Текст книги "Большая Советская Энциклопедия (ЭЛ)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 11 (всего у книги 47 страниц)
Электродиализ
Электродиа'лиз, см. в ст. Диализ .
Электродинамика
Электродина'мика классическая, классическая (неквантовая) теория поведения электромагнитного поля , осуществляющего взаимодействие между электрическими зарядами. Основные законы классической Э. сформулированы в Максвелла уравнениях . Эти уравнения позволяют определить значения основных характеристик электромагнитного поля – напряжённости электрического поля Е и магнитной индукции В — в вакууме и в макроскопических телах в зависимости от распределения в пространстве электрических зарядов и токов.
Микроскопическое электромагнитное поле, создаваемое отдельными заряженными частицами, в классической Э. определяется Лоренца – Максвелла уравнениями , которые лежат в основе классические статистические теории электромагнитных процессов в макроскопических телах; усреднение уравнений Лоренца – Максвелла приводит к уравнениям Максвелла.
Законы классической Э. неприменимы при больших частотах и, соответственно, малых длинах электромагнитных волн , т. е. для процессов, протекающих на малых пространственно-временных интервалах. В этом случае справедливы законы квантовой электродинамики .
Историю возникновения и развития классической Э. см. в ст. Электричество .
Г. Я. Мякишев.
Электродинамика движущихся сред
Электродина'мика дви'жущихся сред, раздел электродинамики, в котором изучаются электромагнитные явления, в частности законы распространения электромагнитных волн , в движущихся средах. Э. д. с. включает также оптику движущихся сред, в которой исследуется распространение света в движущихся средах. Хотя экспериментальный материал накапливался в течение нескольких столетий, полное его объяснение стало возможным только после появления теории относительности.
18 и 19 вв. ознаменовались бурным развитием ньютоновской механики. На её основе были объяснены не только механическое движение тел и динамика сплошных сред, но и, казалось бы, не связанные с механикой тепловые явления. У подавляющего большинства физиков возникла уверенность, что все явления в природе могут быть объяснены действием законов классической механики. Это нашло свое выражение и в подходе к электромагнитным явлениям. Опыты по интерференции света с неопровержимостью указывали на то, что свет имеет волновую природу. Но из механики было известно, что для распространения волны необходима упругая среда. Поэтому считалось, что и для распространения световых волн также нужна упругая среда. Колебания этой светоносной среды, названной эфиром, и связывались со световыми волнами. Т. к. было известно, что свет распространяется и в пустоте, приходилось считать, что пустота тоже заполнена световым эфиром. Эфир наделялся весьма необычными свойствами: с одной стороны, он должен был обладать очень большой упругостью (поскольку скорость распространения волн тем больше, чем больше упругость среды, а скорость световых волн очень велика), с другой – не должен оказывать никакого механического сопротивления движущимся сквозь него телам (поскольку все тела движутся в пустоте без сопротивления).
Попытка объяснения электромагнитных явлений с помощью теории эфира неизбежно приводила к вопросу о том, как протекают электромагнитные явления в теле, движущемся через эфир. Основные теории, созданные в конце 19 в. для описания оптических явлений в движущейся классической среде (теории Г. Герца и Х. Лоренца ), базировались на представлении об эфире. Однако они противоречили некоторым известным к тому времени опытам.
Создание непротиворечивой Э. д. с. стало возможным лишь после появления специальной теории относительности А. Эйнштейна (1905), которая устранила эфир как светоносную среду и как преимуществ. систему отсчёта. Понятия «покоящаяся» и «движущаяся» среды потеряли свой абсолютный характер и стали определяться только выбором системы отсчёта (и связанным с ней «наблюдателем»).
В 1908 Г. Минковский показал, что Максвелла уравнения для покоящихся сред в сочетании с принципом относительности Эйнштейна (см. Относительности принцип ) однозначно определяют электромагнитное поле в движущейся среде. Эти же уравнения могут быть получены и другим путём – усреднением микроскопических уравнений электронной теории Лоренца (см. Лоренца – Максвелла уравнения ) с учётом того, что у всех частиц среды имеется скорость упорядоченного движения.
Уравнения для полей в движущейся среде совпадают с уравнениями Максвелла в покоящейся среде:
; div D = 4pr; (1)
; div B = 0
Здесь Е и Н – векторы напряжённостей электрического и магнитного полей, D и В – электрическая и магнитная индукции, r и j — плотности внешних зарядов и токов.
Эта система уравнений должна быть дополнена т. н. материальными уравнениями, связывающими напряжённости полей с индукциями. В покоящейся среде материальные уравнения имеют вид: D = eЕ, В = mН (1a), где e и m – диэлектрическая и магнитная проницаемости среды. Из вида этих соотношений в покоящейся среде однозначно следует их вид в среде, движущейся со скоростью u:
(2)
(квадратные скобки обозначают векторное произведение). Это т. н. материальные уравнения Минковского; при u= 0 они переходят в уравнения (1a). Материальные уравнения (2), вытекающие из принципа относительности, в сочетании с уравнениями Максвелла (1) удовлетворительно объясняют результаты всех экспериментов по изучению электромагнитных явлений в движущихся средах. Ниже рассмотрены некоторые из следствий теории Э. д. с.
Распространение электромагнитных волн в движущейся среде. Пусть в среде, движущейся со скоростью u, распространяется электромагнитная волна
Е=Eoei (kr-wt) , (3)
H =Hoei (kr-wt) .
Здесь Eo и Но — амплитуды электрического и магнитного полей, k — волновой вектор, w – круговая частота волны, r, t — координата и время. Из уравнений (1) – (3) вытекает, что волновой вектор и частота в движущейся среде связаны соотношением
(4)
При u = 0 (для покоящейся среды) получаем k2= emw2 /c2. В соотношение (4) входит угол J между направлением распространения волны (вектором k ) и скоростью u (k u = k u cos J); поэтому условия распространения волны для разных направлений различны. При малых u, ограничиваясь величинами первого порядка по u/c, из (4) можно получить выражение для фазовой скорости u фаз волны, распространяющейся под углом J к скорости среды:
; (5)
направление фазовой скорости совпадает с направлением волнового вектора k. Эта формула была подтверждена в Физо опыте . Из (5), в частности, видно, что скорость света в движущейся среде не равна сумме скоростей света в неподвижной среде и самой среды.
Поляризация волны, т. е. направления векторов E и H , зависит от скорости среды: вектор E перпендикулярен не k, как в покоящейся среде, а вектору
, (6)
представляющему собой линейную комбинацию скорости среды и волнового вектора; вектор H не перпендикулярен k и E .
До сих пор предполагалось, что среда перемещается как целое равномерно и прямолинейно. Если скорость среды зависит от координат и времени, например если среда вращается, то методы специальной теории относительности становятся недостаточными для определения электромагнитного поля в этом случае. Вид уравнений поля может быть получен с помощью общей теории относительности . (При малых угловых скоростях вращения применима специальная теория относительности.)
Отражение и преломление света на движущихся границах раздела. Если электромагнитная волна падает на движущуюся границу раздела двух сред, то, как и в случае покоящейся границы, волна частично отражается, а частично проходит через границу. Однако движение границы приводит к ряду новых физических эффектов. Так, оказывается, что угол падения не равен углу отражения, а частоты всех трёх волн – падающей, отражённой и преломленной – различны. Имеются и другие отличия: например, при некоторых скоростях границы может отсутствовать отражённая волна, но зато имеются две преломленные с разными частотами.
Рассмотрим простейший пример – отражение света от движущегося в пустоте зеркала (Эйнштейн, 1905). В этом случае прошедшая волна отсутствует, имеются лишь падающая и отражённая волны (рис. 1 ). Если скорость u зеркала направлена по нормали к его плоскости, а волна падает на зеркало под углом a1 к нормали, то угол отражения a2 след. образом выражается через угол падения:
, (7)
где b = u/c (предполагается, что зеркало движется навстречу падающей волне). При b = 0 (зеркало покоится) получим cos a1 = cos a2 , т. е. равенство углов падения и отражения. Напротив, если скорость зеркала стремится к скорости света, то из (7) следует, что при любом угле падения угол отражения равен нулю, т. е. даже при скользящем падении отраженная волна уходит от зеркала по нормали. Частота отраженной волны связана с частотой падающей волны соотношением:
. (8)
Если волна падает на движущееся зеркало по нормали, то из (8) получается
. (9)
Если скорость зеркала близка к скорости света, частота отражённой волны во много раз больше частоты падающей.
Движущееся зеркало – один из примеров движущейся границы раздела. В общем случае граница раздела не является идеально отражающей, поэтому кроме падающей и отражённой имеется преломленная волна. Помимо этого, и граница раздела, и среды по обе стороны от неё могут двигаться с различными скоростями. Если скорости сред по обе стороны от границы параллельны плоскости раздела, отражение волны от такой границы сопровождается поворотом плоскости поляризации, причём угол поворота пропорционален относит, скорости граничащих сред.
Для определения отражённой и преломленной волн необходимо знать условия, которым удовлетворяют поля на границе раздела. В системе отсчёта, в которой граница раздела покоится, граничные условия оказываются такими же, как в электродинамике неподвижных тел.
По изменению частоты при отражении волны от движущейся границы может быть определена скорость границы. Было также предложено использовать этот эффект для умножения частоты электромагнитных волн; при этом в качестве отражающих тел предлагалось применять пучки ускоренной плазмы . Эксперимент подтвердил такую возможность, однако достигнутая эффективность преобразования частот пока невелика.
Излучение электромагнитных волн в движущейся среде . Источниками излучения в движущейся среде, как и в покоящейся, являются электрические заряды и токи. Однако характер распространения электромагнитных волн от источника, расположенного в движущейся среде, существенно отличается от того, что имеет место в случае покоящейся среды.
Пусть в некоторой малой области в движущейся среде расположен источник и время излучения мало. Если бы среда покоилась, то поле излучения расходилось бы от источника во все стороны с одинаковой скоростью, равной скорости света, т. е. всё поле излучения было бы сосредоточено вблизи от сферической поверхности, расширяющейся со скоростью света. Движение среды приводит к тому, что скорость света в разных направлениях оказывается различной [см. формулу (5)]. Поэтому поверхность, на которой поле излучения отлично от нуля, уже не является сферой. Расчёт показывает, что эта поверхность имеет вид эллипсоида вращения с осью симметрии, направленной по скорости движения среды. Полуоси эллипса линейно растут со временем, а центр эллиптической оболочки перемещается параллельно скорости среды. Т. о., оболочка, на которой сосредоточено излучение, одновременно расширяется и «сносится по течению» в движущейся среде («увлекается» средой). Если скорость перемещения среды сравнительно невелика, то источник излучения находится внутри этой оболочки (рис. 2 ).
Если же скорость движения среды превышает фазовую скорость света, то оболочку «сдувает» настолько сильно, что она вся оказывается «ниже по течению», и источник излучения находится вне этой оболочки (рис. 3 ).
Прохождение заряженной частицы через движущуюся среду . При рассмотрении излучения в движущейся среде ранее предполагалось, что источник излучения покоится. Если источник движется, то его поле излучения, как и в покоящейся среде, определяется интерференцией волн, испущенных источником в каждой точке своего пути. Отличие от случая покоящейся изотропной среды заключается в том, что из-за эффекта увлечения в движущейся среде скорость волн в разных направлениях различна (см. рис. 2 и 3 ).
Особенность излучения движущегося источника в движущейся среде можно понять на примере Черенкова – Вавилова излучения . Пусть в среде, движущейся со скоростью u, перемещается с постоянной скоростью и точечная заряженная частица. Для простоты будем считать, что и и u направлены по одной прямой. В случае покоящейся среды (u = 0) частица может стать источником излучения, если её скорость достаточно велика (превышает фазовую скорость света в среде ). Возникающее излучение, называется излучением Черенкова – Вавилова, уносит энергию от движущейся частицы, которая, т. о., замедляется. В движущейся среде источником излучения Черенкова – Вавилова может быть медленная или даже покоящаяся заряженная частица. Если частица покоится, а скорость движения среды превышает фазовую скорость света, возникает характерное волновое поле, представляющее собой излучение Черенкова – Вавилова в этом случае. При этом на частицу – источник излучения – действует ускоряющая сила в направлении движения среды.
Рассмотренный пример показывает, что в движущейся среде характер взаимодействия заряженной частицы со средой меняется. В зависимости от скоростей частицы и среды потери энергии частицы могут иметь различную величину и даже менять знак, что соответствует уже не замедлению, а ускорению частицы средой.
После того как стали получать (с помощью сильноточных и плазменных ускорителей ) пучки заряженных частиц большой плотности движущиеся с релятивистской скоростью интерес к Э. д. с. возрос. Плотные пучки во многих отношениях ведут себя как макроскопическая движущаяся среда В связи с применением таких пучков появились новые возможности не только в Э. д. с. вообще, но также в изучении эффектов выше 1-го порядка по u/c, т. е. эффектов в которых величина u/c уже не мала по сравнению с единицей.
Лит.: Taмм И. Е. Основы теории электричества, 9 изд., М., 1976; его же, Собр. научных трудов, т. 1, М., 1975; Беккер Р., Электронная теория, пер. с нем., Л. – М., 1936; Болотовский Б. М., Столяров С. С., Современное состояние электродинамики движущихся сред (безграничные среды), в кн.: Эйнштейновский сборник. 1974, М., 1976.
Б. М. Болотовский.
Рис. 3. Излучение волн в движущейся среде в случае, когда скорость среды превышает фазовую скорость света. Источник излучения находится в начале координат. Расходящиеся от источника волны настолько сильно «сдувает по течению», что они все оказываются по одну сторону от источника.
Рис. 2. Распространение волн излучения в движущейся среде. Источник излучения находится в начале координат. Среда движется вправо со скоростью v . Видно, что волновые поверхности «сносит по течению». Скорость движения среды не превышает фазовой скорости света.
Рис. 1. Отражение света от движущегося зеркала. Угол отражения a2 не равен углу падения a1 , частота w2 отражённого света не равна частоте w1 падающего света. Зеркало движется с постоянной скоростью u навстречу падающему свету.
Электродинамика квантовая
Электродина'мика ква'нтовая, см. Квантовая электродинамика .
Электродинамическая устойчивость аппарата
Электродинами'ческая усто'йчивость аппара'та, способность электрического аппарата работать без повреждений, выдерживая электродинамические усилия, возникающие в нём в результате взаимодействия магнитных полей, создаваемых токопроводящими частями аппарата, и определяемых исходя из самых тяжёлых условий, возможных при его эксплуатации (обычно при коротком замыкании). Э. у. а. задаётся (и указывается в паспорте прибора) либо как максимально допустимая амплитуда сквозного тока, проходящего через аппарат, либо как наибольшее допустимое отношение этого тока к номинальному току аппарата, либо в виде максимально допустимого механического усилия в аппарате при коротком замыкании.
Лит.: Холявский Г. Б., Расчет электродинамических усилий в электрических аппаратах, М. – Л., 1962; Тамм И. Е., Основы теории электричества, 8 изд., М., 1966.
Р. Р. Мамошин.
Электродинамический громкоговоритель
Электродинами'ческий громкоговори'тель,громкоговоритель , в котором для преобразования электрических колебаний звуковых частот в механические используют взаимодействие магнитного поля постоянного магнита с током в подвижной катушке, подключенной к источнику электрических колебаний. Катушка (располагаемая в зазоре магнита) и жестко связанная с ней диафрагма (см. рис. ) вместе с магнитной системой образуют т. н. головку Э. г. Взаимодействие тока с магнитным полем вызывает механические колебания диафрагмы, сопровождающиеся излучением звуковых волн либо непосредственно (в Э. г. прямого излучения), либо через рупор (в рупорных громкоговорителях ). Для обеспечения высокого качества звучания и эксплуатационной надёжности Э. г. головку помещают в корпус из дерева, пластмассы или металла. Э. г. используют в радиоприёмниках , электрофонах , магнитофонах и т. п. Мощность Э. г. зависит от его назначения и лежит в пределах от 0,05 до 100 ва ; кпд Э. г. прямого излучения обычно не более 1— 3%. Э. г. бывают узкополосные (обеспечивают воспроизведение в сравнительно узком интервале частот, например 300—5000 гц ) и широкополосные (например, 40—15000 гц ). Широкополосные головки сложны в изготовлении, поэтому в Э. г. часто применяют системы, состоящие из нескольких головок, каждая из которых производит звук в определённом участке частотного диапазона.
Лит.: Римский-Корсаков А. В., Электроакустика, М., 1973; Эфруси М. М., Громкоговорители и их применение, 2 изд., М., 1976.
Н. Т. Молодая, Л. З. Папернов.
Схема электродинамического громкоговорителя прямого излучения: М – магнит; ПС – подвижная система (диафрагма); ЗК – звуковая катушка.
Электродинамический микрофон
Эле'ктродинамический микрофо'н,микрофон , в котором для преобразования звуковых колебаний в электрические используют явление возникновения эдс индукции (см. Индукция электромагнитная ) в металлическом проводнике, совершающем под действием звуковых волн вынужденные колебания в поле постоянного магнита.
Электродинамический прибор
Электродинами'ческий прибо'р , измерительный прибор , принцип действия которого основан на механическом взаимодействии двух проводников при протекании по ним электрического тока. Э. п. состоит из измерительного преобразователя , преобразующего измеряемую величину в переменный или постоянный ток, и измерительного механизма электродинамической системы (рис. ). Наиболее распространены Э. п. с подвижной катушкой, внутри которой на оси со стрелкой расположена подвижная катушка. Вращающий момент на оси возникает в результате взаимодействия токов в обмотках катушек 1 и 2 и пропорционален произведению действующих значений этих токов. Уравновешивающий момент создаёт пружина, с которой связана ось. При равенстве моментов стрелка останавливается.
Э. п. – наиболее точные электроизмерительные приборы, применяемые для определения действующих значений тока и напряжения в цепях переменного и постоянного тока. При последовательном соединении обмоток катушек угол поворота стрелки пропорционален квадрату измеряемой величины. Такое включение обмоток применяется в Э. п. для измерения напряжения и силы тока (вольтметры и амперметры ). Электродинамические измерительные механизмы используют также для измерения мощности (ваттметры ). При этом через неподвижную катушку пропускают ток, пропорциональный току, а через подвижную – ток, пропорциональный напряжению в измеряемой цепи. Показания прибора пропорциональны активному или реактивному значению электрической мощности. В случае исполнения электродинамических механизмов в виде логометров их применяют как частотомеры, фазометры и фарадометры. Э. п. изготовляют главным образом переносными приборами высокой точности – классов 0,1; 0,2; 0,5. Разновидность Э. п. – ферродинамический прибор, котором для усиления магнитного поля неподвижной катушки применяют магнитопровод из ферромагнитного материала. Такие приборы предназначаются для работы в условиях вибрации, тряски и ударов. Класс точности ферродинамических приборов 1,5 и 2,5.
Электродинамический измерительный прибор: 1 и 2 – неподвижная и подвижная катушки; 3 – ось; 4 – пружина; 5 – стрелка; 6 – шкала.