае и до 17,8 Ао во втором. Минералы с подобной кристаллической решеткой называются разбухающими. В большинстве своем они относятся к группе смектита (рис. 2). Их несколько: смектит, бейделлит, сапонит, железистый смектит и некоторые редко встречающиеся минералы.

Рис. 2. Структура трехэтажного пакета смектита (Грим, 1956 г.) 1 – атомы кислорода; 2 – гидроксильные группы; 3 – агомы алюминии, железа, магния; 4 – атомы кремния, иногда алюминия

Минералы группы хлорита характеризуются межплоскостным расстоянием, близким к таковому смектитов. В межслоевом промежутке (dхлорит = 14,3 Ао), как уже упоминалось выше, место структурированной воды и обменных катионов занимает отдельно лежащий октаэдрический слой. В отличие от смектитов минералы этой группы не разбухают в присутствии глицерина или этиленгликоля. Эффект разбухания наблюдается лишь в том случае, если октаэдрический слой разорван на отдельные блоки, между которыми, частично раздвинув межпакетное пространство, могут внедриться неполярные органические молекулы.

Наконец, самым крепким видом соединения трехэтажных пакетов в том слоеном пироге, которым является чешуйка глинистого минерала, является сочленение через катионы К+, находящиеся в межслоевом промежутке. Крупные катионы этого элемента лежат как бы полуутопленными в пустотах, окруженных шестью соседними тетраэдрами. Если верхняя половина катиона оказывается в точно такой же ячейке тетраэдрического слоя соседнего пакета, межпакетное пространство запирается словно на кнопки. Чтобы «расстегнуть» их, необходимо удалить К+. Подобное строение характерно для минералов группы слюд (мусковита, биотита, флогопита) и сохраняется в производных от них образованиях – иллитах (гидрослюдах). Жесткость сцепления обеспечивается сильным отрицательным зарядом трехэтажных пакетов у всех этих минералов, который как раз и нейтрализуется калием. В отличие от слюд у иллитов кнопки расставлены далеко не равномерно, т. е. часть пакетов не пристегнуты «намертво». Там, где отсутствует К +, могут находиться молекулы воды. Именно поэтому эти минералы нередко именуют гидрослюдами. Они практически не разбухают и имеют межплоскостное расстояние около 10 Ао.

Таким образом, мы познакомились со структурой основных глинистых минералов – смектитов, каолинита, иллита и хлорита. Существует масса разновидностей этих образований, а также переходных между ними форм. Родственными являются также структуры, относимые к псевдослоистым силикатам, – палыгорскит и сепиолит. Они возникают в условиях дефицита основных строительных кирпичиков – кремния и алюминия, а поэтому отличаются игольчатой или волокнистой формой кристаллов, прекрасно идентифицируемых на электронных микрофотографиях.

Диагностируются глинистые минералы преимущественно с помощью дифрактометрии, которая является одним из методов рентгенографического анализа. Фиксируя на дифрактограммах рефлексы отражений разного порядка от внутренних поверхностей минеральных структур, ориентированных на стеклянной пластинке, легко рассчитать межплоскостные расстояния тех глинистых минералов, которые находятся в составе препарата. При этом используют целый ряд дополнительных обработок – насыщение глицерином или этиленгликолем, прокаливание до 500 °C и др., что дает возможность распознавать минералы сходного строения и состава, имеющие близкие межплоскостные расстояния, например иллит, смектит и хлорит.

В воде глины распадаются на мелкие чешуйки и микроагрегаты. Их исследуют в поле электронного микроскопа либо методом просвечивания, либо путем сканирования напыленной золотом поверхности. Многие минералы узнаются по характерным очертаниям: палыгорскит и сепиолит присутствуют в виде иголочек или волокон, галлуазит – в виде обломанных или полураскрытых трубочек, хорошо окристаллизованный каолинит – в форме шестигранных пластинок. Менее надежно диагностируются другие глинистые минералы. На электронных микрофотографиях смектит обычно представлен мелкими облаковидными агрегатами с нечетко выраженными краями. Для иллитов характерны крупные плотные агрегаты неправильной формы с четкими очертаниями.

Таковы некоторые «интимные» подробности строения минералов, входящих в состав грязи, которую мы досадливо смываем в распутицу с наших ботинок.


    Ваша оценка произведения:

Популярные книги за неделю