355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Конюхов » Читая каменную летопись Земли... » Текст книги (страница 13)
Читая каменную летопись Земли...
  • Текст добавлен: 21 марта 2017, 19:30

Текст книги "Читая каменную летопись Земли..."


Автор книги: Александр Конюхов



сообщить о нарушении

Текущая страница: 13 (всего у книги 16 страниц)

Муссоны обрушиваются на сушу

Завершение гуронского оледенения совпало с началом нового длительного этапа развития в геологической истории Земли, ознаменовавшегося широчайшим распространением совершенно уникальных осадочных образований, по существу не имеющих аналогов в современной седиментационной палитре. Речь идет о джеспиллитах, или band-iron formation (сокращенно BIF), которые представляют собой чередование слойков, в высокой степени обогащенных железом, со слойками, сложенными кремнеземом. Незначительная толщина слойков, до нескольких миллиметров, позволяет предположить, что в них, как и в плейстоценовых ленточных глинах, называемых варвами, отразилась сезонная изменчивость климата. В плейстоцене и голоцене с периодом паводков было связано поступление в бассейн седиментации терригенного глинистого материала. В жаркое, засушливое время происходили активизация биоты и отложение на дне вещества, обогащенного органическими остатками. В раннем протерозое живые организмы еще не расселились широко в фотическом слое морских и океанских водоемов, поэтому они не могли непосредственно определять в тот или иной сезон седиментационные процессы. Их влияние проявилось через способность многих докембрийских микроорганизмов к фотосинтезу. Дело в том, что снижение содержания углекислого газа в атмосфере докембрия сопровождалось накоплением в ней кислорода. Последний легко вступает в реакцию с закисным железом, переводя его в оксидное состояние: FeO —> Fe2.

Так как первичная земная кора была изначально в сильной степени обогащена железом и марганцем, аккумуляция кислорода в воздухе привела к окислению этих металлов. Это нашло отражение в появлении красноцветных осадков, так как присутствие железа в оксидной или оксигидратной форме придает ему красный или бурый цвет. Следует отметить, что образование первых BIF произошло еще в позднем архее. Самые древние из них имеют возраст 3,8 млрд лет. Однако массовый характер это явление приобрело в раннем протерозое, в интервале с 2,3 до 1,7 млрд лет назад.

Резонно спросить: какое отношение ко всему этому имеют сезонные изменения климата? Посмотрим на современную латеритную кору выветривания, типичную для низких широт с гумидным тропическим климатом. В сезоны дождей, связанные обычно с приходом муссона, огромные массы воды обрушиваются на сушу. При этом наблюдается не только разрушение коренного субстрата и почв водными потоками, т. е. физическое выветривание суши. Гораздо более эффективным фактором эрозии в этих условиях является гидролиз – химическое взаимодействие воды с минералами горных пород. Сначала оно ведет к их выщелачиванию, т. е. к выносу щелочных и щелочноземельных элементов (натрий, калий, кальций, магний) из структуры, а затем к частичному или полному ее разложению с образованием либо новых минералов, главным образом глинистых, либо оксидов – Fe2, AI2O3, SiO2 и оксигидратов – Fe(OH)3, Al(OH)3. Более подвижные из этих соединений (Fe2О3, SiO2 и др.) в виде взвеси и в коллоидной форме выносятся речными и паводковыми водами в конечный водоем стока. В то же время в латеритной коре выветривания, защищенной железистой кирасой, накапливаются малоподвижные оксиды и оксигидраты алюминия, дающие начало залежам бокситов. Происходит, таким образом, разделение (дифференциация) вещества. Оно, однако, не завершается процессами, протекающими в коре выветривания и на путях переноса вещества. В озерном или полуизолированном морском водоеме дифференциация продолжается. Вначале на дно садится вещество глинистой природы вместе с сорбированным железом. Когда же наступает сухой сезон и вследствие испарения части воды происходит концентрация растворенных в ней солей, возникают благоприятные условия для хемогенной седиментации. В замкнутых и полузамкнутых обстановках начинается новообразование минералов, обогащенных кремнеземом. Обычно образуются слоистые (смектиты или корренситы) или псевдослоистые силикаты с дефицитом алюминия в структуре (палыгорскит, сепиолит), иногда цеолиты.

Можно думать, что нечто подобное имело место и в раннем протерозое, когда сложилась устойчивая система атмосферной циркуляции, во многом схожая с той, что господствовала позднее, в некоторые периоды фанерозоя. В зонах с муссонным климатом на суше резко активизировались процессы гидролиза и в водоемы в огромных количествах стали поступать продукты химического выветривания. При этом глинистые и железистые субстанции отлагались на дне преимущественно во влажные сезоны, тогда как в засушливые сезоны начинался аутигенез различных силикатов. Впоследствии при погружении в недра эти слои подвергались окремнению. В докембрии полноценные латеритные профили вряд ли были возможны, так как они развиваются в настоящее время под пологом тропического леса. Среди продуктов химического выветривания преобладали поэтому простые формы – оксиды и оксигидраты железа. Можно думать, что воды морей и океанов, до того грязно-серые в районах частых вулканических извержений и голубые над центральными абиссальными котловинами, окрасились в раннем протерозое в бурый цвет. В отсутствие организмов-фильтраторов коллоидные формы железа осаждались на дно с большим трудом, в основном там, где происходило слипание взвеси. Наиболее благоприятные условия для образования джеспиллитов, вероятно, существовали в полузамкнутых и изолированных водоемах, где в сухие сезоны в воде происходило концентрирование солей.

Гидролиз коренных пород на суше протекал в раннем протерозое в окислительной среде, вызванной присутствием ионов кислорода. Кислород, поступавший вместе с атмосферными осадками, расходовался на окислительные процессы. Поэтому его уровень в атмосфере долгое время не повышался, а может быть, даже и снизился, несмотря на продолжавшуюся жизнедеятельность фотосинтезирующих микроорганизмов. Между тем вместе с выбросами вулканических продуктов и вследствие продолжавшейся дегазации мантии Земли в атмосферу поступали все новые порции углекислоты. Ее накопление на фоне невысокого содержания кислорода через определенное время привело к реставрации парникового эффекта. Средняя температура на поверхности Земли стала повышаться, полярные льды растаяли, что сопровождалось повышением уровня протерозойского океана. Его воды затопили прибрежные низменности, превратив огромные пространства в периферийных областях континентов в мелководные эпиконтинентальные моря, отделенные от суши цепью обширных лагун и приливно-отливных равнин и системами береговых баров. Сначала на этих равнинах, вероятно, накапливались железисто-кремнистые слоистые отложения (BIF), с которыми связаны месторождения железных руд.

Со временем, однако, положение изменилось. Обширные районы суши были затоплены или пенепленизированы в результате длительной эрозии, т. е. превратились в низменные равнины. Вынос железа и кремнезема резко сократился. Лагуны и приливно-отливные равнины стали расселяться известьвыделяющими организмами. К этому времени (1,6–1,5 млрд лет назад) в органическом мире произошли заметные изменения: появились одноклеточные микроорганизмы более высокого уровня развития. Они обладали ядром, что значительно повысило их способность к делению. Эти новые организмы – эукариоты вскоре вытеснили своих более примитивных предшественников. Самой процветающей группой стали цианобактерии. Колонии цианобактерий в виде водорослевых подушек и строматолитовых построек распространились на обширных пространствах мелководных морей и прибрежной зоны шельфа. Они поглощали из воды и воздуха все больше углекислого газа, переводя его, с одной стороны, в органическое вещество, а с другой – в карбонатные минералы. Со временем отдельные строматолитовые постройки, слившись вместе, образовали мощные карбонатные платформы. Их реликты до сих пор сохранились в краевых частях древних платформ, например на востоке Русской плиты и в горах Урала. В отдельных регионах накапливались и так называемые черные сланцы – отложения, обогащенные органическим веществом. Своим происхождением они обязаны жизнедеятельности других групп низших растений, в том числе бурых водорослей, также появившихся в протерозое. Как и цианобактерии, они мало изменились с тех пор.

Постепенно резервуар углекислого газа в гидро– и атмосфере сокращался. Его потери уже не восполнялись за счет дегазации земной коры и мантии. Зато высвобождавшийся при фотосинтезе кислород накапливался сначала в атмосфере, а затем и в толще морей и океанов, благодаря течениям опускаясь до самого дна. Бескислородные обстановки в глубинах океана стали встречаться реже. Все это создавало предпосылки для распространения жизни от берегов в центральные районы океанов. Микроорганизмы постепенно заселили его верхний, фотический слой.

В позднем протерозое появились и многоклеточные организмы, в первую очередь – водоросли, а уж потом животные, правда, без прочного защитного покрова, так как строить его из минерального вещества они еще не умели. Хитин также не был изобретен. Поэтому о примитивных формах животных можно судить лишь по отпечаткам, кое-где сохранившимся в породах докембрия.

Однако органический мир развивался быстро, в результате равновесие на земной поверхности оказалось нарушенным. Парниковый эффект, поддерживавший высокие среднегодовые температуры, исчез. Началось постепенное похолодание, завершившееся в конце концов широкомасштабным оледенением. Следы этого оледенения сохранились на многих континентах в слоях с возрастом 800–600 млн лет. Мельчайшие живые организмы во второй раз качнули климатический маятник в сторону глобального похолодания. Впрочем, повинны в этом не только организмы. Оледенение, вероятно, было вызвано и тектоническими факторами, в частности слиянием небольших континентальных глыб в крупные мегаблоки, внутренние районы которых в зимние сезоны, особенно в высоких широтах, сильнее выстуживались.

Великим оледенением завершился долгий докембрийский этап в истории Земли. К этому рубежу она подошла не только со сложно устроенной тектоносферой и глубокими океанами, мало чем отличавшимися от современных, но и с кислородной атмосферой, что существенно изменило условия обитания как в воде, так вскоре и на суше.

Растения и животные завоевывают сушу

Благодаря изменившимся условиям в конце протерозоя произошел настоящий эволюционный взрыв. Появились новые классы и типы живых организмов [Соколов, 1979]. Среди них были существа, которые сами не производили биомассы, а питались остатками уже произведенной водорослями и микроорганизмами. Чтобы находить эти остатки или сами продуценты органического вещества, они должны были активно перемещаться в пространстве. Так появились животные. В кембрийский период (570–470 млн лет назад) дно многих водоемов было заселено странными существами с головой округлой формы, коротким туловищем с отходившими от него члениками-ножками и небольшим хвостом. Это были трилобиты – первые обитатели дна, имевшие защитный, вероятно хитиновый, покров. Анализ строения и возможного образа жизни этих морских животных позволяет думать, что в большинстве своем они были «чистильщиками», пожирателями органических остатков. Крупнейшие трилобиты достигали в длину 75 см. Они обитали в мелководных эпиконтинентальных морях и первыми завоевали шельфы.

В раннем палеозое некоторые одноклеточные водоросли стали строить опорный минеральный каркас либо раковинки – своего рода скафандры. Они не только защищали от неблагоприятных воздействий среды и хищников, но и позволяли пребывать во взвешенном состоянии, то погружаясь в воду, то всплывая. В пластах морских отложений раннепалеозойского времени сохранились странные образования из фосфорнокислого кальция, по форме напоминающие зуб, – конодонты. Палеонтологи до сих пор спорят о том, являются ли они чем-то вроде раковинок, принадлежавших планктонным организмам, или это форменные элементы более сложно устроенных существ, питавшихся планктоном.

Бентосные формы морской фауны и флоры по-прежнему концентрировались в лагунах и заливах мелководных морей, где было много пищи, а разрушительная работа волн проявлялась в меньшей степени, чем на открытом шельфе. Из этих питомников, словно специально созданных природой для выведения новых видов, растения начали завоевание суши. Это, однако, стало возможным не раньше, чем озоновый слой достаточно уплотнился и уже не пропускал жесткое ультрафиолетовое излучение.

Самые выгодные условия для постепенного привыкания к субаэральной (воздушной) среде существовали на приливно-отливных равнинах, защищенных со стороны моря баровыми островами. Сублитораль и низкие соляные марши испокон веков были заселены бактериями и водорослями. Здесь же, видимо, появились и формы, которые успешнее других сопротивлялись отливу. Закрепившись на низких маршах, они, вероятно, принялись осваивать более возвышенные участки, затопляемые приливом раз в несколько дней. Для выживания в этих условиях необходимы были жесткий каркас, способный поддерживать растение в воздушной среде, и развитая корневая система, чтобы восполнять недостаток влаги за счет поровой воды в осадках. Эти проблемы в конечном счете и были решены растениями. Несомненно, некоторые водоросли еще раньше приспособились к обитанию в солоноватых и пресных водах, что позволило им проникнуть в речные дельты и эстуарии. Отсюда они распространились по речным руслам в старицы и озера. Однако, даже переселившись в пресные водоемы, эти растения так и остались водорослями. Истинными завоевателями суши могут считаться лишь высшие растения, обладающие крепкой корневой системой и каркасными тканями. Последние образованы целлюлозой и лигнином – уникальными с биохимической точки зрения структурами, которые являются многоядерными полициклическими биополимерами, устойчивыми в субаэральной среде. У низших растений эти компоненты отсутствуют.

Как известно, первыми высшими растениями на суше были псилофиты, вымершие в конце среднедевонской эпохи. Их место заняли хвощовые, плауновые растения и папоротники. Они заселяли главным образом болотистые низины, подтопляемые участки речных пойм и прибрежные аллювиальные равнины. Самые древние находки древесных остатков высших растений датируются поздним силуром (410 млн лет назад). Однако прошло еще несколько десятков миллионов лет, прежде чем высшие растения колонизовали континенты. Об этом мы можем судить по среднедевонским залежам каменного угля. Впрочем, глобальный характер угленакопление приобрело лишь в карбоне – в каменноугольный период (350–285 млн лет назад), названный по имени этого горючего ископаемого. По его запасам каменноугольные отложения занимают первое место среди осадочных образований фанерозоя.

Что же способствовало не виданному до того расцвету наземной флоры? Ответить однозначно на этот вопрос трудно. Можно выделить лишь несколько факторов, и прежде всего теплый и влажный (гумидный) климат, господствовавший в карбоне на обширных пространствах. Однако расчеты уровней водного стока с континентов показали, что самым гумидным был не карбон, а меловой и кембрийский периоды, силурийско-девонское время. Именно с ними связаны наиболее высокие скорости аккумуляции осадков [Tardy et а!., 1989].

Во второй половине карбона в результате схождения двух континентальных мегаблоков – Лавразии и Гондваны образовался суперматерик Пангея. Прото-Атлантический океан закончил свое существование. Тектонические сжатия в обширной полосе столкновения континентальных масс привели к воздыманию мощных герцинских складчатых сооружений – горных хребтов. Их опоясывали передовые прогибы. Гигантские напряжения в зоне столкновения плит вызвали расколы в глубоком тылу, на платформах. Они сопровождались прогибанием существовавших с девонского времени рифтовых впадин. Одной из них была Днепрово-Донецкая впадина, где в каменноугольное время сформировались уникальные месторождения каменного угля. Впрочем, не менее богатые залежи угля примерно в то же время возникли в бассейнах передовых прогибов и межгорных впадин герцинского складчатого пояса как в Западной Европе, так и в Северной Америке. Подобное уникальное сочетание тектонических и климатических условий, благоприятных не только для развития наземной растительности, но и для массового захоронения древесных остатков, на протяжении фанерозоя больше не повторялось.

Животные проникли на континенты, как только смогли находить там пищу и укрытие от непогоды, т. е. сразу же за растениями. Сначала появились примитивные насекомые, отпечатки которых были найдены в силурийских отложениях Германии. С позвоночными дело обстояло значительно сложнее. Как полагали, приспособление к воздушной среде стало возможным после появления двоякодышащих рыб, обладавших жабрами и примитивными легкими. Двойной набор дыхательных органов был им необходим, потому что они обитали в осыхающих на короткое время водоемах. К таковым как раз и относятся приливно-отливные равнины и мелкие лагуны. В последнее время предками наземных позвоночных стали считать кистеперых рыб (вспомним латимерию). Вполне вероятно, что позвоночные животные начали завоевание суши из тех же уникальных природных питомников, что и первые высшие растения. Со временем у некоторых рыб атрофировались жабры и они превратились в земноводных. Предками современных лягушек и рептилий, обитающих в пресноводных водоемах и вокруг них, были стегоцефалы. В карбоне они широко распространились на континентах. Потом, уже в пермское время, появились рептилии. В Пангее они освоили не только болотистые равнины, но также пустыни и горы.

Таким образом, хотя растения и насекомые появились на суше еще в позднем силуре, временем ее окончательного завоевания стал каменноугольный период. Это, как мы увидим ниже, имело далеко идущие последствия.

Материки – извечные скитальцы

Жизнь подавляющего большинства людей всегда была связана с континентами, занимающими лишь около 1/3 всей площади нашей планеты. Естественно, в сознании человека Земля ассоциируется прежде всего с материками. На самом деле они лишь один из компонентов более крупных структурно-тектонических единиц, на которые распадается, согласно положениям новой глобальной тектоники, верхняя оболочка планеты. Эти единицы – литосферные плиты. Они включают не только материки, но и обширные участки океанов. Некоторые из них, например Тихоокеанская плита или более мелкие плиты Кокос и Наска, выделяются в пределах ложа Тихого океана и не содержат образований с континентальным типом земной коры. В то же время нет таких литосферных плит, которые включали бы только континентальные структуры, без океанических. Континенты, словно корабли, впаянные в лед, вынуждены перемещаться вместе с льдиной. Роль такой льдины играет океаническая кора, как правило гораздо более молодая, чем кора впаянных в ту или иную океаническую «льдину» континентов.

Известно, что кора океана очень тонкая, всего 5–8 км. Ее максимальный возраст 140–145 млн лет, т. е. наиболее древние участки образовались в позднеюрскую эпоху. На материках же встречаются, как мы знаем, породы с возрастом до 4,6 млрд лет. Разница огромная. Да и мощность земной коры на материках в среднем почти на порядок больше, от 30–40 до 60–70 км. На материках, таким образом, сохранились древнейшие блоки коры, в океанах же искать их бесполезно. В чем же тут дело?

Как льдины сминаются, торосятся, а то и тают под солнцем, так и океаническая кора легко ломается, скучивается, а большая ее часть расплавляется в зонах Беньофа. От нее остаются лишь асейсмичные хребты перед островными вулканическими дугами или в низах континентального склона на активных окраинах материков. Есть и пластины океанического дна, выдавленные некогда на пассивный край континента. В их составе встречается так называемый меланж – перетертые в труху породы, которые ранее входили в состав океанского ложа. Теперь они выступают на поверхность в ряде крупнейших горно-складчатых поясов.

Казалось бы, при такой судьбе океаны должны были бы давно прекратить свое существование. И такое действительно произошло. Исчез, например, мезозойский океан Тетис. Однако в целом площадь океанов если и сократилась, то ненамного. Дело в том, что океаническая кора постоянно воссоздается вновь. Происходит это в срединноокеанических рифтах – зонах, располагающихся над восходящими ветвями конвекционных ячей, которые, как полагают, существуют в мантии. Разуплотненное и разогретое мантийное вещество, поднимаясь к поверхности, вспучивает океаническую кору и как бы раздвигает ее пластины в разные стороны. В образовавшуюся брешь изливаются и затем затвердевают магматические расплавы, создавая новый фрагмент океанского ложа. В дальнейшем он неоднократно «наваривается»: сверху – базальтами и осадками, а снизу – дайками пород ультраосновного состава. В таком виде этот фрагмент в течение десятков – сотен миллионов лет постепенно смещается в краевую часть океана, где погружается под островную вулканическую дугу или под край материка, в так называемую зону субдукции. С верхней пластины при этом сдираются рыхлые осадки и часть базальтов, все остальное уходит в недра, где и расплавляется на глубинах от 300 до 600 км. Весь массив океанической коры, от рифтовой зоны срединно-океанического хребта до зоны субдукции, с впаянными в него материками, островными дугами и микроконтинентами составляет единую литосферную плиту. В современной структуре земной поверхности выделяется семь крупных литосферных плит. Шесть из них включают один из континентов и соответственно названы Африканская, Евразийская, Австралийская, Северо-Американская, Южно-Американская, Антарктическая. Седьмой плитой, самой крупной из всех, является Тихоокеанская. Помимо вышеперечисленных, выделяются еще десятки микроплит, в основном отвечающих районам задугового спрединга океанической коры, иначе говоря, окраинным морям. В это число входят и малые плиты Тихого океана – Наска и Кокос, расположенные к востоку от Восточно-Тихоокеанского поднятия, с которым связано новообразование океанической коры в восточном полушарии.

Растяжение и новообразование дна океана получили название спрединга. Эти процессы с разной, правда, скоростью протекают во всех срединно-океанических хребтах. Темпы спрединга меняются от 2 до 8 см в год. При таких скоростях приращивается довольно значительный массив молодой океанической коры. Но так как площадь поверхности планеты остается неизменной, соответствующая по размерам часть более древней коры океана, преимущественно из периферийных частей литосферных плит в Тихом океане, уходит в зоны Беньофа, где и разрушается. Подобным путем осуществляется обновление ложа океанов при сохранении общего равновесия между массами континентальной и океанической коры.

Впрочем, нельзя сказать, что со временем ничего не меняется: в последние 40–50 млн лет уничтожается главным образом кора Тихого океана и площадь его сужается, тогда как Атлантический, Индийский и Северный Ледовитый океаны все это время расширяются (правда, последний возник лишь 30 млн лет назад). Можно сказать, что шесть крупных и несколько более мелких литосферных плит ведут «войну», и довольно успешную, с тремя плитами, расположенными в Тихом океане. При этом на «передовой» находятся две плиты – Северо– и Южно-Американская, отличающиеся от остальных тем, что в каждой из них континент не просто впаян в океаническую кору, но находится на ведущем, древнем крае плиты. Он является как бы ножом бульдозера, взламывающего ложе Тихого океана в восточной его периферии: часть коры уходит в зону Беньофа, другая же просто сдирается и скучивается в виде широкого бесформенного образования, получившего название «калифорнийский бордерленд». Окраины континентов, с которыми связаны все эти метаморфозы, определяются как активные, тогда как другие окраины, где граница континента и океана остается спокойной в тектоническом отношении, относятся к разряду пассивных.

Началом «войны» послужил распад гигантского суперматерика Пангея, сложившегося как единое целое еще в позднем карбоне. В триасе он стал дробиться, что привело к образованию срединного океана Тетис (он вытянулся в широтном направлении параллельно экватору). Затем, уже в юрское время, произошли расколы в западной половине Пангеи, от нее откололся, хотя и не полностью, Северо-Американский материк, образовались Мексиканский залив и западный рукав океана Тетис, который вскоре соединился с восточным его рукавом. На этом история Пангеи закончилась, так как она распалась на два конгломерата – Лавразию (Северная Америка и Евразия) и Гондвану (Африка, Южная Америка, Австралия, Антарктида).

Однако и эти образования оказались недолговечны. В мелу произошли дальнейшие расколы, приведшие сначала к раскрытию Центральной Атлантики и Индийского океана, а затем и Южной Атлантики. Гондвана последовательно распалась на ряд материков и микроконтинентов, существующих и поныне. Завершился этот процесс в кайнозое, когда в результате расколов в районе Фарерского порога, островов Шпицберген и Ян-Майен произошло раскрытие Северной Атлантики и Лабрадорского моря, а затем и Ледовитого океана. Несколько ранее в южном полушарии от Австралии отделилась Антарктида и вскоре заняла свое современное положение на Южном полюсе. Мезозойский океан Тетис, с образования которого начался распад Пангеи, захлопнулся в течение позднего мела и палеогена. Местоположение его отмечено Альпийским складчатым поясом. В него входят Альпы, Динариды, Карпаты, Кавказ, Копетдаг, Загрос, Тавр, Гималаи и целый ряд других горно-складчатых сооружений.

Раскрытие молодых океанов – Атлантического, Индийского и Северного Ледовитого – привело к растаскиванию материковых глыб – фрагментов Пангеи по всему свету. За 150 млн лет Северо-Американский континент удалился от Евразии на 5–6 тыс. км. Еще большее расстояние разделяет некогда единые Африку и Австралию. Материки-скитальцы продолжают свое путешествие по поверхности Земли. Где и когда они встретятся вновь, вряд ли возьмется предсказать даже специалист в области палинспастических построений (реконструкции положения материков в тот или иной период времени).


    Ваша оценка произведения:

Популярные книги за неделю