355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ЭЛ) » Текст книги (страница 9)
Большая Советская Энциклопедия (ЭЛ)
  • Текст добавлен: 9 октября 2016, 03:37

Текст книги "Большая Советская Энциклопедия (ЭЛ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 9 (всего у книги 47 страниц)

«Электричество»

«Электри'чество», ежемесячный научно-технический журнал, орган АН СССР, Государственного комитета Совета Министров СССР по науке и технике и Центрального правления научно-технического общества энергетики и электротехнической промышленности. Один из старейших технических журналов; основан в 1880 в Петербурге по инициативе П. Н. Яблочкова, В. Н. Чиколева, Д. А. Лачинова, А. Н. Лодыгина и др.; с 1922 издаётся в Москве (перерывы в 1917—22, 1941—1944). Освещает актуальные вопросы теории и практики электроэнергетики и электротехники. Тираж (1978) около 19 тыс. экз.

Электро...

Электро..., часть сложных слов, указывающая на отношение к электричеству (например, электрод , электроскоп ).

Электроакустика

Электроаку'стика, раздел прикладной акустики, содержание которого составляют теория, методы расчёта и конструирование электроакустических преобразователей . Часто к Э. относят теорию и методы расчёта представляющих интерес для прикладной акустики электромеханических преобразователей (например, звукоснимателей, рекордеров, виброметров, электромеханических фильтров и трансформаторов и др.), связанных с электроакустическими преобразователями общностью физического механизма, методов расчёта и конструирования. Э. тесно связана также со многими другими разделами прикладной акустики, поскольку рассматриваемые ею электроакустические преобразователи либо органически входят в состав различной акустической аппаратуры (например, при звуковещании, звукозаписи и воспроизведении звука, в ультразвуковой дефектоскопии и технологии, в гидроакустике, акустической голографии и др.), либо широко применяются при экспериментальных исследованиях (например, в архитектурной и строительной акустике, медицине, геологии, океанографии, сейсморазведке, при измерении шумов и др.).

  Основная задача Э. – установление соотношений между сигналами на входе и выходе преобразователя и отыскание условий, при которых преобразование осуществляется наиболее эффективно или с минимальными искажениями.

  Э. как самостоятельный раздел прикладной акустики сложилась в 1-й половине 20 в., когда применение электроакустических преобразователей приобрело массовый характер и стало постепенно проникать во всё новые области науки и техники. Первые работы по расчётам электроакустических преобразователей относятся к концу 19 и началу 20 вв. и связаны с развитием телефонии, исследованиями колебаний пьезоэлектрических и магнитострикционных резонаторов. Существенным прогрессом в технике электроакустических преобразователей явилось создание метода электроакустических аналогий и эквивалентных схем (см. Электроакустические и электромеханические аналогии ). Важным шагом вперёд в теории расчёта электроакустических преобразователей явилось затем использование метода электромеханических многополюсников и метода эквивалентных схем для систем с т. н. распределёнными постоянными, для которых амплитуда колебаний существенно зависит от их координат аналогично электрическим длинным линиям и волноводам.

  Существенную роль в развитии Э. сыграли работы американских учёных Ф. Морса и Л. Фолди (общая теория электромеханических преобразователей с распределёнными связями), Г. Олсона (теория электромеханических аналогий и эквивалентных схем), У. Мэзона (расчёт пьезоэлектрических преобразователей и фильтров) и советских учёных Н. Н. Андреева и Л. Я. Гутина (заложивших основы современных методов расчёта пьезоэлектрических и магнитострикционных преобразователей), В. В. Фурдуева (установившего различные виды соотношений на основе теоремы взаимности в электромеханических системах), А. А. Харкевича (разработавшего и систематизировавшего общую теорию электроакустических преобразователей) и др.

  Лит.: Гутин Л. Я., Магнитострикционные излучатели и приемники, «Журнал технической физики», 1945, т. 15, в. 12; его же, Пьезоэлектрические излучатели и приемники, там же, 1946, т. 16, в. 1; Фурдуев В. В., Электроакустика, М. – Л., 1948; Харкевич А. А., Теория преобразователей, М. – Л., 1948; Физическая акустика, под ред. У. Мэзона, пер. с англ., М., 1966; Скучик Е., Основы акустики, пер. с англ., т. 1—2. М., 1976.

  Р. Е. Пасынков.

Электроакустические и электромеханические аналогии

Электроакусти'ческие и электромехани'ческие анало'гии, аналогии в законах движения (колебаний) механических колебательных систем и электрических контуров. Главное достоинство Э. и э. а. – возможность применения методов расчёта и анализа электрических колебательных систем при рассмотрении свойств механических и акустических систем (рис.), основанная на сходстве дифференциальных уравнений, описывающих состояние этих систем. На основании сопоставления сходных уравнений составляется таблица соответствия электрических, механических и акустических аналогов, причём в зависимости от того, выбрано ли уравнение последовательного или параллельного электрического контура для сопоставления, различают 1-ю (прямую) и 2-ю (инверсионную) системы аналогий (см. табл.).


Электрические величины Механические величины Акустические величины
1-я система 2-я система 1-я система
Напряжение (эдс) UСила FСкорость vЗвуковое давление p
Ток iСкорость vСила FОбъёмная скорость S v
Индуктивность LМасса mПодатливость (гибкость) СмАкустическая масса ma = rl/S
Ёмкость CПодатливость (гибкость) СмМасса mАкустическая податливость Ca = V/rc2  
Активное сопротивление RСопротивление механических потерь rмАктивная механическая приводимость 1/rмСопротивление акустических потерь ra

  Примечание. S – площадь, r   – плотность среды, c – скорость звука в среде, V – объём.

  При рассмотрении акустических систем наибольшее распространение получила 1-я система аналогий.

  Э. и э. а. особенно полезны при определении свойств сложных механических систем с несколькими степенями свободы, аналитическое исследование которых решением дифференциальных уравнений весьма трудоёмко. Такие системы представляют в виде совокупности электрических контуров и полученную электрическую схему (эквивалентную схему) анализируют приёмами электротехники. Метод Э. и э. а. применяется для расчёта электромеханических и электроакустических преобразователей .

  Лит.: Фурдуев В. В., Электроакустика, М. – Л., 1948; Ольсон Г., Динамические аналогии, пер. с англ., М., 1947; Матаушек И., Ультразвуковая техника, пер. с нем., М., 1962.

Примеры электрических и механических аналогов: а – последовательный и параллельный одиночные электрические контуры; б – механическая система с одной степенью свободы; в – акустический резонатор.

Электроакустические преобразователи

Электроакусти'ческие преобразова'тели, устройства, преобразующие электрическую энергию в акустическую (энергию упругих колебаний среды) и обратно. В зависимости от направления преобразования различают Э. п.: излучатели и приёмники. Э. п. широко используют для излучения и приёма звука в технике связи и звуковоспроизведения, для измерения и приёма упругих колебаний в ультразвуковой технике, гидролокации и в акустоэлектронике. Наиболее распространённые Э. п. линейны, т. е. удовлетворяют требованию неискажённой передачи сигнала, и обратимы, т. е. могут работать и как излучатель, и как приёмник, и подчиняются принципу взаимности. В большинстве Э. п. имеет место двойное преобразование энергии (рис. ): электромеханическое, в результате которого часть подводимой к преобразователю электрической энергии переходит в энергию колебаний некоторой механической системы, и механоакустическое, при котором за счёт колебаний механической системы в среде создаётся звуковое поле.

  Существуют Э. п., не имеющие механической колебательной системы и создающие колебания непосредственно в среде, например электроискровой излучатель, возбуждающий интенсивные звуковые колебания в результате электрического разряда в жидкости, излучатель, действие которого основано на электрострикции жидкостей. Эти излучатели необратимы и применяются редко. К особому классу Э. п. относятся приёмники звука (также необратимые), основанные на изменении электрического сопротивления чувствительного элемента под влиянием звукового давления, например угольный микрофон или полупроводниковые приёмники, в которых используется т. н. тензорезистивный эффект — зависимость сопротивления полупроводников от механических напряжений. Когда Э. п. служит излучателем, на его входе задаются электрическое напряжение U и ток i, определяющие его колебательную скорость v и звуковое давление р в его поле; на входе Э. п. – приёмника действует давление р или колебательная скорость v, обусловливающие напряжение V и ток I на его выходе (на электрической стороне). Теоретический расчёт Э. п. предусматривает установление связи между его входными и выходными параметрами.

  Колебательными механическими системами Э. п. могут быть стержни , пластинки , оболочки различной формы (полые цилиндры, сферы, совершающие различного вида колебания), механические системы более сложной конфигурации. Колебательные скорости и деформации, возникающие в системе под воздействием сил, распределённых по её объёму, могут, в свою очередь, иметь достаточно сложное распределение. В ряде случаев, однако, в механической системе можно указать элементы, колебания которых с достаточным приближением характеризуются только кинетической, потенциальной энергиями и энергией механических потерь. Эти элементы имеют характер соответственно массы М, упругости 1/С и активного механического сопротивления r (т. н. системы с сосредоточенными параметрами). Часто реальную систему удаётся искусственно свести к эквивалентной ей (в смысле баланса энергий) системе с сосредоточенными параметрами, определив т. н. эквивалентные массу Мэкв, упругость 1/Сэкв и сопротивление трению rm. Расчёт механических систем с сосредоточенными параметрами может быть произведён методом электромеханических аналогий (см. Электроакустические и электромеханические аналогии ). В большинстве случаев при электромеханическом преобразовании преобладает преобразование в механическую энергию энергии либо электрического, либо магнитного поля (и обратно), соответственно чему обратимые Э. п. могут быть разбиты на следующие группы: электродинамические преобразователи, действие которых основано на электродинамическом эффекте (излучатели) и электромагнитной индукции (приёмники), например громкоговорители , микрофон; электростатические, действие которых основано на изменении силы притяжения обкладок при изменении напряжения и на изменении заряда или напряжения при относительном перемещении обкладок конденсатора (громкоговорители, микрофоны); пьезоэлектрические преобразователи, основанные па прямом и обратном пьезоэффекте (см. Пьезоэлектричество ); электромагнитные преобразователи, основанные на колебаниях ферромагнитного якоря в переменном магнитном поле и изменении магнитного потока при движении якоря; магнитострикционные преобразователи , использующие прямой и обратный эффект магнитострикции .

  Свойства Э. п. – приёмника характеризуются его чувствительностью в режиме холостого хода gxx = V/p и внутренним сопротивлением Zэл . По виду частотной зависимости V/p различают широкополосные и резонансные приёмники. Работу Э. п. – излучателя характеризуют: чувствительность, равная отношению р на определённом расстоянии от него на оси характеристики направленности к U или i; внутреннее сопротивление, представляющее собой нагрузку для источника электрической энергии; акустоэлектрический кпд hа/эл = Wak /Wэл , где Wak активная акустическая мощность в нагрузке, Wэл активная электрическая потребляемая мощность, Wak = Zн v2 (v колебательная скорость точки центра приведения на излучающей поверхности, Zн сопротивление акустической нагрузки, равное сопротивлению излучения Zs , при контакте Э. п. со сплошной средой). Перечисленные параметры зависят от частоты. Величины р и hа/эл достигают максимального значения на частотах механического резонанса, вследствие чего мощные излучатели делают, как правило, резонансными. Конструкции Э. п. существенно зависят от их назначения и применения и поэтому весьма разнообразны.

  Лит.: Фурдуев В. В., Электроакустика, М. – Л., 1948; Харкевич А. А., Теория преобразователей, М. – Л., 1948; Матаушек И., Ультразвуковая техника, пер. с нем., М., 1962; Ультразвуковые преобразователи, под ред. Е. Кикучи, пер. с англ., М., 1972.

  Б.С.Аронов, Р. Е. Пасынков.

Блок-схема электроакустического преобразователя: 1 – электрическая сторона; 2 – механическая колебательная система; 3 – звуковое поле; сплошные стрелки – электромеханическое (механоэлектрическое) преобразование; пунктирные – механоакустическое (акустомеханическое).

Электроаэрозольтерапия

Электроаэрозольтерапи'я, лечение аэрозолями лекарственных веществ, частицы которых имеют электрический заряд; метод физиотерапии. В отличие от аэрозолей, электроаэрозоли благодаря одноимённому (чаще отрицательному) заряду частиц обеспечивают максимальную устойчивость дисперсной системы, более глубокое проникновение медикаментов в ткани, их высокую концентрацию и более длительное пребывание в организме. Для получения электроаэрозолей используют специальные аппараты, например ручной генератор электроаэрозолей, генератор электроаэрозолей камерный (ГЭК-1). Э. применяют главным образом в виде ингаляций (для профилактики послеоперационных пневмоний, лечения острых и хронических заболеваний органов дыхания и др.), реже – в виде местного воздействия (при трофических язвах, ранах, заживающих вторичным натяжением, и др.). См. также Аэрозольтерапия .

  Лит.: Эйдельштейн С. М., Основы аэрозольтерапии, М., 1967; Справочник по физиотерапии, М., 1976.

Электробаланс

Электробала'нс, см. Энергетический баланс .

Электробалластер

Электробалла'стер, балласстер, путевая машина , распределяющая балласт под шпалами, осуществляющая подъёмку и сдвижку (рихтовку) рельсошпальной решётки, а также другие работы при реконструкции, ремонте и строительстве ж.-д. пути. Механизм подъёма рельсошпальной решётки имеет 2 электромагнита для захвата рельсов и электровинтовые приводы для их подъёма и сдвига. Э. оборудуется дозатором балласта и балластёрными рамами для его разравнивания под шпалами, щётками для сметания излишка балласта. По конструкции различают Э. с шарниро-сочленённой рамой и консольные. У первых оборудование размещено на 2 фермах, соединённых между собой шарниром. У консольных Э., используемых при строительстве ж.-д. пути, механизм подъёма рельсо-шпальной решётки расположен впереди на консольной части фермы.

Электробур

Электробу'р, забойная буровая машина с погружным электродвигателем, предназначенная для бурения глубоких скважин, преимущественно на нефть и газ. Идея Э. для ударного бурения принадлежит русскому инженеру В. И. Дедову (1899). В 1938—40 в СССР А. П. Островским и Н. В. Александровым создан и применен первый в мире Э. для вращательного бурения, спускаемый в скважину на бурильных трубах.

  Э. состоит из маслонаполненного электродвигателя и шпинделя. Мощность трёхфазного электродвигателя зависит от диаметра Э. и составляет 75—240 квт. Для увеличения вращающего момента Э. применяют редукторные вставки, монтируемые между двигателем и шпинделем и снижающие частоту вращения до 350, 220, 150, 70 об /мин. Частота вращения безредукторного Э. 455—685 об /мин. Длина Э. 12—16 м, наружный диаметр 164—290 мм.

  При бурении Э., присоединённый к низу бурильной колонны, передаёт вращение буровому долоту. Электроэнергия подводится к Э. по кабелю, смонтированному отрезками в бурильных трубах. При свинчивании труб отрезки кабеля сращиваются специальными контактными соединениями. К кабелю электроэнергия подводится через токоприёмник, скользящие контакты которого позволяют проворачивать колонну бурильных труб. Для непрерывного контроля пространственного положения ствола скважины и технологических параметров бурения при проходке наклонно направленных и разветвлённо-горизонтальных скважин используется специальная погружная аппаратура (в т. ч. телеметрическая). При бурении Э. очистка забоя осуществляется буровым раствором, воздухом или газом.

  В СССР с помощью Э. проходится свыше 300 тыс. м скважин (свыше 2% общего объёма бурения). Использование Э., благодаря наличию линии связи с забоем, особенно ценно для исследования режимов бурения.

  Лит.: Фоменко Ф. Н., Бурение скважин электробуром, М., 1974.

  Р. А. Иоаннесян.

Электровакуумные приборы

Электрова'куумные прибо'ры (ЭВП), приборы для генерации, усиления и преобразования электромагнитной энергии, в которых рабочее пространство освобождено от воздуха и защищено от окружающей атмосферы жёсткой газонепроницаемой оболочкой. К ЭВП относятся лампы накаливания , вакуумные электронные приборы (в которых поток электронов проходит в вакууме), газоразрядные электронные приборы (в которых поток электронов проходит в газе).

  Лампы накаливания – наиболее массовый вид ЭВП (в 70-х гг. 20 в. ежегодный мировой выпуск составляет около 10 млрд. штук). Удаление воздуха из баллона лампы предотвращает окисление нити накала кислородом. Для уменьшения испарения накалённой нити лампы накаливания некоторых типов после удаления воздуха наполняют инертным газом. Это позволяет повысить рабочую температуру нити накала и тем самым – световую отдачу ламп без изменения срока их службы. Присутствие инертного газа не влияет на процесс преобразования подводимой к лампе электрической энергии в световую.

  Вакуумные электронные приборы изготовляют с таким расчётом, чтобы в рабочем режиме давление остаточных газов внутри баллона составляло 10-6 —10-10мм рт. ст. При такой степени разрежения ионы остаточных газов не влияют на траектории электронов и шумы, создаваемые потоком этих ионов при их движении к катоду, достаточно малы. Такие ЭВП охватывают следующие классы приборов. 1) Электронные лампы – триоды , тетроды , пентоды и т. д.; предназначены для преобразования энергии постоянного тока в энергию электрических колебаний с частотой до 3×109 гц. Основные области применения электронных ламп – радиотехника, радиосвязь, радиовещание, телевидение. 2) ЭВП СВЧ – магнетроны и магнетронного типа приборы , пролётные и отражательные клистроны , лампы бегущей волны и лампы обратной волны и т. д.; предназначены для преобразования энергии постоянного тока в энергию электромагнитных колебаний с частотами от 3×108 до 3×1012гц. ЭВП СВЧ используются главным образом в устройствах радиолокации, телевидения (для передачи телевизионных сигналов по линиям радиорелейной связи, спутниковым линиям), СВЧ радиосвязи, телеуправления (например, ИСЗ и космическими кораблями). 3) Электроннолучевые приборы – осциллографические электроннолучевые трубки , кинескопы , запоминающие электроннолучевые трубки и т. д.; предназначены для различного рода преобразований информации, представленной в форме электрических или световых сигналов (например, визуализации электрических сигналов, преобразования двумерного оптического изображения в последовательность телевизионных сигналов и наоборот). 4) Фотоэлектронные приборы – передающие телевизионные трубки , фотоэлектронные умножители , вакуумные фотоэлементы ; служат для преобразования оптического излучения в электрический ток и применяются в устройствах автоматики, телевидения, астрономии, ядерной физики, звукового кино, факсимильной связи и т. д. 5) Вакуумные индикаторы – электронносветовые индикаторы , цифровые индикаторные лампы и др. Работа индикаторных ламп основана на преобразовании энергии постоянного тока в световую энергию. Применяются в измерительных приборах, устройствах отображения информации, радиоприёмниках и т. д. 6) Рентгеновские трубки ; преобразуют энергию постоянного тока в рентгеновские лучи. Применяются: в медицине – для диагностики ряда заболеваний; в промышленности – для обнаружения невидимых внутренних дефектов в различных изделиях; в физике и химии – для определения структуры и параметров кристаллических решёток твёрдых тел, химического состава вещества, структуры органических веществ; в биологии – для определения структуры сложных молекул.

  В газоразрядных электронных приборах (ионных приборах ) давление газа обычно значительно ниже атмосферного (поэтому их и относят к ЭВП). Класс газоразрядных ЭВП охватывает следующие виды приборов. 1) Ионные приборы большой мощности (до нескольких Мвт при токах до тысячи а ), действие которых основано на нейтрализации объёмного заряда ионами газа. К таким ЭВП относятся ртутные вентили , используемые для преобразования переменного тока в постоянный в промышленности, на ж.-д. транспорте и в других отраслях; импульсные водородные тиратроны и таситроны , служащие для преобразования постоянного тока в импульсный в устройствах радиолокации, электроискровой обработки металлов и др.; искровые разрядники и клипперные приборы , применяемые для защиты аппаратуры от перенапряжений. 2) Газоразрядные источники света непрерывного излучения, используемые для освещения помещений, улиц, в светящихся рекламах, киноаппаратуре и т. д., и импульсные источники света , применяемые в устройствах автоматики и телемеханики, передачи информации, оптической локации и т. д. 3) Индикаторы газоразрядные (сигнальные, знаковые, линейные, матричные), служащие для визуального воспроизведения информации в ЭВМ и других устройствах. 4) Квантовые газоразрядные приборы, преобразующие энергию постоянного тока в когерентное излучение – газовые лазеры , квантовые стандарты частоты .

  Лит. см. при ст. Электронные приборы .

  Р. Ф. Коваленко.


    Ваша оценка произведения:

Популярные книги за неделю