Текст книги "Читая каменную летопись Земли..."
Автор книги: Александр Конюхов
Жанры:
История
,сообщить о нарушении
Текущая страница: 15 (всего у книги 16 страниц)
Климаты прошлого
Водный баланс между континентами и океаном (иначе говоря, круговорот водных масс между ними) определяется главным образом двумя факторами: соотношением площадей суши и водных пространств (океанов и эпиконтинентальных морей); распределением континентальной суши по широтам. Естественно, чем больше площадь суши, тем меньше зеркало вод, с которого происходит испарение влаги. Отсюда и меньший объем атмосферных осадков, выпадающих над континентами. Сложнее обстоит дело с тем, какую роль играет распределение площади материковой суши по географическим широтам, и в частности с тем, как оно влияет на баланс атмосферных осадков. Геологические данные показывают, что наиболее засушливый климат на материках устанавливался в эпохи, когда они сходились вместе, образуя гигантские конгломераты. Подобная ситуация имела место в конце докембрия и в интервале от позднего карбона до середины триаса (вспомним Пангею). Как показали расчеты [Tardy et al., 1989], уровень водного стока в перми и триасе был самым низким за весь фанерозойский этап эволюции (570 млн лет) и приближался к современному объему стока, равному, по данным указанных авторов, 0,397x1020 г/год.
Напротив, гумидными были меловой период (130-66 млн лет назад), поздний силур-девон (415–350 млн лет назад) и кембрий (570–510 млн лет назад), когда материки были рассеяны по поверхности Земли. В меловое время объем выпадавших над континентами осадков составлял около 0,5·1020 г/год, что примерно на 20 % выше современных значений. В триасе он снизился до 0,35 1020 г/год, в основном вследствие того, что значительные массивы суши находились в то время в пределах широт, где господствуют субтропические и засушливые условия (рис. 8). Наивысший уровень атмосферных осадков (и испарения) был характерен для кембрийского периода, когда многие крупные континентальные массивы располагались вблизи экватора (рис. 9). Оценка скоростей осадко-накопления по величине отношения изотопов стронция (87Sr/88Sr) подтверждает эти выводы.
Рис. 8. Положение материков (а) и распределение площади, занятой материками и океанами в различных широтах (6), в начале триасового периода [Tardy ei al., 1989] 1 – континенты; 2 – горные хребты и вулканические дуги; 3 – океаны
Рис. 9. Положение материков (о) и распределение площади, занятой материками и океанами в различных широтах (б), в раннекембрийскую эпоху [Tardy el al., 1989] Условные обозначения те же, что и на рис. 8
Другие влагообильные периоды в фанерозойскую стадию развития планеты, а именно девонский, меловой и палеогеновый, также характеризовались высокими скоростями аккумуляции толщ отложений. С другой стороны, карбон, пермь и триас, отмеченные равномерной группировкой континентальных масс по широтам в составе единого материка Пангея, отличались весьма пониженными скоростями их формирования. Не в последнюю очередь это было связано с малыми объемами выпадавших над сушей атмосферных осадков, со слабо протекавшими химическими процессами выветривания и с незначительным количеством смываемых с суши в океан продуктов эрозии. К тому же и площадь шельфов явно сократилась по сравнению с периодами фрагментации континентальной литосферы. А шельфы и соседний с ними континентальный склон были и остаются основными областями аккумуляции карбонатных и кремнистых отложений.
Наивысший размах денудация суши приняла в девонский период, хотя он и уступает в этом отношении современной эпохе: по данным исследователей, современные значения достигают 108·106 т/км2/млн лет.
Таким образом, в геологической истории Земли отчетливо выделяются эпохи преобладания гумидного и аридного климатов на суше. Кроме того, следы обширных оледенений, не уступавших по масштабам плейстоценовым, свидетельствуют о том, что климат менялся от теплого до холодного (по крайней мере в высоких и умеренных широтах). В фанерозое оледенениями были отмечены позднеордовик-силурийское время (Северо-Африканский кратон, отчасти Бразильский щит), поздний карбон – пермь и ранний триас (Южная Африка, Южная Америка и Антарктида), наконец, плейстоцен (северные районы Евразии и Северной Америки, Антарктида). Последнее похолодание, достигшее максимума в четвертичное время, началось в высоких широтах гораздо раньше. Так, ледовая шапка Антарктиды стала образовываться еще в олигоцене, а по некоторым данным даже в эоцене. Одним словом, земной климат долго эволюционировал от теплого в мелу до холодного, прежде чем началось глобальное оледенение, затронувшее в плейстоцене не только высокие, но и умеренные широты.
Не выясненным до конца остается одно очень важное обстоятельство: существовали ли ледовые шапки на полюсах постоянно (в позднем докембрии и фанерозое), или они формировались лишь в редкие эпохи глобального похолодания климата? Еще недавно большинство специалистов не сомневались в ответе на этот вопрос. Да, говорили они, ледниковый панцирь в высоких широтах – непостоянное явление. Он образуется лишь на некоторых этапах при определенном сочетании космических факторов (положение Солнца относительно центрального ядра Галактики и уровень активности самого Солнца) и астрономических (наклон земной оси, прецессия и др.). До недавнего времени еще бытовало убеждение, что при соблюдении этих условий климат на Земле становился настолько теплым, что субтропическая растительность произрастала даже вблизи полюсов, если там, конечно, была суша.
Необходимо отметить, что при всей важности совместного действия перечисленных факторов не меньшее значение имели и чисто земные обстоятельства. Одно из них, как говорилось выше, – это особенности расположения материков на поверхности планеты. Их объединение в крупные конгломераты, когда значительные площади суши оказываются вблизи полюсов, создает благоприятные предпосылки для развития широкомасштабного оледенения. Этому условию отвечают все фанерозойские эпизоды, с которыми связано образование обширного ледникового панциря на ряде континентов.
В последние годы стали накапливаться данные, указывающие на то, что ледники (не только горные), пусть и в «зачаточной» форме, существовали даже в один из самых теплых геологических периодов – меловой. Интересные результаты дали исследования серии Билдинг-Шейл во впадине Эроманга в центральных районах Австралии. Здесь среди темно-серых глин и алевролитов валанжин-альбекого возраста были обнаружены валуны и глыбы докембрийских кварцитов и вулканитов диаметром свыше 3 м. Валуны и более мелкие обломки встречаются поодиночке либо группами, располагаясь вдоль поверхностей, разделяющих отдельные горизонты. В большинстве своем они несут признаки окатывания в прибрежных условиях. Взаимоотношения между глыбами и вмещающими осадками указывают на ледовый разнос крупного материала (рис. 10). На других континентах также были встречены аналогичные образования, имеющие возраст от среднеюрского до среднемелового. Полагают, что они сформировались в высоких широтах (65–70° ю. ш.). Приведенные данные свидетельствуют о том, что ледовые шапки на полюсах могли существовать на протяжении большей части мезозоя [Frakes, Francis, 1988).
Рис. 10. Местоположение находок раннемеловых отложений ледового разноса [Frakes, Francis, 1988]
Изучение стабильных изотопов кислорода в раковинах из меловых отложений Австралии и Антарктиды позволяет представить в первом приближении порядок среднегодовых температур, господствовавших в этих регионах. Они оказались довольно низкими для этого интервала геологического времени, считавшегося самым теплым за последние 300–250 млн лет. Эти значения для южных районов Австралии в позднем мелу не превышали +11…+ 13 °C, в районе Антарктиды на островах Дж. Росса и Верд в сантоне и кампане + 13,6 °C, а в Маастрихте +11,7 °C. Согласно этим данным, в зимние сезоны температура в этих регионах могла, по-видимому, опускаться ниже 0° [Perrie, Marshall, 1990].
Все вышесказанное подтверждает предположение, что на полюсах действительно могли существовать в рудиментарном виде ледовые шапки, сохранившиеся с периодов господства ледового климата. Хотя палеогеографические и палеоклиматические данные и подтверждают наличие связи между изменениями параметров земной орбиты (наклон земной оси, прецессия и др.), носящими цикличный характер, и определенными трансформациями климата, также цикличными, но основные долговременные тенденции контролировались другими факторами. Прецессионные циклы записаны, например, в глубоководных осадках Южной Атлантики позднемелового-раннетретичного возраста [Herbert, D'Hondt, 1990]. В этом разрезе с тонким переслаиванием мергелей и известняков хорошо проявлена повторяемость, отражающая интервалы времени продолжительностью 23,5±4,4 тыс. лет. Другие циклы, обусловленные изменениями угла наклона земной орбиты и эксцентриситета, имеют длительность соответственно 41 тыс. лет и примерно 127 тыс. лет. Периодичности разного типа определялись в геологическом прошлом скоростью вращения Земли и расстоянием между Луной и нашей планетой. Впрочем, эксцентриситет зависит только от параметров земной орбиты. Не радикальные изменения климата, носившие в основном плавный и не драматичный характер, влияли на продуктивность карбонатстроящего фитопланктона, обитавшего в поверхностных водах Южной Атлантики. По колебаниям величины биологической продуктивности (о чем можно судить по содержанию карбоната кальция в донных осадках) можно определить характер и длительность тех циклов, которые были обусловлены изменениями параметров земной орбиты.
Вместе с тем, согласно последним данным, здесь еще далеко не все ясно. Об этом, в частности, говорят результаты исследования изотопного состава натечных карбонатных корок из пещеры Дьявола в штате Невада (в США), формировавшихся на стенках этой пещеры в течение последних тысячелетий. Изучение слоев корок с возрастом 200-50 тыс. лет позволило проследить колебания температуры в пещере на протяжении значительного промежутка времени. Кривая колебаний температуры, построенная по изотопным данным, значительно отличается от аналогичной кривой, которая была выведена по результатам исследования изотопного состава карбонатов в морских осадках того же возраста. Отсюда можно заключить, что изменения параметров земной орбиты не влияли на наступление ледниковых эпох. Согласно кривой, построенной по морским осадкам, одно из оледенений в плейстоцене завершилось 130–127 тыс. лет назад, когда северного полушария стало достигать максимальное количество солнечных лучей благодаря изменению угла наклона земной оси. Результаты же исследования в пещере Дьявола говорят о том, что потепление наступило на 17 тыс. лет раньше [Monastersky, 1988].
Геологические и биологические регуляторы климата
Как известно, состав земной атмосферы в докембрии изменился с появлением и развитием жизни на планете. Первые простейшие микроорганизмы «выели» метан и другие углеводороды, а их потомки, освоившие фотосинтез, – огромные количества углекислого газа, господствовавшего в первичной атмосфере. В ее составе стал преобладать азот при постепенно повышавшемся содержании кислорода. Очевидно, что уже на заре развития биосферы живые организмы оказывали решающее воздействие на состав воздушной среды и газовую составляющую океанов, а через эти параметры и на климат всей планеты. Несомненно, что позднее, когда жизнь распространилась на континенты, освоила центральные районы океана и его дно, ее способность влиять на климат Земли еще более усилилась. Механизм этого влияния реализуется, по-видимому, через усиление или ослабление парникового эффекта.
Действительно, стоило увеличиться концентрации углекислого газа в атмосфере всего лишь на 25 %, а это произошло за последние 30 лет, как среднегодовая температура в умеренных широтах сразу же стала повышаться. Известно, что из 10 самых теплых зим, наблюдавшихся в нашем столетии в северном полушарии, восемь пришлись на 80-е годы, когда содержание углекислого газа в воздухе достигло 0,035 % против 0,028 % в середине века. Что же произойдет, если концентрация этого газа удвоится, т. е. достигнет 0,07 %? Ученые утверждают, что это вызовет катастрофические для человечества последствия. Среднегодовая температура возрастет в экваториальном поясе на 1,5 °C, а в высоких и умеренных широтах на 3–4 °C. Льды Антарктиды и Гренландии начнут быстро таять, что будет сопровождаться повышением уровня океана и морей. Огромные массивы суши окажутся затопленными. Произойдет то, что неоднократно наблюдалось как в плейстоцене, так и на протяжении всей геологической истории Земли, т. е. трансгрессия моря.
Следовательно, наличие или отсутствие парникового эффекта является важнейшим фактором, определяющим климат планеты. Очевидно, что количественные флуктуации в составе атмосферы, вызывающие серьезные последствия, весьма невелики. Двести лет промышленной революции, за которые было сожжено, по-видимому, около биллиона тонн ископаемого топлива, привели к усилению парникового эффекта, что, в свою очередь, обусловило заметное потепление климата. Всего 200 лет. Несомненно, что и в прошлом мог действовать механизм, связанный уже не с антропогенным воздействием, а с жизнедеятельностью организмов. Основными участниками процессов, контролирующих баланс кислорода и углекислого газа в атмосфере, в последние 400–300 млн лет остаются фитопланктон, обитающий в верхнем, фотическом слое океанских вод, бентос и высшая наземная растительность. Немаловажное значение имеет и направленность седиментационных процессов.
Напомним, что большинство морских организмов строят раковины или другие скелетные компоненты из карбоната кальция. Некоторые же представители фитопланктона используют кремнезем. После гибели организмов органическое вещество – слагаемое живых клеток – в большинстве седиментационных обстановок разлагается. В осадках фоссилизируется не более 0,2–0,4 % Сорг, участвующего в круговороте. Накопление значительного количества органического вещества происходит в болотных и озерных водоемах на суше, а также в полузамкнутых морских бассейнах с застойным гидрологическим режимом. В океанах такими зонами являются континентальные склоны, особенно в областях устойчивого подъема глубинных вод, и в меньшей степени приливно-отливные равнины или лагуны. Если органическое вещество, за исключением малой его части, не переходит в ископаемое состояние, то большая часть скелетных остатков достигает дна, формирует здесь осадки и таким образом выводится из круговорота веществ. Правда, в глубоководных океанских котловинах существует критическая глубина карбонатонакопления. Ниже ее карбонатные остатки, в основном раковинки фитопланктона, не проникают, растворяясь полностью. В современную эпоху эта глубина равна около 4500 м. Зато на континентальных окраинах, где накапливается до 80 % всех осадков океана, основная масса скелетных карбонатных остатков, в том числе рифы и другие постройки, не разрушается, образуя мощные осадочные толщи. Вместе с ними связываются и выводятся из оборота огромные количества кальция и углекислого газа, растворенных в морской воде.
Оптимальные условия для развития карбонатстроящих организмов существуют в низких и субтропических, отчасти в умеренных широтах, т. е. в теплых водах. Поэтому в эпохи глобального потепления климата ареалы распространения организмов с карбонатной функцией резко расширяются, захватывая умеренные, а иногда и высокие широты. Потепление, как известно, сопряжено с таянием ледников и повышением уровня океанских вод, нередко значительным. Это, в свою очередь, влечет за собой сокращение площади суши и расширение морского мелководья, которое в условиях некоторого снижения терригенного сноса с суши заселяется преимущественно карбонатстроящими организмами. Повышение уровня вод способствует быстрому росту рифов.
Теплый и влажный климат благоприятствует буйному развитию высшей растительности на суше, что при условии захоронения древесных остатков усиливает изъятие углекислого газа при одновременном обогащении воздушной среды кислородом. С течением времени описываемая последовательность событий неизбежно реализуется в сокращении концентрации углекислого газа в воздухе, а в конечном итоге и в снятии парникового эффекта. Результатом происшедшего сдвига становится постепенное похолодание климата, так как значительная часть солнечного тепла, достигающего верхних слоев атмосферы, начинает рассеиваться в космосе. Ледовый панцирь на полюсах постепенно разрастается, начинается оледенение, захватывающее умеренные широты. Вместе с тем происходит расширение области распространения холодных вод в океане, усиливается активность придонных течений, несущих кислород, и апвеллинговых процессов.
Как следствие, ареал обитания организмов с карбонатной функцией, а также высшей наземной растительности резко сокращается. Место карбонатного планктона занимает кремнистый: диатомовые, перидиниевые водоросли, силикофлагелляты, радиолярии. Биологическая продуктивность диатомовых и перидиниевых водорослей при наличии в среде биогенных элементов на несколько порядков выше продукции карбонатного планктона. Поэтому в эпохи похолодания на огромных пространствах океанского дна в холодных, умеренных и отчасти в тропических широтах (где обитают радиолярии) накапливаются кремнистые осадки. В зонах подъема глубинных вод эти последние существенно обогащаются органическим углеродом (1,5–5 % и выше), который попал на дно вместе с остатками диатомей и других организмов. Перевод атмосферного углекислого газа в органический углерод осадков называют действием «углеродной помпы». Она также усиливает эффект похолодания. Одновременно, однако, активизируются седиментационные процессы, протекающие с участием молекулярного кислорода.
Когда говорят об «углеродной помпе», обычно не учитывают, что органическое вещество в осадках из зоны апвеллинга относится к особому, амикагиновому типу [Вассоевич, Конюхов, Лопатин, 1976]. В структуре слагающих его гетерополиконденсатов связано много кислорода, азота и серы (N до 6 %, отношение Н/Сат достигает наивысших значений, 1,4–1,45). Разрушение этих гетерополиконденсатов и облагораживание органического вещества за счет удаления кислорода, азота и серы произойдут лишь при погружении вмещающих отложений в глубокие недра спустя миллионы лет. Таким образом, вместе с углеродом в органике амикагинового типа на долгое время связываются многие другие элементы, в том числе и входящие в состав атмосферы.
По соседству с углеродистыми, слабодиатомовыми осадками в зонах подъема глубинных вод формируются многие аутигенные образования, в том числе глаукониты, фосфориты, цеолиты. Хотя рост этих стяжений протекает очень медленно, масштабы аутигенеза подобных осадков весьма значительны. Только на континентальном склоне Западной Сахары глауконитовые пески и алевриты занимают, согласно нашим исследованиям в 1990 г., полосу протяженностью около 500 км в диапазоне глубин от 500 до 2500 м. Огромные поля глауконитовых песков оконтурены и в других зонах апвеллинга. В кристаллической решетке этих слоистых силикатов, аналогичной структуре трехэтажных глинистых минералов, находится много атомов кислорода. В эпоху похолодания усиливается «проветривание» океанских и морских глубин, ведущее к образованию (или утолщению) верхнего, окисленного слоя донных осадков. На это также расходуются значительные массы кислорода (в том числе на перевод закисных форм железа в оксиды), растворенного в воде, куда он поступает из атмосферы.
В эпохи похолодания на суше усиливается контрастность климатических условий. В пересыхающих водоемах обширных аридных поясов активно формируются псевдослоистые силикаты – сепиолит и палыгорскит. В структуре этих новообразованных минералов также связывается много растворенного в воде кислорода. Не просто подсчитать, какое количество последнего расходуется в отмеченных выше процессах. Несомненным, однако, является то, что его «потребление» в седиментационных процессах в эпохи похолодания значительно выше, чем в периоды господства теплого климата.
Движение ледников сопровождается эрозией обширных пространств суши. Разрушению подвергаются самые разнообразные породы, в том числе известняки и доломиты. Однако если большинство других образований в виде обломков разной величины остаются в моренных грядах или сносятся в конечные водоемы стока, то мелкие карбонатные зерна при переносе разрушаются полностью. Значительное количество углекислого газа, некогда связанного в их составе, возвращается в воду и воздух.
Благодаря перечисленным выше факторам, а также вследствие накопления продуктов вулканических извержений, окисления органического вещества, метана и нефтяных углеводородов, просачивающихся к поверхности, наконец, из-за лесных и степных пожаров равновесие вновь начинает смещаться в сторону повышения роли углекислого газа в атмосфере. Похолодание постепенно сменяется потеплением, ледники начинают отступать и таять. Маятник снова качнулся в другую сторону.
Вот как, на наш взгляд, действуют биологические и седиментологические механизмы регуляции климата, приводимые в действие главным образом живыми организмами. На одной стороне биологических «качелей» находится кремнестроящий фитопланктон, на другом – организмы с карбонатной функцией и высшая наземная растительность. На длительность периодов похолодания, потепления и перестройки климата от одного состояния к другому влияет, естественно, множество факторов, в том числе астрономические и тектонические. Так, резкое повышение вулканической активности приводит сначала к помутнению верхних слоев атмосферы, отражению части солнечных лучей и тепла в космос, что способствует похолоданию. Однако связанное с извержениями поступление углекислого газа в воздушную среду в долговременном плане должно приводить к глобальному потеплению климата.
Можно думать, что в течение длительных промежутков геологического времени, по крайней мере в фанерозое, сохранялось устойчивое равновесие между потреблением и поступлением в атмосферу таких важнейших ее составляющих, как кислород и диоксид углерода. Причины, приведшие к существенному нарушению сложившегося баланса, имели, скорее всего, тектоническую природу (рис. 11). Позднепалеозойское оледенение в гондванской части Пангеи закончилось одновременно с распадом этого суперматерика, начавшимся с углубления и расширения реликтового океана Тетис. Об этом свидетельствует накопление в центральных его котловинах радиоляриевых илов, ныне обнажающихся в Альпах, Апеннинах, Оманских горах, а в позднем триасе и юре накапливавшихся ниже уровня карбонатной компенсации. Однако на обширных шельфах и континентальных склонах, окружавших океан, господствовала аккумуляция карбонатов. Дальнейший распад Пангеи на фрагменты и раскрытие молодых неглубоких океанов резко расширили площадь шельфов, подводных склонов и неглубоких котловин, которые стали на долгое время областями накопления карбонатных осадков. Глобальные же трансгрессии моря в позднеюрскую и особенно в позднемеловую эпохи привели к еще большему распространению организмов с карбонатной функцией и благоприятствовали рифостроительству. За несколько десятков миллионов лет огромные количества углекислого газа были связаны в виде карбоната кальция, образовавшего мощные толщи известняков и доломитов на континентальных окраинах океанов Тетис, Атлантического и Индийского. Уже к концу мела климат на полюсах стал заметно меняться. Об этом свидетельствует анализ органических остатков, состава растительных сообществ, а также колец роста и сосудистой системы окаменевших деревьев в районе арктического склона Аляски. В позднем мелу этот регион располагался от 75 до 85°с. ш. Если в коньякский век среднегодовая температура близ Северного полюса достигала + 13 °C, то в Маастрихте и палеоцене она упала соответственно до + 5 и + 6… + 7 °C. В Маастрихте отмечалась некоторая аридизация климата в летние месяцы, а зимы стали морозными. Однако море вряд ли покрывалось льдами [Spicer, Totman, 1990]. В сеномане ледники сохранялись лишь на высотах более 1700 м, в Маастрихте они опустились до 1000 м.
Рис. 11. Площади, занятые континентами и океанами в различных широтах, в современную эпоху (а) и в фанерозое (б) ITardy el а!., 1989) Условные обозначения те же, что и на рис. 8
В высоких широтах южного полушария также отмечается похолодание, начавшееся в Маастрихте, т. е. до предполагаемого столкновения Земли с небесным телом, вызвавшего глобальный катаклизм. Небезынтересно отметить, что именно в Маастрихте произошло закрытие южного рукава океана Тетис и сближение Аравийско-Африканского континентального блока с Евразией. Тем самым тенденция к распаду материков сменилась тенденцией к их объединению. Первые признаки похолодания, зафиксированные в Маастрихте, обозначили лишь точку перелома, от которой началось смещение климатического маятника в сторону глобального понижения температуры. Однако только по прошествии 60 млн лет это привело к широкомасштабному оледенению.
За 300 млн лет до того к такому же похолоданию, вернее, к перелому тенденции от потепления к похолоданию привело пышное развитие высшей растительности на континентах (каменноугольный период). Вместе с древесными остатками, давшими начало многочисленным скоплениям угля, в недрах было захоронено огромное количество углерода, усвоенного растениями в процессе фотосинтеза и разложения углекислого газа атмосферы. Начавшемуся в позднекаменноугольную эпоху в южном полушарии оледенению благоприятствовало, как подчеркивалось выше, помимо указанного фактора, объединение континентов в гигантский суперматерик. Как видим, уже в то время действовали биологические и седиментологические «качели». Так, накопление карбонатов, достигшее максимума в девоне, постепенно сменилось во многих районах формированием кремнистых толщ – фтанитов, которые широко распространены в Уральском регионе, Северном Казахстане, на тихоокеанской окраине Северной Америки (Скалистые горы) и в других местах. Похолодание в позднем карбоне привело, таким образом, к вытеснению карбонатстроящих организмов холоднолюбивыми кремнистыми. Стали преобладать процессы, приведшие к снижению потребления углекислого газа и увеличению расхода кислорода.
Такова в общих чертах схема, позволяющая увязать трансформации климата на Земле в геологическом прошлом с тектоническими, биологическими и седиментационными процессами, протекающими у ее поверхности и в недрах.