355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (РА) » Текст книги (страница 15)
Большая Советская Энциклопедия (РА)
  • Текст добавлен: 21 сентября 2016, 16:21

Текст книги "Большая Советская Энциклопедия (РА)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 15 (всего у книги 82 страниц)

Радиационная генетика

Радиацио'нная гене'тика, наука, лежащая на стыке генетики и радиобиологии и изучающая генетическое действие излучений, т. е. возникновение наследуемых изменений (мутаций) у организмов в результате их облучения. Впервые вызываемые облучением мутации получили в 1925 советские учёные Г. А. Надсон и Г. С. Филиппов у низших грибов. Возникновение Р. г. как самостоятельной дисциплины датируют 1927—28, когда американские генетики Г. Мёллер на дрозофиле (1927) и Л. Стедлер на кукурузе и ячмене (1928) точными количественными опытами установили, что рентгеновское облучение приводит к значительному (в десятки раз) возрастанию частоты мутаций у подопытных организмов. Позднее многими исследованиями в разных странах было показано, что не только рентгеновские лучи, но и все др. виды ионизирующих излучений, а также ультрафиолетовые лучи, поглощаясь веществом хромосом, способны вызвать мутации у любых видов организмов (микроорганизмов, растений, животных и человека) как в половых клетках – гаметах(гаметические мутации), так и в клетках тела (соматические мутации). В результате облучения могут возникать все известные типы мутаций – генные, хромосомные, геномные, цитоплазматические, – которые влияют на любые признаки организма (биохимические, физиологические, морфологические и т.д.), а также мутации, влияющие на жизнеспособность особи и вызывающие её гибель (летальные).

  Почти с самого зарождения Р. г. в ней наметились 3 основных направления: биофизическое, или радиобиологическое (анализ механизмов генетического действия излучении), генетическое (получение мутантных форм для анализа явлений наследственностии изменчивости) и селекционное (получение мутантов с ценными для селекции признаками). Первые работы по радиационной селекции были проведены сов. учёными А. А. Сапегиным и Л. Н. Делоне на пшенице (1930). В дальнейшем большие успехи были достигнуты в радиационной селекции многих промышленных микроорганизмов и культурных растений. С развитием атомной промышленности возросла роль Р. г. как теоретической основы для прогнозирования отдалённых генетических последствий повышения фона радиоактивногов окружающей человека среде. Одно из направлений Р. г. – космическая Р. г., изучающая закономерности генетического действия космических лучей в сочетании с др. факторами космического полёта (невесомость, перегрузки и др.).

  В СССР исследования по Р. г. проводятся в институте общей генетики АН СССР, институте цитологии и генетики СО АН СССР, институте медицинской радиологии АМН СССР, институте атомной энергии им. Курчатова, в институте молекулярной биологии и генетики АН УССР, а также на кафедрах биофизики и генетики университетов; за рубежом – в Окриджской национальной лаборатории (США), Центре атомных исследований в Харуэлле (Великобритания), в институте генетики и изучения культурных растений в Гатерслебене (ГДР) и др. См. также Биологическое действие ионизирующих излучений, Радиобиология.

  Лит.: Дубинин Н. П., Молекулярная генетика и действие излучений на наследственность, М., 1963; Шапиро Н. И., Радиационная генетика, в книга: Основы радиационной биологии, М., 1964; Тимофеев-Ресовский Н. В., Иванов В. И., Глотов Н. В., Некоторые вопросы радиационной генетики, в книга: Актуальные вопросы современной генетики, М., 1966; Захаров И. А., Кривиский А. С., Радиационная генетика микроорганизмов, М., 1972; Токин И. Б., Проблемы радиационной цитологии, Л., 1974.

  В. И. Иванов.

Радиационная температура

Радиацио'нная температу'ра (Tr), физический параметр, характеризующий суммарную (по всем длинам волн) энергетическую яркость Вэ излучающего тела; равна такой температуре абсолютно чёрного тела, при которой его суммарная энергетическая яркость .

  Законы теплового излучения (см. Стефана – Больцмана закон излучения и Кирхгофа закон излучения) позволяют выражение  записать в виде: , где eT – излучательная способность (коэффициент черноты) тела, s – Стефана – Больцмана постоянная, Т — абсолютная температура тела. Если известно значение eT и измерена температура Tr (радиационным пирометром), то можно вычислить температуру тела Т = Tr×eT—1/4 . Для теплового излучения всех тел, кроме абсолютно чёрного, eT < 1; поэтому Tr < Т, но при люминесценции Tr может быть больше Т.

  Лит.: Гордов А. Н., Основы пирометрии, 2 изд., М., 1971.

Радиационная труба

Радиацио'нная труба', нагреватель, представляющий собой трубу из жаропрочной стали или корунда, внутри которой сжигают газообразное (иногда жидкое) топливо. Тепло от Р. т. к нагреваемым изделиям передаётся излучением от наружной поверхности раскалённой трубы. Р. т. устанавливают в печах для термической обработки металлических изделий, которые не должны соприкасаться с продуктами сгорания топлива (нагрев в контролируемой атмосфере или воздухе). Металлическая Р. т. применяют для нагрева изделий до 950 °С, корундовые – до 1200 °С. Диаметр Р. т. 60—200 мм, длина каждой ветви до 2,5 м. Р. т. классифицируют по конструкции. Простейшая прямая Р. т. – вертикально или горизонтально установленная труба, на одном конце которой смонтирована горелка, а через другой удаляют продукты сгорания. Более совершенные многоветвевые Р. т. с рекуперацией тепла отходящих продуктов сгорания схематично показаны на рисунке.

  Лит.: Справочник конструктора печей прокатного производства, под ред. В. М. Тымчака, т. 1, М., 1970, с. 411—14.

Радиационная труба: а – U-образная; б – W-образная; г – P-образная; 1 – подвод холодного воздуха; 2 – отвод продуктов сгорания; 3 – рекуператор; 4 – стена печи; 5 – ветвь трубы; 6 – горелка; 7 – подвод газа; 8 – патрубок подогретого воздуха.

Радиационная химия

Радиацио'нная хи'мия, область химии, охватывающая химические процессы, вызываемые действием ионизирующих излучений на вещество. Ионизирующей способностью обладают как электромагнитные излучения (рентгеновские лучи, g-лучи, коротковолновое излучение оптических частот), так и быстрые заряженные частицы (электроны, протоны, a-частицы, осколки тяжёлых ядер и др.), энергия которых превышает ионизационный потенциал атомов или молекул (обычно имеющий величину 10—15 эв). Возникновение химических реакций под действием ионизирующих излучений обусловлено их способностью ионизировать и возбуждать молекулы вещества.

  История Р. х. Способность ионизирующих излучений вызывать химические реакции была обнаружена вскоре после открытия радиоактивности. Первые эксперименты, показавшие наличие химических эффектов при действии излучений радиоактивных элементов, относятся к началу 20 в. Как самостоятельная область науки Р. х. начала складываться позже, в 40-х гг., в связи с созданием ядерных реакторови промышленного производства т. н. делящихся элементов (плутоний и др.). С развитием этой области техники возникла необходимость изучения различных сопутствующих химических эффектов. К ним относятся радиолизводы, превращения в растворах радиоактивных веществ, изменения в различных материалах, применяемых в атомной технике, реакции газов – компонентов воздуха (Na, O2, CO2) и т.д. В связи с действием ионизирующих излучений на организмы возникла необходимость в детальном исследовании радиационно-химических превращений в биополимерах.

  С течением времени стало выясняться, что ионизирующие излучения могут быть использованы направленно, для осуществления полезных химических процессов. Были предприняты широкие исследования стимулирования ионизирующими излучениями различных радиационно-химических процессов и начато детальное изучение их характерных закономерностей.

  Физические основы Р. х. Было установлено, что, проходя через вещество, g-квант или быстрые частицы (a-частицы, электроны, протоны и др.) выбивают электроны из молекул, т. е. вызывают их ионизацию или возбуждение, если порция передаваемой им энергии меньше энергии ионизации. В результате на пути быстрой частицы возникает большое количество электрически заряженных – ионы, ионы-радикалы – или нейтральных – атомы, радикалы (см. Радикалы свободные) осколков молекул, образующих т. н. трек. Выбитые из молекул электроны, обладающие меньшей энергией («вторичные» электроны), разлетаясь в стороны, в свою очередь, производят аналогичное действие, только на более коротком расстоянии (соответствующем их энергии). В результате трек первичной быстрой частицы разветвляется вследствие образования более коротких областей ионизации и возбуждения. При достаточной плотности облучения треки перекрываются и первоначальная неоднородность в пространственном распределении активированных и осколочных частиц нивелируется. Этому способствует также диффузия частиц из треков в незатронутую излучением среду.

  Процессы, происходящие в облучаемой среде, можно разделить на три основные стадии. В первичной, физической стадии происходят столкновения быстрой заряженной частицы с молекулами среды, в результате которых кинетическая энергия частицы передаётся молекулам, что приводит к изменению их энергетического состояния. На этой стадии энергия, передаваемая среде, рассредоточивается по различным молекулярным (атомным) уровням. В результате возникает большое число «активированных» молекул, находящихся в различных состояниях возбуждения. Первичная стадия проходит в очень короткие отрезки времени: 10-15—10-12сек. В созданном возбуждённом состоянии молекулы нестабильны, и происходит либо их распад, либо они вступают во взаимодействие с окружающими молекулами. В результате образуются ионы, атомы и радикалы, т. е. промежуточные частицы радиационно-химических реакций. Эта, вторая, стадия продолжается 10-13—10-11сек. На третьей стадии (собственно химической) образовавшиеся активные частицы взаимодействуют с окружающими молекулами или друг с другом. На этой стадии образуются конечные продукты радиационно-химической реакции. Длительность третьей стадии зависит от активности промежуточных частиц и свойств среды и может составлять 10-11—10-6сек.

  «Вторичные» электроны, затрачивая свою кинетическую энергию на ионизацию (возбуждение) молекул, постепенно замедляются до скорости, соответствующей тепловой энергии. В жидкой среде такое их замедление происходит в течение 10-13—10-12сек, после чего они захватываются либо одной молекулой, образуя отрицательно заряженный ион, либо группой молекул («сольватируются»). Такие «сольватированные» электроны «живут» в течение 10-8—10-5сек (в зависимости от свойств среды и условий), после чего рекомбинируют с какими-либо положительно заряженными частицами. Совокупность закономерностей перечисленных элементарных процессов является важной составной частью теории Р. х. Кроме того, реакциям возбужденных молекул принадлежит значительная роль в радиационно-химических процессах. Большое значение для протекания последних имеет также передача энергии возбуждения в облучаемой среде, приводящая к дезактивации возбуждённых молекул и рассеянию энергии. Такие процессы изучает фотохимия, которая тем самым тесно связана с Р. х.

  Радиационно-химические превращения. Реакции активных частиц с молекулами отличаются от реакций невозбуждённых молекул друг с другом. В большинстве своём молекулы довольно устойчивы и для осуществления реакции между ними при соударениях необходимо сообщить им некоторую избыточную энергию, которая позволяет им преодолеть т. н. энергетический барьер реакции (см. Энергия активации). Обычно эта избыточная энергия сообщается молекулам посредством повышения температуры среды. Для реакций активных частиц между собой или с молекулами энергетический барьер очень мал. Особенно эффективно протекают реакции с рекомбинацией электронов и положительных ионов (см. Рекомбинацияионов и электронов), атомов и радикалов друг с другом, а также реакции положительных ионов с молекулами (ионно-молекулярные реакции). В ряде случаев является эффективным т. н. диссоциативный захват электронов молекулой, при котором она распадается на радикал и отрицательный ион. Эти элементарные процессы либо приводят к распаду молекул или крупных ионов, либо к образованию молекул новых веществ. Реакции радикалов с молекулами требуют преодоления относительно небольшого энергетического барьера в 5—10 ккал/моль (21—42 кдж/моль). Вследствие этого радиационно-химические реакции протекают быстро даже при очень низких температурах (ниже —200 °С); в отличие от обычных реакций их скорость слабо зависит от температуры.

  Протекание радиационно-химических реакций зависит от агрегатного состояния вещества. Обычно в газовой фазе эти реакции происходят с большим выходом, чем в конденсированных фазах (жидкой и твёрдой). Это обусловлено главным образом более быстрым рассеянием энергии в конденсированной среде. Если эти реакции обратимы, т. е. могут происходить как в прямом, так и в обратном направлениях, то с течением времени скорости реакций в обоих направлениях сравниваются и устанавливается т. н. стационарное состояние, при котором не происходит видимых химических изменений в облучаемой среде. Химический состав в таком стационарном состоянии существенно отличается от состава, устанавливающегося при равновесии химическом, и стационарные концентрации продуктов реакции могут намного превосходить их равновесные концентрации, соответствующие данной температуре. Например, стационарные концентрации окислов азота, образующихся при облучении смеси азота с кислородом (или воздуха) при комнатной температуре, в тысячи раз превосходят концентрации, которые устанавливаются в условиях термического химического равновесия при данной температуре. Поглощённая веществом энергия излучения обычно не полностью используется для осуществления химического процесса. Значительная её часть рассеивается и постепенно переходит в тепло. Эффективность химического действия излучений обычно характеризуют величиной радиационно-химического выхода (обозначается G), представляющей собой число превратившихся (или образовавшихся) молекул вещества на 100 эв поглощённой средой энергии. Для обычных реакций величина G лежит в пределах от 1 до 20 молекул. Для цепных реакций она может достигать десятков тысяч молекул. Количество энергии, поглощённой веществом, называется поглощённой дозой, измеряемой в рентгенах (или радах). Радиационно-химические реакции имеют самый разнообразный характер. Простейшие из них происходят в воздушной среде под действием космических излучений или излучений радиоактивных элементов. При действии ионизирующих излучений на воздух происходят химические процессы, например: из кислорода образуется озон, азот вступает в реакцию с кислородом и образуются различные окислы азота, углекислый газ разлагается с образованием окиси углерода. В др. случаях происходит разложение химических соединений на простые вещества: вода разлагается на водород и кислород, аммиак – на водород и азот, перекись водорода – на кислород и воду и т.п. Способность ионизирующих излучений вызывать химические реакции при сравнительно низких температурах позволяет осуществлять ряд практически важных процессов, например окисление углеводородов кислородом воздуха, приводящее к образованию веществ, входящих в состав смазочных масел, моющих средств.

  Один из наиболее интересных процессов, инициируемых ионизирующими излучениями, – полимеризация органических мономеров, приводящая к образованию разнообразных полимеров. Многие из них обладают ценными свойствами, которые не приобретаются при других методах синтеза (например, большим молекулярным весом). При действии радиации на полимеры в них могут происходить процессы, приводящие к улучшению их физико-химических свойств, в том числе термической стойкости.

  Для осуществления радиационно-химических процессов применяются различные источники ионизирующих излучений. Одним из наиболее распространённых является радиоактивный кобальт, излучающий g-лучи с энергией свыше 1 Мэв. Широкое применение получают ускорители электронов, которые имеют значительные удобства для практического применения благодаря высокой интенсивности излучения и возможности управления ими. Разработаны также способы непосредственного использования излучений ядерных реакторов для осуществления радиационно-химических процессов.

  Современное развитие Р. х. тесно связано с рядом областей науки и техники. К ним относятся атомная физика и атомная энергетика (см. Атомная электростанция), космические исследования и др. Многие проблемы перед Р. х. выдвигает биология, медицина. Ряд фундаментальных вопросов теории и многие практические аспекты Р. х. разработаны советскими учёными.

  Лит.: Верещинский И. В., Пикаев А. К., Введение в радиационную химию, М., 1963; Пшежецкий С. Я., Механизм и кинетика радиационно-химических реакций, 2 изд., М., 1968; ЭПР свободных радикалов в радиационной химии, М., 1972; Чарлзби А., Ядерные излучения и полимеры, пер. с англ., М., 1962; Своллоу А., Радиационная химия органических соединений, пер. с англ., М., 1963.

  С. Я. Пшежецкий.

Радиационное давление

Радиацио'нное давле'ние в акустике, то же, что давление звукового излучения. См. Давление звука.

Радиационное трение

Радиацио'нное тре'ние, то же, что реакция излучения.

Радиационно-химические процессы

Радиацио'нно-хими'ческие проце'ссы, технологические процессы, в которых для изменения химических или физических свойств системы используются ионизирующие излучения. Наблюдаемые при проведении Р.-х. п. эффекты являются следствием образования и последующих реакций промежуточных частиц (ионов, возбуждённых молекул и радикалов), возникающих при облучении исходной системы. Количественно эффективность Р.-х. п. характеризуется радиационно-химическим выходом G (см. Радиационная химия). В цепных Р.-х. п. (величина G от 103 до 106) излучение играет роль инициатора. В ряде случаев такое инициирование даёт значительные технологические и экономические преимущества, в том числе лучшую направленность процесса и возможность осуществления его при более низких температурах, а также возможность получения особо чистых продуктов. В нецепных Р.-х. п. энергия излучения расходуется непосредственно для осуществления самого акта превращения. Такие процессы связаны с большими затратами энергии излучения и имеют ограниченное применение.

  К числу интенсивно изучаемых и практически реализуемых цепных Р.-х. п. относятся различные процессы полимеризации,теломеризации, а также синтеза ряда низкомолекулярных соединений. Р.-х. п. полимеризации этилена, триоксана, фторолефинов, акриламида, стирола и некоторых др. мономеров были в начале 1970-х гг. разработаны до стадии создания опытных или опытно-промышленных установок. Важное практическое значение приобрели радиационные методы отверждения связующих (полиэфирных и др.) в производстве стеклопластиков и получении лакокрасочных покрытий на металлических, деревянных и пластмассовых изделиях. Значительный интерес представляют Р.-х. п. прививочной полимеризации. В этих процессах исходные полимерные или неорганические материалы различного назначения облучаются в присутствии соответствующих мономеров. В результате поверхности этих материалов приобретают новые свойства, в некоторых случаях уникальные. Р.-х. п. этого типа практически применяются и для модифицирования нитей, тканей, плёнок и минеральных материалов. Большой интерес представляют также Р.-х. п. модифицирования пористых материалов (древесины, бетона, туфа и т.д.) путём пропитки их мономерами (метилметакрилатом, стиролом и др.) и последующей полимеризации этих мономеров с помощью g-излучения. Такая обработка значительно улучшает эксплуатационные свойства исходных пористых тел и позволяет получить широкий ассортимент новых строительных и конструкционных материалов. В частности, заметных масштабов достигло производство паркета из модифицированной древесины. Цепные Р.-х. п. осуществляются также с целью синтеза низкомолекулярных продуктов. Установлена высокая эффективность Р.-х. п. окисления, галогенирования, сульфохлорирования, сульфоокисления.

  Из процессов, в которых излучение инициирует нецепные реакции, широкое распространение получили Р.-х. п. «сшивания» отдельных макромолекул при облучении высокомолекулярного соединения. В результате «сшивания» (например, полиэтилена) происходит повышение его термостойкости и прочности, а для каучуков радиационное «сшивание» обеспечивает их вулканизацию. На этой основе разработаны Р.-х. п. производства упрочнённых и термостойких полимерных плёнок, кабельной изоляции, труб, вулканизации резинотехнических изделий и др. Особенно интересным является «эффект памяти» облученного полиэтилена. Если облученное изделие из полиэтилена деформировать при температурах выше tпл аморфной фазы полимера, то при последующем охлаждении оно сохранит приданную форму. Однако повторное нагревание возвращает первоначальную форму. Этот эффект даёт возможность получать термоусаживаемые упаковочные плёнки и электроизоляционные трубки.

  Для осуществления химического синтеза было предложено (1956) использовать осколки деления ядер 235U, возникающие в активной зоне ядерного реактора. Эти процессы были названы хемоядерными. Исследования и технологические расчёты показали, что принципиальных препятствий для реализации таких процессов нет. Однако технические трудности, состоящие главным образом в создании систем очистки продуктов от неизбежных в этом случае радиоактивных загрязнений, не позволили пока приступить к сооружению хотя бы опытно-промышленных хемоядерных установок.

  Разработка промышленных Р.-х. п. привела к возникновению радиационно-химической технологии, главная задача которой – создание методов и устройств для экономичного осуществления Р.-х. п. в промышленном масштабе. Основным разделом радиационно-химической технологии является радиационно-химическое аппаратостроение, теоретические основы которого созданы во многом трудами сов. учёных.

  Для проведения Р.-х. п. используются изотопные источники g-излучения, ускорители электронов с энергиями от 0,3 до 10 Мэв и ядерные реакторы. В современных изотопных источниках чаще всего используется 60Co. Перспективными источниками g-излучения считаются и радиационные контуры при ядерных реакторах, состоящие из генератора активности, облучателя радиационной установки, а также соединяющих их коммуникаций и устройств для перемещения по контуру рабочего вещества. В результате захвата нейтронов в генераторе, расположенном в активной зоне ядерного реактора или вблизи от неё, рабочее вещество активизируется, а g-излучение образовавшихся изотопов используется затем в облучателе для проведения Р.-х. п. Накопленный в СССР опыт позволяет создать промышленные радиационные контуры мощностью в несколько сотен квт.

  Для облучения сравнительно тонких слоев материала наиболее эффективным оказывается применение ускоренных электронов, обеспечивающее ряд преимуществ: высокие мощности доз, лучшие для обслуживающего персонала условия радиационной безопасности, отсутствие в выключенном состоянии расхода энергии и т.д.

  Лит.: Пшежецкий В. С., Радиационно-химические превращения полимеров, в книге: Краткая химическая энциклопедия, т. 4, М., 1965, с. 421—26; Основы радиационно-химического аппаратостроения, под общ. ред. А. Х, Бречера, М., 1967; «Журнал Всесоюзного химического общества им. Д. И. Менделеева», 1973, т. 18, № 3: Энциклопедия полимеров, т. 3, М. (в печати).

  С. П. Соловьев, Е. А. Борисов.


    Ваша оценка произведения:

Популярные книги за неделю

    wait_for_cache