355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (РА) » Текст книги (страница 28)
Большая Советская Энциклопедия (РА)
  • Текст добавлен: 21 сентября 2016, 16:21

Текст книги "Большая Советская Энциклопедия (РА)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 28 (всего у книги 82 страниц)

Радиолокация в метеорологии

Радиолока'ция в метеороло'гии, применение радиолокации для метеорологических наблюдений и измерений, основанное на рассеянии радиоволн гидрометеорами, диэлектрическими неоднородностями воздуха, сопутствующими атмосферными явлениям, частицами аэрозоля и др. Кроме того, пользуются искусственными отражателями (рассеивателями), выбрасываемыми в атмосферу, типа метализированных иголок размером ~ l/2, где lдлина волны, а также специальными радиолокационными отражателями или активными ответчиками – миниатюрными радиопередатчиками, поднимаемыми на шарах-зондах.

  Отражения радиоимпульсов от турбулентных и инверсионных слоев в тропосфере впервые отмечены в 1936 Р. Колвеллом и А. Френдом (США) на средних и коротких волнах. Первые сообщения об обнаружении осадков с помощью радиолокаторов сантиметрового (СМ) диапазона относятся к началу 1941 (Великобритания). В 1943 в США А. Бентом и др. были организованы первые оперативные наблюдения за ливнями и грозами. В СССР В. В. Костаревым в 1943 начаты измерения скорости и направления ветра в высоких слоях атмосферы путём прослеживания движения шаров-зондов с пассивными отражателями.

  При помощи радиолокаторов обнаруживаются облака, осадки, области повышенных градиентов температуры и влажности, ионизированные следы молниевых разрядов и др. Из радиолокационных наблюдений получают информацию о пространственном положении, перемещении, структуре, форме и размерах обнаруживаемых объектов, а также их физических свойствах. При рассеянии радиоволн на частицах облаков и осадков в случае, когда размеры r этих частиц малы по сравнению с длиной волны l (рэлеевское рассеяние), величина радиолокационного сигнала ~ r6/l4. Столь сильная зависимость величины отражённого сигнала от размера частиц приводит к тому, что при радиолокационном наблюдении за облаками и осадками выделяются наиболее крупнокапельные области, поэтому радиолокационные изображения не всегда совпадают с визуальными размерами объекта. Интенсивность рассеянных сигналов резко убывает с увеличением l, кроме того, на миллиметровых (ММ) и более коротких волнах сигнал сильно ослабляется, что ограничивает диапазон частот метеорологических радиолокаторов, которые поэтому, как правило, работают в СМ и ММ диапазонах волн.

  Между средней мощностью отражённых сигналов и интенсивностью осадков установлены эмпирические соотношения, на основании которых определяют распределение интенсивности и количества выпадающих осадков на площади радиолокационного обзора. Более высокая точность измерения интенсивности осадков и водности облаков достигается при измерении ослабления радиоволн. Для определения ослабления радиоволн используют двухволновые радиолокаторы. Если l сравнима с размером частицы, закон рассеяния существенно отличается от рэлеевского, и при известной частотной зависимости ослабления радиоволн измерения отражённых сигналов на нескольких длинах волн позволяют оценить размеры частиц осадков. Для несферических частиц вероятность рассеяния зависит от их формы и ориентации. По степени деполяризации отражённых сигналов можно судить о форме частиц облаков и осадков и, следовательно, об их агрегатном состоянии. Движение рассеивателей приводит к смещению частоты отражённых сигналов вследствие эффекта Доплера. Измерение доплеровского смещения частоты, а также др. параметров спектра радиолокационных сигналов, отражённых от облаков и осадков, крупных частиц аэрозоля, искусственных рассеивателей, позволяет исследовать структуру различных движений в атмосфере (ветер, турбулентность, упорядоченные вертикальные потоки). С помощью высокочувствительных радиолокационных станций обнаруживаются области повышенных градиентов показателя преломления, связанные с образованием устойчивых слоев в приземном и пограничном слоях атмосферы, а также с зонами интенсивной турбулентности при «ясном» небе на высотах до 10—15 км. Интенсивность турбулентности в «ясном» небе оценивается по величине отражённых сигналов, а также по ширине их спектра, обусловленного доплеровским смещением.

  Благодаря применению Р. в м. оперативные данные о ветре на различных высотах получают при любых условиях погоды. Скорость и направление ветра вычисляются по измеренным координатам радиопилота. Определение ветра часто производится одновременно с измерением температуры, давления, влажности и др. параметров атмосферы, поэтому созданы радиолокационные станции для комплексного зондирования атмосферы, которые позволяют определять координаты радиозонда по сигналам его передатчика-ответчика и принимать телеметрическую информацию о метеорологических элементах.

  Лит.: Атлас Д., Успехи радарной метеорологии, пер. с англ., Л., 1967; Степаненко В. Д., Радиолокация в метеорологии, Л., 1966; Радиолокационные измерения осадков, Л., 1967; Калиновский А. Б., Пинус Н. З., Аэрология, ч. 1, Л., 1961.

  А. А. Черников.

Радиолюбительская связь

Радиолюби'тельская связь, связь, устанавливаемая в радиолюбительских диапазонах волн при помощи приёмо-передающих радиолюбительских станций. Цели Р. с. – эксперименты с приёмо-передающей аппаратурой и антенными устройствами, проведение соревнований по радиоспорту, установление связи с др. радиолюбителями (например, «охота» за дальними и «редкими» странами), выполнение квалификационных норм (например, для получения радиолюбительских дипломов), коллекционирование карточек-квитанций и т.п. Радиолюбительство зародилось в 1919 в США. Первая любительская радиостанция в СССР вышла в эфир 15 января 1925 (Ф. А. Лбов и В. М. Петров, Нижний Новгород).

  Р. с. может быть установлена как при случайной «встрече» в эфире двух радиолюбителей, так и по предварительной договорённости между ними.

  Режимы работы, используемые в Р. с.: телеграфный (передача сообщений кодом Морзе) и телефонный, с амплитудной, однополосной либо частотной (на ультракоротких волнах) модуляцией. В Р. с., особенно при телеграфном режиме работы, часто применяют радиолюбительские коды. При обычной Р. с. радиолюбитель называет своё имя, город, сообщает сведения о разборчивости, силе и качестве сигнала, погоде, применяемой передающей и приёмной аппаратуре и т.д. Во время соревнований передаваемая информация ограничивается контрольными данными (т. н. номерами), как правило, включающими оценку сигнала и порядковый номер связи.

  Лит.: Казанский И. В., Радиоспорт в первичной организации ДОСААФ, М., 1971; его же, Как стать коротковолновиком, М., 1972; Степанов Б. Г., Справочник коротковолновика, М., 1974; Регламент радиосвязи, М., 1975.

  И. В. Казанский.

Радиолюбительская станция

Радиолюби'тельская ста'нция, приёмо-передающая или приёмная радиостанция, служащая для радиолюбительской связи или для наблюдения за нею. Приёмо-передающая Р. с. состоит из передатчика, приёмника и антенны, приёмная – из приёмника и антенны. Последние устанавливают, как правило, начинающие радиолюбители для наблюдения за работой приёмо-передающих Р. с. Различают приёмо-передающие Р. с. индивидуального и коллективного пользования, коротковолновые и ультракоротковолновые. Кроме того, в зависимости от квалификации радиолюбителя – владельца индивидуальной или начальника коллективной станции – Р. с. подразделяют на 3 категории, различающиеся по предельной мощности передатчика, режиму работы и диапазонам радиоволн. В СССР разрешение на право установки и эксплуатации Р. с. выдаётся Государственными инспекциями электросвязи Министерств связи союзных республик по ходатайству областного, краевого или республиканского комитетов ДОСААФ СССР. По советскому законодательству (постановление Пленума Верховного суда СССР от 3 июля 1963) умышленное ведение радиопередач, связанных с проявлением явного неуважения к обществу, грубо нарушающих общественный порядок либо создающих помехи радиовещанию или служебной радиосвязи, квалифицируется как хулиганство.

  Лит. см. при ст. Радиолюбительская связь.

  И. В. Казанский.

Радиолюбительские диапазоны волн

Радиолюби'тельские диапазо'ны волн, диапазоны радиоволн, выделенные для радиолюбительской связи(в т. ч. для соревнований по радиоспорту) и передачи сигналов на радиоуправляемые модели. Для связи, согласно международному регламенту радиосвязи, отведены 5 коротковолновых Р. д. в. – 80-, 40-, 20-, 14– и 10-метровые с частотами соответственно 3,50—3,65 Мгц; 7,0—7,1 Мгц; 14,00—14,35 Мгц; 21,00—21,45 Мгц; 28,0—29,7 Мгц и 6 ультракоротковолновых – с частотами 144—146 Мгц; 430—440 Мгц; 1,215—1,300 Ггц; 5,65—5,67 Ггц; 10,0—10,5 Ггц; 21—22 Ггц. Для радиоуправления моделями выделены частота (27,12 ± 0,05%) Мгц и несколько участков в диапазоне 28,0—29,7 Мгц и в диапазоне 144—146 Мгц. Внутри каждого Р. д. в. отводятся отдельные участки для работы в телеграфном и телефонном режимах, для связи с ближними и дальними станциями и др.

  Лит. см. при ст. Радиолюбительская связь.

Радиолюбительские коды

Радиолюби'тельские ко'ды, условные обозначения или сокращения слов, используемые в радиолюбительской связи. Наиболее широко Р. к. применяют при телеграфном режиме работы. Р. к. служат некоторые фразы международного т. н. Q-кода и, кроме того, общепринятые сокращения слов, главным образом английских, называемых иногда радиожаргоном. Каждая фраза Q-кода начинается с буквы Q и состоит из трёх букв, например QRS – «передавайте медленнее». Передаваемая без вопросительного знака фраза означает утверждение, с вопросительным знаком – вопрос. При отрицательном ответе к ней присоединяют отрицательную частицу no (до фразы) или not (после фразы). Сокращения слов служат для описания технических данных аппаратуры станции, условий передачи и приёма сигналов, а также обозначают некоторые общие понятия, необходимые при ведении связи, например Abt (about) – «около», «о»; Tx (transmitter) – «передатчик». Кроме того, применяют условные цифровые обозначения, например 73 – «наилучшие пожелания». Советские радиолюбители применяют также ряд сокращений русских слов, например: блг – «благодарю», дсв – «до свидания», тов – «товарищ».

  Лит. см. при ст. Радиолюбительская связь.

  И. В. Казанский.

Радиолюминесценция

Радиолюминесце'нция,люминесценция, возбуждаемая ядерными излучениями (a-частицами, электронами, протонами, нейтронами, g-лучами и т.д.) или рентгеновскими лучами.

Радиоляриевый ил

Радиоля'риевый ил, разновидность современных океанических глубоководных кремнисто-глинистых илов, обогащенная скелетами простейших животных – радиолярий, ведущих планктонный образ жизни. Во влажном состоянии представляет собой коричневый, реже зеленовато-серый, чёрный алевритисто-пелитовый и пелитовый осадок. Состоит из опалового кремнезёма SiO2nH2O (5—30%), глинистых минералов, вулканогенного материала, гидроокислов железа и марганца, иногда цеолитов. Р. и. распространён исключительно в экваториальной зоне Индийского и Тихого океанов на глубине 4500—6000 м и более. Занимает около 3,4% общей площади дна Мирового океана.

  В ископаемом состоянии Р. и. переходит в органогенную осадочную породу – радиолярит.

  Лит.: Осадкообразование в Тихом океане, М., 1970 (Тихий океан, т. 6, книги 1—2).

Радиолярии

Радиоля'рии (Radiolaria), лучевики, подкласс простейших класса саркодовых. Обширная группа (свыше 7 тыс. видов) морских планктонных преимущественно тепловодных организмов. Размером от 40 мкм до 1 мм и более. Р. обладают внутренним скелетом – кожистой центральной капсулой, обычно пронизанной многочисленными порами, через которые внутрикапсулярная цитоплазма сообщается с внекапсулярной. Внутри капсулы расположена эндоплазма с ядром (или ядрами) и внутренний слой эктоплазмы. Внекапсулярная эктоплазма богата слизистыми включениями, каплями жира, что способствует уменьшению удельного веса Р. и служит приспособлением к парению в воде. В эктоплазме почти всегда присутствуют многочисленные симбиотические (см. Симбиоз) одноклеточные водоросли зооксантеллы. Снаружи тела Р. выдаются нитевидные, часто ветвящиеся псевдоподии (филоподии), служащие для улавливания пищи и увеличения удельной поверхности тела, что также способствует парению в воде. Р. обладают и наружным минеральным скелетом, состоящим из кремнезёма или (отряд Acanthria) сернокислого стронция. Скелеты часто слагаются из геометрически правильно расположенных отдельных игл, образуют решётчатые (иногда вложенные друг в друга) шары, многогранники, кольца и т.п.; лёгкие и прочные, они несут защитную функцию и способствуют увеличению удельной поверхности.

  Ядро у многих Р. содержит большое количество ДНК, что обусловлено очень высоким уровнем плоидности (в ядре присутствует свыше 1000 гаплоидиых хромосомных наборов). Размножаются Р. делением. У некоторых описано образование двужгутиковых одноядерных зародышей – бродяжек. У немногих Р. наблюдали половой процесс, протекающий по типу изогамной копуляции двужгутиковых гамет. Скелеты Р., опускаясь на дно, образуют радиоляриевый ил. В ископаемом состоянии известны с докембрия в составе морских отложений. Имеют большое стратиграфическое значение. См. Органогенные горные породы.

  Ю. И. Полянский.

Радиолярии: 1 – Hexastylus marginatus; 2 – Lithocubus geometricus; 3 – Circorrhedma dodecahedra; 4 – Trigonocyclia triangularis; 5 – Euphisetta staurocodon; 6 – Medusetta craspedota; 7 – Pipetta tuba.

Радиомаяк

Радиомая'к навигационный, радионавигационный маяк, передающая радиостанция, установленная в известном месте на земной поверхности или на движущемся объекте (например, самолёте-заправщике) и излучающая специальные радиосигналы, параметры которых связаны с направлением излучения. Принимая сигналы Р. на борту другого движущегося объекта (корабля, самолёта), можно определить направление на маяк (его пеленг). Р. относят к угломерным (азимутальным) радионавигационным устройствам (см. Радионавигация). В зависимости от того, ограничено или нет число направлений (курсов, зон), с которых может быть определён пеленг, различают Р. направленного и всенаправленного действия. Для пеленгации простейшего направленного Р. достаточно, как правило, иметь на самолёте или корабле обычный радиоприёмник с ненаправленной антенной. В зависимости от назначения Р. делят на морские и авиационные; существуют также Р., рассчитанные на одновременное обслуживание и морских, и воздушных объектов. В соответствии с методом радиотехнических измерений выделяют Р. 4 основных классов: амплитудные, фазовые, частотные и временные; наиболее распространены амплитудные Р., которые подразделяют на курсовые (зональные), пеленговые и маркерные.

  Курсовые Р. предназначены для задания определённых курсов в горизонтальной либо вертикальной плоскости. В первом случае Р. обычно создаёт курсы (зоны), позволяющие ориентироваться на маяк или от него и т. о. выдерживать правильное направление движения объекта. Курсовые Р., предназначенные для задания летательным аппаратам направления снижения в вертикальной плоскости (глиссады) и называют глиссадными, позволяют правильно выдерживать траекторию движения летательного аппарата при его планировании перед посадкой. Пеленговые Р. дают возможность определять пеленг на маяк путём сравнения положения вращающейся диаграммы направленности его излучения в момент отсчёта пеленга с известным её положением в др. момент времени. Маркерные Р. используются для обозначения (маркировки) пунктов, важных в навигационном отношении (например, контрольных пунктов при заходе самолётов на посадку и при подходе судов к порту, пунктов излома маршрутов или фарватеров и т.д.); обычно у таких Р. антенны – с узкой диаграммой направленности.

  Р., работающие в диапазонах километровых и более длинных волн, имеют дальность действия до 500 км. Они обеспечивают точность пеленгации их с борта объекта ~ 1—3° (по азимуту). Всенаправленные Р., работающие в диапазонах дециметровых и сантиметровых волн, имеют дальность действия, практически ограничиваемую прямой геометрической видимостью, и обеспечивают точность определения азимута до 0,1—0,25°.

  К навигационным Р. условно относят также передающие радиостанции с ненаправленным излучением и с отличительными для каждой из станций сигналами (позывными); они имеют навигационное назначение и получили название ненаправленных Р. Пеленгование ненаправленных Р. на объекте ведётся с помощью бортового радиопеленгатора. В авиации подобные Р. называют приводными радиостанциями. Кроме того, к ненаправленным Р. условно относят и другие радиостанции с ненаправленным излучением, имеющие различные для каждой станции опознавательные признаки (фиксированные радиочастоты, специальные позывные сигналы) и используемые наряду с их прямым назначением в навигационных целях: вещательные радиостанции, радиоакустические маяки, радиобуи,радиолокационные маяки, аварийные радиомаяки.

  М. М. Райчев.

Радиометеорограф

Радиометеоро'граф, устройство для метеорологических наблюдений в свободной атмосфере, состоящее из радиозондаи установленного на земле радиоприёмника с регистратором, который автоматически записывает сигналы радиозонда на бумаге. Кроме регистрации метеорологических элементов (температуры, влажности и давления воздуха), Р. регистрирует углы возвышения и азимуты радиозонда в полёте через фиксированные промежутки времени, чтобы определить положение прибора.

Радиометеорологическая станция

Радиометеорологи'ческая ста'нция автоматическая (АРМС), метеорологическая станция, обеспечивающая автоматическое получение и передачу по радио информации о метеорологической обстановке в месте её установки (часто необитаемом). Информация передаётся по программе в установленное время (отдельными видами АРМС также по запросу их радио) и содержит данные о температуре воздуха и воды, влажности воздуха, атмосферном давлении, скорости и направлении ветра, видимости, солнечном сиянии, облачности, осадках и др. Специализированные АРМС дают информацию по 1—2 элементам (например, радиоветромер — скорость и направление ветра, радиоосадкомер – количество осадков). В зависимости от назначения АРМС имеют соответствующие датчики с преобразователями и блоки: программный, измерительный, кодирующий, радиопередающий (и приёмный) и блок питания. АРМС, предназначенные для длительного действия (около 1 года), комплектуются для подзарядки аккумуляторов ветроэлектрическим или изотопным термоэлектрическим генератором. В зависимости от места установки АРМС делятся на наземные, для водоёмов (на заякоренных буях), дрейфующие (ДАРМС, которые используются во льдах Арктики). Для исследований в морях и океанах применяются автономные радиоокеанографические станции, позволяющие получить данные о спектре волн на поверхности и скорости и направлении течений на разных глубинах. Различные виды АРМС обеспечивают возможность приёма информации по радио в радиусе от 10 до 1000 км.

  Лит.: Справочник по гидрометеорологическим приборам и установкам, Л., 1971; Суражский Д. Я., Соловьев Г. Н., Автоматическая радиометеорологическая станция М-107, «Тр. Научно-исследовательского института гидрометеорологического приборостроения», 1973, в. 28; Стернзат М. С., Метеорологические приборы и наблюдения, Л., 1968.

  М. С. Стернзат.

Радиометеорология

Радиометеороло'гия, наука, в которой изучается, с одной стороны, влияние метеорологических условий в тропосфере и стратосфере на распространение радиоволн (главным образом УКВ), с другой – метеорологические явления в тропосфере и стратосфере по характеристикам принимаемых радиосигналов, в том числе собственного излучения атмосферы, как теплового, так и обусловленного электрическим разрядами.

  Первые радиометеорологические наблюдения проводились А. С. Поповымс помощью созданного им грозоотметчика. Излучения атмосферы, вызываемые грозовыми и тихими электрическими разрядами, занимают широкую полосу частот радиоволн от сверхдлинных до ультракоротких и называются атмосфериками. Последние создаются не только разрядами при грозе, но и в конвективных облаках, пыльных и снежных бурях, областях высокой запылённости и др. Наблюдения за ними позволяют определять глобальное распределение грозовой активности, а также местоположение интенсивных фронтов атмосферных.

  В 20-х – начале 30-х г. г. 20 в. установлено преобладающее влияние метеорологических процессов на распространение УКВ. Распространение радиоволн в атмосфере сопровождается их преломлением, поглощением, отражением и рассеянием. Интенсивность этих явлений определяется свойствами пространственного распределения показателя преломления n воздуха, являющегося функцией давления, температуры и влажности, а также наличием и свойствами гидрометеоров (продукты конденсации влаги в атмосфере – капли дождя, тумана, облаков) и различных примесей. Соответственно радиосигналы могут содержать информацию о распределении плотности, температуры и влажности воздуха, поле ветра и турбулентности, водности облаков, интенсивности осадков и др. При распространении радиоволны ослабляются из-за потери электромагнитной энергии, которая поглощается и рассеивается молекулами кислорода O2 и водяного пара, гидрометеорами, частицами аэрозоля и др. неоднородностями. В атмосферных газах ослабление наиболее существенно на волнах 0,25 и 0,5 см для 02 и 0,18 и 1,35 см для водяного пара, где имеет место резонансное поглощение. Суммарное поглощение атмосферными газами и его сезонная изменчивость определяются климатическими особенностями каждого географического района (рис. 1). В мелкокапельных облаках коэффициент ослабления пропорционален их водности. В осадках наряду с поглощением существенно рассеяние радиоволн, поэтому зависимость ослабления от их водности или интенсивности сложнее (рис. 2 и 3). В кристаллических облаках и осадках ослабление существенно меньше, чем в капельножидких.

  Зависимость n, а также др. факторов, влияющих на перенос радиоизлучения, от основных метеорологических параметров позволяет использовать методы анализа и прогноза гидрометеорологических явлений для изучения и предсказания условий распространения радиоволн. Область Р., занимающаяся изучением сезонных изменений n, его вертикального профиля, поглощения атмосферными газами и ослабления облаками и осадками в различных климатических районах, называется радиоклиматологией. Метеорологические условия, определяющие аномалии в распространении радиоволн, в частности образование атмосферных волноводов, длительные замирания, вызванные наличием приподнятых отражающих слоев или ослаблением в осадках, могут быть предсказаны на основе синоптического анализа.

  Среди методов исследования атмосферы, использующих распространение радиоволн, наибольшее практическое значение получили радиолокационные (см. Радиолокация в метеорологии). Измерения теплового излучения атмосферы, подстилающей поверхности и внеземных источников на сантиметровых и более коротких волнах в области интенсивных полос поглощения атмосферными газами используются для определения профилей плотности, влажности и температуры, а также оценки общего влагосодержания в атмосфере. На метеорологических ИСЗ применяют сканирующие радиометры сантиметрового и миллиметрового диапазонов для получения изображений облаков и осадков.

  Лит.: Вин Г. Р., Даттон Е. Дж., Радиометеорология, пер. с англ., Л., 1971; Насилов Д. Н., Радиометеорология 2 изд., М., 1966; Пахомов Л. А., Пинус Н. З. и Шметер С. М., Аэрологические исследования изменчивости коэффициента преломления атмосферы для ультракоротких радиоволн, М., 1960; Степаненко В. Д., Радиолокация в метеорологии, Л., 1966; Измерение радиотепловых и плазменных излучений в СВЧ диапазоне М., 1968.

  А. А. Черников.

Рис. 1. Зависимость коэффициента полного поглощения К атмосферными газами от высоты H над поверхностью Земли для района г. Вашингтона (США): 1 – февраль; 2 – август.

Рис. 3. Изображение поля осадков средней интенсивности на индикаторе обзора метеорологического радиолокатора (длина волны 3,2 см). Расстояние между масштабными кольцами 20 км.

Рис. 2. Коэффициент ослабления a в дождях различной интенсивности I как функция частоты радиоизлучения.


    Ваша оценка произведения:

Популярные книги за неделю

    wait_for_cache