355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ЭЛ) » Текст книги (страница 40)
Большая Советская Энциклопедия (ЭЛ)
  • Текст добавлен: 9 октября 2016, 03:37

Текст книги "Большая Советская Энциклопедия (ЭЛ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 40 (всего у книги 47 страниц)

  Принципиально знание взаимодействия между кварками могло бы явиться основой для описания взаимодействия всех адронов между собой, т. е. всех сильных взаимодействий. Это направление в физике адронов быстро развивается.

  Использование принципа определяющей роли симметрии (в т. ч. приближённой) в формировании структуры взаимодействия позволило также продвинуться в понимании природы лагранжиана слабых взаимодействий. Одновременно была вскрыта глубокая внутренняя связь слабых и электромагнитных взаимодействий. В указанном подходе наличие пар лептонов с одинаковым лептонным зарядом: е- , ve и m- , vm, но различными массами и электрическими зарядами расценивается не как случайное, а как отражающее существование нарушенной симметрии типа изотонической (группа SU (2)). Применение принципа локальности к этой «внутренней» симметрии приводит к характерному лагранжиану (2), в котором одновременно возникают члены, ответственные за электромагнитное и слабое взаимодействия (американский физик С. Вайнберг, 1967; А. Салам , 1968):

Lвз = jmэл. м. + Am + jmсл. з.Wm+ + jmсл. з.Wm- + jmсл. н.Zm                  (3)

  Здесь jmсл. з. , jmсл. н. – заряженный и нейтральный токи слабых взаимодействий, построенные из полей лептонов, Wm+ , Wm- , Zm – поля массивных (из-за нарушенности симметрии) векторных частиц, которые в этой схеме являются переносчиками слабых взаимодействий (т. н. промежуточные бозоны), Am – поле фотона. Идея существования заряженного промежуточного бозона была выдвинута давно (Х. Юкава, 1935). Важно, однако, что в данной модели единой теории электрон магнитного и слабого взаимодействий заряженный промежуточный бозон появляется на равной основе с фотоном и нейтральным промежуточным бозоном. Процессы слабых взаимодействий, обусловленные нейтральными токами, были обнаружены в 1973, что подтверждает правильность только что изложенного подхода к формулировке динамики слабых взаимодействий. Возможны и другие варианты написания лагранжиана Lвзсл с большим числом нейтральных и заряженных промежуточных бозонов; для окончательного выбора лагранжиана экспериментальных данных ещё недостаточно.

  Экспериментально промежуточные бозоны пока не обнаружены. Из имеющихся данных массы W± и Z для модели Вайнберга – Салама оцениваются примерно в 60 и 80 Гэв.

  Электромагнитное и слабое взаимодействия кварков можно описать в рамках модели, аналогичной модели Вайнберга – Салама. Рассмотрение на этой основе электромагнитных и слабых взаимодействий адронов даёт хорошее соответствие наблюдаемым данным. Общей проблемой при построении таких моделей является неизвестное пока полное число кварков и лептонов, что не позволяет определить тип исходной симметрии и характер её нарушения. Поэтому очень важны дальнейшие экспериментальные исследования.

  Единое происхождение электромагнитных и слабых взаимодействий означает, что в теории исчезает как независимый параметр константа слабых взаимодействий. Единственной константой остаётся электрический заряд е . Подавленность слабых процессов при небольших энергиях объясняется большой массой промежуточных бозонов. При энергиях в системе центра масс, сравнимых с массами промежуточных бозонов, эффекты электромагнитных и слабых взаимодействий должны быть одного порядка. Последние, однако, будут отличаться несохранением ряда квантовых чисел (P, Y, Ch и т. д.).

  Имеются попытки рассмотреть на единой основе не только электромагнитные и слабые, но также и сильные взаимодействия. Исходным для таких попыток является предположение об единой природе всех видов взаимодействий Э. ч. (без гравитационного). Наблюдаемые сильные различия между взаимодействиями считаются обусловленными значительным нарушением симметрии. Эти попытки ещё недостаточно разработаны и сталкиваются с серьёзными трудностями, в частности в объяснении различий свойств кварков и лептонов.

  Развитие метода получения лагранжиана взаимодействия, основанного на использовании свойств симметрии, явилось важным шагом на пути, ведущем к динамической теории Э. ч. Есть все основания думать, что калибровочные теории поля явятся существенным составным элементом дальнейших теоретических построений.

  Некоторые общие проблемы теории элементарных частиц. Новейшее развитие физики Э. ч. явно выделяет из всех Э. ч. группу частиц, которые существенным образом определяют специфику процессов микромира. Эти частицы – возможные кандидаты на роль истинно Э. ч. К их числу принадлежат: частицы со спином 1 /2 – лептоны и кварки, а также частицы со спином 1 – глюоны, фотон, массивные промежуточные бозоны, осуществляющие разные виды взаимодействий частиц со спином 1 /2 . В эту группу скорее всего следует также включить частицу со спином 2 – гравитон ; квант гравитационного поля, связывающий все Э. ч. В этой схеме многие вопросы, однако, требуют дальнейшего исследования. Неизвестно, каково полное число лептонов, кварков и различных векторных (с J = 1) частиц и существуют ли физические принципы, определяющие это число. Неясны причины деления частиц со спином 1 /2 на 2 различные группы: лептоны и кварки. Неясно происхождение внутренних квантовых чисел лептонов и кварков (L, В, 1, Y, Ch ) и такой характеристики кварков и глюонов, как «цвет». С какими степенями свободы связаны внутренние квантовые числа? С обычным четырёхмерным пространством-временем связаны только такие характеристики Э. ч., как J и Р. Какой механизм определяет массы истинно Э. ч.? Чем обусловлено наличие у Э. ч. различных классов взаимодействий с различными свойствами симметрии? Эти и другие вопросы предстоит решить будущей теории Э. ч.

  Описание взаимодействий Э. ч., как отмечалось, связано с калибровочными теориями поля. Эти теории имеют развитый математический аппарат, который позволяет производить расчёты процессов с Э. ч. (по крайней мере принципиально) на том же уровне строгости, как и в квантовой электродинамике. Но в настоящем своём виде калибровочные теории поля обладают одним серьёзным недостатком, общим с квантовой электродинамикой, – в них в процессе вычислений появляются бессмысленные бесконечно большие выражения. С помощью специального приёма переопределения наблюдаемых величин (массы и заряда) – перенормировки – удаётся устранить бесконечности из окончательных результатов вычислений. В наиболее хорошо изученной электродинамике это пока не сказывается на согласии предсказаний теории с экспериментом. Однако процедура перенормировки– чисто формальный обход трудности, существующей в аппарате теории, которая на каком-то уровне точности должна сказаться на степени согласия расчётов с измерениями.

  Появление бесконечностей в вычислениях связано с тем, что в лагранжианах взаимодействий поля разных частиц отнесены к одной точке х, т. е. предполагается, что частицы точечные, а четырёхмерное пространство-время остаётся плоским вплоть до самых малых расстояний. В действительности указанные предположения, по-видимому, неверны по нескольким причинам: а) истинно Э. ч., вероятнее всего, – материальные объекты конечной протяжённости; б) свойства пространства-времени в малом (в масштабах, определяемых т. н. фундаментальной длиной ) скорее всего радикально отличны от его макроскопических свойств; в) на самых малых расстояниях (~10-33см ) сказывается изменение геометрических свойств пространства-времени за счёт гравитации. Возможно, эти причины тесно связаны между собой. Так, именно учёт гравитации наиболее естественно приводит к размерам истинно Э. ч. порядка 10-33см, а фундамент, длина l может быть связана с гравитационной постоянной f :    » 10-33см. Любая из этих причин должна привести к модификации теории и устранению бесконечностей, хотя практическое выполнение этой модификации может быть весьма сложным.

  Очень интересным представляется учёт влияния гравитации на малых расстояниях. Гравитационное взаимодействие может не только устранять расходимости в квантовой теории поля, но и обусловливать само существование первообразующих материи (М. А. Марков , 1966). Если плотность вещества истинно Э. ч. достаточно велика, гравитационное притяжение может явиться тем фактором, который определяет устойчивое существование этих материальных образований. Размеры таких образований должны быть ~10-33см. В большинстве экспериментов они будут вести себя как точечные объекты, их гравитационное взаимодействие будет ничтожно мало и проявится лишь на самых малых расстояниях, в области, где существенно изменяется геометрия пространства.

  Т. о., наметившаяся тенденция к одновременному рассмотрению различных классов взаимодействий Э. ч. скорее всего должна быть логически завершена включением в общую схему гравитационного взаимодействия. Именно на базе одновременного учёта всех видов взаимодействий наиболее вероятно ожидать создания будущей теории Э. ч.

  Лит.: Марков М. А., О природе материи, М., 1976; Газиорович С., Физика элементарных частиц, пер. с англ., М., 1969; Коккедэ Я., Теория кварков, пер. с англ., М., 1971; Perkins D. Н., Neutrinos and nucleon structure, «Contemporary Physics», 1975, v. 16, №2; Захаров В. И., Иоффе Б. Л., Окунь Л. Б., Новые элементарные частицы, «Успехи физических наук», 1975, т. 117, в. 2, с. 227; Боголюбов Н. Н., Ширков Д. В., Введение в теорию квантованных полей, 3 изд., М., 1976; Элементарные частицы и компенсирующие поля, пер. с англ., М., 1964; Бернстейн Дж., Спонтанное нарушение симметрии, калибровочные теории, механизм Хиггса и т. п., в кн.: Новости фундаментальной физики, пер. с англ., М., 1977, с 120—240.

  А. А. Комар.

Элементарный анализ

Элемента'рный ана'лиз, то же, что элементный анализ .

Элементарный электрический заряд

Элемента'рный электри'ческий заря'д,е, наименьший электрический заряд , известный в природе. На существование Э. э. з. впервые с определённостью указал в 1874 английский учёный Дж. Стони. Его гипотеза вытекала из установленных М. Фарадеем (1833—34) законов электролиза (см. Фарадея законы ). В 1881 Стони впервые вычислил величину электрич. заряда одновалентного иона, равную е = F /NA , где F – Фарадея число , NA – Авогадро число . В 1911 величина Э. э. з. была установлена прямыми измерениями Р. Милликена . Современное значение е:

  е = (4,803242±0,000014) 10-10 ед. СГСЭ = (1,6021892 ± 0,0000046) 10-19к .

  Величина Э. э. з. является константой электромагнитных взаимодействий и входит во все уравнения микроскопической электродинамики. Э. э. з. в точности равен величине электрического заряда электрона, протона и почти всех других заряженных элементарных частиц, которые тем самым являются материальными носителями наименьшего заряда в природе. Э. э. з. не может быть уничтожен; этот факт составляет содержание закона сохранения электрического заряда на микроскопическом уровне. Существует положительный и отрицательный Э. э. з., причём элементарная частица и её античастица имеют заряды противоположных знаков. Электрический заряд любой микросистемы и макроскопических тел всегда равен целому кратному от величины е (или нулю). Причина такого «квантования» заряда не установлена. Одна из гипотез основана на существовании монополей Дирака (см. Магнитный монополь ). С 60-х гг. широко обсуждается гипотеза о существовании частиц с дробными электрическими зарядами – кварков (см. Элементарные частицы ).

  Лит.: Милликен Р. Э., Электроны (+ и —), протоны, фотоны, нейтроны и космические лучи, пер. с англ., М. – Л., 1939.

  Л. И. Пономарев.

Элементный анализ

Элеме'нтный ана'лиз органических соединений, элементарный анализ, совокупность методов количественного определения и качественного обнаружения элементов, входящих в состав органических соединений. Э. а. состоит из двух стадий: разложения органического вещества, например сжиганием в токе кислорода, сплавлением с некоторыми твёрдыми реагентами; количественного или качественного анализа образовавшихся неорганических соединений элементов (см. Количественный анализ , Качественный анализ ).

Элементоорганические полимеры

Элементооргани'ческие полиме'ры, высокомолекулярные элементоорганические соединения . По составу главной и боковых цепей макромолекул Э. п. делят на 3 группы: 1) с неорганическими главными цепями, обрамленными органическими группами (например, полиорганосилоксаны, полиорганосилазаны – см. Кремнийорганические полимеры , полиорганофосфазены – см. Полифосфонитрилхлорид ); 2) с органонеорганическими главными цепями [например, карбосиланы (I), карбосилоксаны (II), борорганические полимеры с боразольными, фосфинбориновыми и карборановыми циклами в главной цепи, хелатные полимеры, содержащие в молекуле атомы металла, координационно связанные с органическими лигандами]; 3) с органическими главными цепями [например, полиалкенилтриалкилсиланы (III), фосфорсодержащие полимеры типа (IV); R – органический радикал].

 (I)

 (II)

 (III)

 (IV)

  Наибольшее практическое применение из Э. п. получили кремнийорганические полимеры.

  Лит.: Энциклопедия полимеров, т. 3, М., 1977.

Элементоорганические соединения

Элементооргани'ческие соедине'ния, содержат химическую связь элемент – углерод (к Э. с., как правило, не относят соединения, содержащие связь углерода с азотом, кислородом, серой и галогенами). Термин «Э. с.» предложен академиком А. Н. Несмеяновым . См. также Металлоорганические соединения , Кремнийорганические соединения , Фосфорорганические соединения , Борорганические соединения и др.

Элементы затрат

Элеме'нты затра'т, см. в ст. Себестоимость продукции .

Элементы орбиты

Элеме'нты орби'ты в астрономии, система величин (параметров), определяющих ориентацию орбиты небесного тела в пространстве, её размеры и форму, а также положение на орбите небесного тела в некоторый фиксированный момент. Невозмущённую орбиту, по которой движение тела происходит в соответствии с Кеплера законами , определяют 6 Э. о. 1) Наклон орбиты i к плоскости эклиптики или к плоскости земного экватора (в случае ИСЗ); может иметь значения от 0° до 180°. Наклон меньше 90°, если для наблюдателя, находящегося в северном полюсе эклиптики или в северном полюсе мира, тело представляется движущимся против часовой стрелки, и больше 90°, если тело движется в противоположном направлении. 2) Долгота (восходящего) узла  или прямое восхождение (восходящего) узла aW (для ИСЗ); может иметь значения от 0° до 360°. 3) Большая полуось орбиты а. Иногда вместо неё принимается среднее движение тела по орбите n, в случае невозмущённого движения однозначно зависящее от большой полуоси. 4) Эксцентриситет орбиты е. 5 ) Аргумент перигелия или перигея w (в случае Луны или ИСЗ); может иметь значения от 0° до 360°. 6) Эпоха (дата) Т, в которую тело находится в определённой точке орбиты, например в восходящем узле или в перигелии (перигее). Иногда в качестве эпохи выбирают начало суток, в этом случае положение орбиты задаётся средней аномалией М в эту эпоху.

  В случае возмущённой орбиты Э. о. рассматриваются как функции времени и обычно представляются в виде степенных рядов:

А = A+ A1 (t – T ) + A2 (t – T )2 +...,

  где A значение Э. о. А в эпоху T. См. также Орбиты небесных тел , Орбиты искусственных космических объектов , Небесная механика .

  Н. П. Ерпылёв.

Элементы химические

Элеме'нты хими'ческие. Каждый Э. х. – это совокупность атомов с одинаковым зарядом атомных ядер и одинаковым числом электронов в атомной оболочке. Ядро атомное состоит из протонов, число которых равно атомному номеру элемента, и нейтронов, число которых может быть различным. Разновидности атомов одного и того же Э. х., имеющие различные массовые числа (равные сумме масс протонов и нейтронов, образующих ядро), называются изотопами . В природе многие Э. х. представлены двумя или большим числом изотопов. Известно 276 стабильных изотопов, принадлежащих 81 природному Э. х., и около 1500 радиоактивных изотопов. Изотопный состав природных элементов на Земле, как правило, постоянен; поэтому каждый элемент имеет практически постоянную атомную массу , являющуюся одной из важнейших характеристик элемента. В настоящее время (1978) известно 107 Э. х., они, преимущественно нерадиоактивные, создают всё многообразие простых и сложных веществ. Простое вещество — форма существования элемента в свободном виде. Некоторые Э. х. существуют в двух или более аллотропных модификациях (например, углерод в виде графита и алмаза), различающихся по физическим и химическим свойствам; число простых веществ достигает 400 (см. Аллотропия ). Иногда понятия «элемент» и «простое вещество» отождествляются, поскольку в подавляющем большинстве случаев нет различия в названиях Э. х. и образуемых ими простых веществ; «... тем не менее в понятиях такое различие должно всегда существовать», – писал в 1869 Д. И. Менделеев (Соч., т. 13, 1949, с. 490). Сложное вещество – соединение химическое — состоит из химически связанных атомов двух или нескольких различных элементов; известно более 100 тыс. неорганических и более 3 млн. органических соединений. Для обозначения Э. х. служат знаки химические , состоящие из первой или первой и одной из последующих букв латинского названия элемента. В формулах химических и уравнениях химических каждый такой знак (символ) выражает, кроме названия элемента, относительную массу Э. х., равную его атомной массе. Изучение Э. х. составляет предмет химии , в частности неорганической химии .

  Историческая справка. В донаучный период химии как нечто непреложное принималось учение Эмпедокла о том, что основу всего сущего составляют четыре стихии: огонь, воздух, вода, земля. Это учение, развитое Аристотелем, полностью восприняли алхимики. В 8—9 вв. они дополнили его представлением о сере (начале горючести) и ртути (начале металличности) как составных частях всех металлов. В 16 в. возникло представление о соли как начале нелетучести, огнепостоянства. Против учения о 4 стихиях и 3 началах выступил Р. Бойль , который в 1661 дал первое научное определение Э. х. как простых веществ, которые не состоят из каких-либо других веществ или друг из друга и образуют все смешанные (сложные) тела. В 18 в. Почти всеобщее признание получила гипотеза И. И. Бехера и Г. Э. Шталя , согласно которой тела природы состоят из воды, земли и начала горючести – флогистона . В конце 18 в. эта гипотеза была опровергнута работами А. Л. Лавуазье . Он определил Э. х. как вещества, которые не удалось разложить на более простые и из которых состоят другие (сложные) вещества, т. е. по существу повторил формулировку Бойля. Но, в отличие от него, Лавуазье дал первый в истории науки перечень реальных Э. х. В него вошли все известные тогда (1789) неметаллы (О, N, Н, S, Р, С), металлы (Ag, As, Bi, Co, Ca, Sn, Fe, Mn, Hg, Mo, Ni, Au, Pt, Pb, W, Zn), а также «радикалы» [муриевый (Cl), плавиковый (F) и борный (В)] и «земли» – ещё не разложенные известь СаО, магнезия MgO, барит BaO, глинозём Al2 O3 и кремнезём SiO2 (Лавуазье полагал, что «земли» – вещества сложные, но пока это не было доказано на опыте, считал их Э. х.). Как дань времени он включил в список Э. х. невесомые «флюиды» – свет и теплород. Едкие щёлочи NaOH и KOH он считал веществами сложными, хотя разложить их электролизом удалось позже – только в 1807 (Г. Дэви ). Разработка Дж. Дальтоном атомной теории имела одним из следствий уточнение понятия элемента как вида атомов с одинаковой относительной массой (атомным весом). Дальтон в 1803 составил первую таблицу атомных масс (отнесённых к массе атома водорода, принятой за единицу) пяти Э. х. (О, N, С, S, Р). Тем самым Дальтон положил начало признанию атомной массы как главной характеристики элемента. Дальтон, следуя Лавуазье, считал Э. х. веществами не разложимыми на более простые.

  Последующее быстрое развитие химии привело, в частности, к открытию большого числа Э. х. В списке Лавуазье было всего 25 Э. х., включая «радикалы», но не считая «флюиды» и «земель». Ко времени открытия периодического закона Менделеева (1869) было известно уже 63 элемента. Открытие Д. И. Менделеева позволило предвидеть существование и свойства ряда неизвестных тогда Э. х. и явилось основой для установления их взаимосвязи и классификации.

  Открытие радиоактивности в конце 19 в. поколебало более чем столетнее убеждение в том, что атомы нельзя разложить. В связи с этим почти до середины 20 в. продолжалась дискуссия о том, что такое Э. х. Конец ей положила современная теория строения атома, которая позволила дать строго объективную дефиницию Э. х., приведённую в начале статьи.

  Распространённость в природе. Распространённость Э. х. в космосе определяется нуклеогенезом внутри звёзд. Химический состав Солнца, планет земного типа Солнечной системы и метеоритов, по-видимому, практически тождествен. Образование ядер Э. х. связано с различными ядерными процессами в звёздах. Поэтому на разных этапах своей эволюции различные звёзды и звёздные системы имеют неодинаковый химический состав (см. Космогония ). Распространённость и распределение Э. х. во Вселенной, процессы сочетания и миграции атомов при образовании космического вещества, химический состав космических тел изучает космохимия . Основную массу космического вещества составляют Н и Не (99,9%). Наиболее разработанной частью космохимии является геохимия .

  Из 107 Э. х. только 89 обнаружены в природе, остальные, а именно технеций (атомный номер 43), прометий (атомный номер 61), астат (атомный номер 85), франций (атомный номер 87) и трансурановые элементы , получены искусственно посредством ядерных реакций (ничтожные количества Te, Pm, Np, Fr образуются при спонтанном делении урана и присутствуют в урановых рудах). В доступной части Земли наиболее распространены 10 элементов с атомными номерами в интервале от 8 до 26. В земной коре они содержатся в следующих относительных количествах:

  Перечисленные 10 элементов составляют 99,92% массы земной коры.


Элемент Атомный номер Содержание, % по массе
O 8 47,00
Si 14 29,50
Al 13 8,05
Fe 26 4,65
Ca 20 3,30
Na 11 2,50
K 19 2,50
Mg 12 1,87
Ti 22 0,45
Mn 25 0,10

  Классификация и свойства. Наиболее совершенную естественную классификацию Э. х., раскрывающую их взаимосвязь и показывающую изменение их свойств в зависимости от атомного номера, даёт периодическая система элементов Д. И. Менделеева. По свойствам Э. х. делятся на металлы и неметаллы , причём периодическая система позволяет провести границу между ними. Для химических свойств металлов наиболее характерна проявляемая при химических реакциях способность отдавать внешние электроны и образовывать катионы, для неметаллов – способность присоединять электроны и образовывать анионы. Неметаллы характеризуются высокой электроотрицательностью . Различают Э. х. главных подгрупп, или непереходные элементы, в которых идёт последовательное заполнение электронных подоболочек s и р, и Э. х. побочных подгрупп, или переходные, в которых идёт достраивание d- и f -подоболочек. При комнатной температуре два Э. х. существуют в жидком состоянии (Hg и Вг), одиннадцать – в газообразном (Н, N, О, F, Cl, Не, Ne, Ar, Kr, Xe, Rn), остальные – в виде твёрдых тел, причём температура плавления их колеблется в очень широких пределах – от около 30°С (Cs 28,5°С; Ga 29,8°С) до 3000°С и выше (Ta 2996°С; W 3410°С; графит около 3800± 200°С под давлением 125 кбар ). О свойствах, получении и применении Э. х. см. в статьях об отдельных элементах, а также о семействах Э. х. (Актиноиды , Инертные газы , Лантаноиды , Платиновые металлы , Рассеянные элементы , Редкие элементы , Редкоземельные элементы ).

  Лит.: Кедров Б. М., Эволюция понятия элемента в химии, М., 1956; Сиборг Г. Т., Вэленс Э. Г., Элементы Вселенной, пер. с англ., М., 1962; Сиборг Г., Искусственные трансурановые элементы, пер. с англ., М., 1965; Фигуровский Н. А., Открытие химических элементов и происхождение их названий, М., 1970; Популярная библиотека химических элементов, М., 1971—73; Некрасов Б. В., Основы общей химии, 3 изд., [т.] 1—2, М., 1973; Полинг Л., Общая химия, пер. с англ., М., 1974; Джуа М., История химии, пер. с итал., 2 изд., М., 1975; Weeks М. Е., Discovery of the elements, 6 ed., Easton, 1956.

  С. А. Погодин.


    Ваша оценка произведения:

Популярные книги за неделю