Текст книги "Большая Советская Энциклопедия (ЭЛ)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 14 (всего у книги 47 страниц)
Электрокристаллизация
Электрокристаллиза'ция, электроосаждение, кристаллизация металлов и сплавов на катоде при электролизе растворов и расплавов соответствующих солей. Рост кристаллов при Э. металлов имеет много общего с кристаллизацией из пара или раствора, фактором, определяющим пересыщение при Э., является перенапряжение , возникающее на электроде в ходе электрохимической реакции. В зависимости от величины перенапряжения рост кристаллов может происходить путём спирально-слоевого роста на винтовых дислокациях , образования и разрастания двумерных зародышей (особенно на бездислокационных кристаллах) и при достаточно высоких пересыщениях – путём образования трёхмерных зародышей или нормального роста кристаллов.
Возможность изменения перенапряжения на катоде в широких пределах позволяет при Э. получать слои металлов с сильно различающимися свойствами. Так, в зависимости от условий образования осадков плотность дислокаций в них может изменяться от 106 до 1012см-2, соответственно изменяются и такие свойства, как электропроводность, твёрдость, пластичность. Высокие плотности дислокаций были обнаружены в осадках меди, никеля, железа, хрома, платины, серебра и др. Особенно сильное влияние на структуру осадков металлов, полученных методом Э., оказывает адсорбция поверхностно-активных веществ и включение примесей. Э. лежит в основе электрометаллургии , рафинирования металлов, гальванотехники .
Ю. М. Полукаров.
Электролечение
Электролече'ние, электротерапия, лечение электрическими токами и электромагнитными полями. При Э. применяют постоянный ток низкого напряжения (см. Гальванизация ), переменные токи (см. Дарсонвализация , Диатермия ), в том числе импульсные токи низкой частоты (см. Импульстерапия ), постоянное электрическое поле высокой напряжённости (см. Франклинизация ) и электромагнитные поля различных частот (см. Индуктотермия , Ультракоротковолновая терапия ), в том числе СВЧ (микроволновая терапия ). Э. проводят в виде местных и общих воздействий с наложением электродов на тело пациента (при процедурах с применением электрического тока) или без электродов (при использовании электромагнитных полей). Разнообразие факторов Э. и возможность менять их параметры позволяют индивидуализировать лечебные процедуры. Особенно рационально использование Э. в импульсном режиме, т. к. регулируемые частота и длительность импульсов обеспечивают нормализацию многих нарушенных физиологических процессов. В частности, импульсные токи низкой частоты могут имитировать эффекты нервных импульсов и оказывать на ткани трофическое влияние, нормализуя нарушенную нейроэндокринную регуляцию и избирательно стимулируя деятельность определённых органов и систем. При всех методах Э. проявляются общие, т. н. неспецифические, реакции – усиление кровообращения, обмена веществ, трофики тканей, компенсаторно-защитных свойств организма. Наряду с этим в ответ на действие каждого фактора возникают специфические реакции, проявления которых зависят от его физических свойств, методики применения и особенностей организма. Благодаря успехам в изучении лечебного действия физических факторов и достижениям электротехники и электромедицинского приборостроения Э. занимает значительное место в терапии многих заболеваний и реабилитации больных.
Лит.: Аникин М. М., Варшавер Г. С., Основы физиотерапии, 2 изд., М., 1950; Ливенцев Н. М., Ливенсон А. Р., Электромедицинская аппаратура, 4 изд., М., 1974; Справочник по физиотерапии, под ред. А. Н. Обросова, М., 1976; Dumoulin J., Bisschop G. de, Electrotherapie, 2 ed., P., 1971; Edel H., Fibel der Elektrodiagnostik und Elektrptherapie, 3 Aufl., Dresden, 1975.
В. М. Стругацкий.
Электролиз
Электро'лиз (от электро... и греч. lysis – разложение, растворение, распад), совокупность процессов электрохимического окисления-восстановления на погруженных в электролит электродах при прохождении через него электрического тока. Э. лежит в основе электрохимического метода лабораторного и промышленного получения различных веществ – как простых (Э. в узком смысле слова), так и сложных (электросинтез ).
Изучение и применение Э. началось в конце 18 – начале 19 вв., в период становления электрохимии . Для разработки теоретических основ Э. большое значение имело установление М. Фарадеем в 1833—34 точных соотношений между количеством электричества, прошедшего при Э., и количеством вещества, выделившегося на электродах (см. Фарадея законы ). Промышленное применение Э. стало возможным после появления в 70-х гг. 19 в. мощных генераторов постоянного тока.
Особенность Э. – пространственное разделение процессов окисления и восстановления: электрохимическое окисление происходит на аноде, восстановление – на катоде. Э. осуществляется в специальных аппаратах – электролизёрах .
Э. происходит за счёт подводимой энергии постоянного тока и энергии, выделяющейся при химических превращениях на электродах. Энергия при Э. расходуется на повышение гиббсовой энергии системы в процессе образования целевых продуктов и частично рассеивается в виде теплоты при преодолении сопротивлений в электролизёре и в других участках электрической цепи.
На катоде в результате Э. происходит восстановление ионов или молекул электролита с образованием новых продуктов. Катионы принимают электроны и превращаются в ионы более низкой степени окисления или в атомы, например при восстановлении ионов железа (F3+e- ® Fe2+ ), электроосаждении меди (Cu2+ + 2e- ® Cu). Нейтральные молекулы могут участвовать в превращениях на катоде непосредственно или реагировать с промежуточными продуктами катодного процесса. На аноде в результате Э. происходит окисление ионов или молекул, находящихся в электролите или принадлежащих материалу анода (анод растворяется или окисляется), например: выделение кислорода (4OH- ® 4e- + 2H2 O + O2 ) и хлора (2C1- ®2e- + Cl2 ), образование хромата (Cr3+ + 3OH- + H2 O ® CrO42– + 5H+ + 3e- ), растворение меди (Cu ® Cu2+ + 2e- ), оксидирование алюминия (2Al + 3H2 O ® Al2 O3 +6Н+ + 6e- ). Электрохимическая реакция получения того или иного вещества (в атомарном, молекулярном или ионном состоянии) связана с переносом от электрода в электролит (или обратно) одного или нескольких зарядов в соответствии с уравнением химической реакции. В последнем случае такой процесс осуществляется, как правило, в виде последовательности элементарных одноэлектронных реакций, то есть постадийно, с образованием промежуточных ионов или радикальных частиц на электроде, часто остающихся на нём в адсорбированном состоянии.
Скорости электродных реакций зависят от состава и концентрации электролита, от материала электрода, электродного потенциала, температуры и ряда других факторов. Скорость каждой электродной реакции определяется скоростью переноса электрических зарядов через единицу поверхности электрода в единицу времени; мерой скорости, следовательно, служит плотность тока.
Количество образующихся при Э. продуктов определяется законами Фарадея. Если на каждом из электродов одновременно образуется ряд продуктов в результате нескольких электрохимических реакций, доля тока (в %), идущая на образование продукта одной из них, называется выходом данного продукта по току.
Преимущества Э. перед химическим методами получения целевых продуктов заключаются в возможности сравнительно просто (регулируя ток) управлять скоростью и селективной направленностью реакций. Условия Э. легко контролировать, благодаря чему можно осуществлять процессы как в самых «мягких», так и в наиболее «жёстких» условиях окисления или восстановления, получать сильнейшие окислители и восстановители, используемые в науке и технике. Э. – основной метод промышленного производства алюминия, хлора и едкого натра, важнейший способ получения фтора, щелочных и щелочноземельных металлов, эффективный метод рафинирования металлов. Путём Э. воды производят водород и кислород. Электрохимический метод используется для синтеза органических соединений различных классов и многих окислителей (персульфатов, перманганатов, перхлоратов, перфторорганических соединений и др.). Применение Э. для обработки поверхностей включает как катодные процессы гальванотехники (в машиностроении, приборостроении, авиационной, электротехнической, электронной промышленности), так и анодные процессы полировки, травления, размерной анодно-механической обработки , оксидирования (анодирования ) металлических изделий (см. также Электрофизические и электрохимические методы обработки ). Путём Э. в контролируемых условиях осуществляют защиту от коррозии металлических сооружений и конструкций (анодная и катодная защита).
Лит. см. при ст. Электрохимия .
Э. В. Касаткин.
Электролизёры
Электролизёры, аппараты для электролиза , состоящие из одной или многих электролитических ячеек . Э. представляет собой сосуд (или систему сосудов), наполненный электролитом с размещенными в нём электродами – катодом и анодом , соединёнными соответственно с отрицательным и положительным полюсами источника постоянного тока. В промышленности и лабораторной практике применяют Э. различных типов и конструкций (например, открытые и герметически закрытые, для периодической и непрерывной работы, с неподвижными и движущимися электродами, с различными системами разделения продуктов электролиза). В зависимости от назначения Э. рассчитываются для работы при различных температурах – от минусовых (при электрохимическом синтезе малостойких кислородных соединений) до высоких плюсовых (при электролизе расплавленных электролитов в производстве алюминия, кальция и др. металлов). Соответственно Э. снабжают устройствами для нагрева или охлаждения электролита пли электродов.
Применяют Э. с диафрагмой – пористой перегородкой или мембраной, отделяющей катодное пространство от анодного, проницаемой для ионов, но затрудняющей механическое смешение и диффузию. Для изготовления диафрагм используются асбест, полимерные материалы и керамика, находят применения Э. с ионообменными мембранами. По способу включения в электрическую цепь Э. разделяются на моно– и биполярные. Монополярный Э. состоит из одной электролитической ячейки с электродами одной полярности, каждый из которых может состоять из нескольких элементов, включенных параллельно в цепь тока. Биполярный Э. имеет большое число ячеек (до 100—160), включенных последовательно в цепь тока, причём каждый электрод, за исключением двух крайних, работает одной стороной как катод, а другой как анод.
Для изготовления анодов применяют графит, углеграфитовые материалы, платину, окислы некоторых металлов, свинец и его сплавы; используются малоизнашивающиеся титановые аноды с активным покрытием из смеси окислов рутения и титана, а также платины и её сплавов. Для катодов в большинстве Э. используется сталь. Применяются также Э. с жидкими электродами (например, в одном из методов производства хлора и гидроокиси натрия в качестве катода используют ртуть). Некоторые Э. работают под давлением, например разложение воды ведётся под давлением до 4 Мн /м2 (40 кгс /см2 ); разрабатываются Э. для работы под более высоким давлением. Материалы для изготовления Э. выбираются с учётом агрессивности электролита и продуктов электролиза, температуры и других условий. Широко применяется сталь, в том числе с различными защитными покрытиями, пластические массы, стекло и стеклопластики, керамика. Современные крупные Э. имеют высокую нагрузку: монополярные до 400—500 ка, биполярные – эквивалентную 1600 ка.
Л. М. Якименко.
Электролитическая диссоциация
Электролити'ческая диссоциа'ция, распад вещества на ионы при растворении. Э. д. происходит вследствие взаимодействия растворённого вещества с растворителем; по данным спектроскопических методов, это взаимодействие носит в значительной мере химический характер (см. Сольватация ). Наряду с сольватирующей способностью молекул растворителя определённую роль в Э. д. играет также макроскопическое свойство растворителя – его диэлектрическая проницаемость.
Классическая теория Э. д. была создана С. Аррениусом и В. Оствальдом в 80-х гг. 19 в. Она основана на предположении о неполной диссоциации растворённого вещества, характеризуемой степенью диссоциации а, т. е. долей распавшихся молекул электролита. Динамическое равновесие между недиссоциированными молекулами и ионами описывается действующих масс законом . Например, Э. д. бинарного электролита КА выражается уравнением типа КА Û К+ + А- . Константа диссоциации Кд определяется активностями катионов аК+, анионов аА – и недиссоциированных молекул аКА следующим образом:
(1)
Значение Кд зависит от природы растворённого вещества и растворителя, а также от температуры и может быть определено несколькими экспериментальными методами. Степень диссоциации ее может быть рассчитана при любой концентрации a электролита с помощью соотношения:
(2)
где f± — средний коэффициент активности электролита (см. также Оствальда закон разбавления ).
Классическая теория Э. д. применима лишь к разбавленным растворам слабых электролитов. Сильные электролиты в разбавленных растворах диссоциированы практически полностью, поэтому представления о равновесии между ионами и недиссоциированными молекулами лишено смысла. Согласно представлениям, выдвинутым в 20—30-х гг. 20 в. В. К. Семенченко (СССР), Н. Бьеррумом (Дания), Р. М. Фуоссом (США) и др., в растворах сильных электролитов при средних и высоких концентрациях образуются ионные пары и более сложные агрегаты. Современные спектроскопические данные показывают, что ионная пара состоит из двух ионов противоположного знака, находящихся в контакте («контактная ионная пара») или разделённых одной или несколькими молекулами растворителя («разделённая ионная пара»). Ионные пары электрически нейтральны и не принимают участия в переносе электричества. В сравнительно разбавленных растворах сильных электролитов равновесие между отдельными сольватированными ионами и ионными парами может быть приближённо охарактеризовано, аналогично классической теории Э. д., константой диссоциации (или обратной величиной – константой ассоциации). Это позволяет использовать уравнение (2) для расчёта соответствующей степени диссоциации, исходя из экспериментальных данных.
В простейших случаях (большие одноатомные однозарядные ионы) приближённые значения константы диссоциации в разбавленных растворах сильных электролитов можно вычислить теоретически, исходя из представлений о чисто электростатическом взаимодействии между ионами в непрерывной среде – растворителе.
Лит.: Измайлов Н. А., Электрохимия растворов, 3 изд., М.,1976; Monk C. В., Electrclytic dissociation, L. – N. Y., 1961.
А. И. Мишустин.
Электролитическая сварка
Электролити'ческая сва'рка, производится при нагреве соединяемых частей постоянным электрическим током напряжением 110—220 в в водном щелочном электролите. Свариваемые части, погруженные в ванну с электролитом, образуют катод, анодом служит металлическая пластина. Э. с. ещё несовершенна и применяется редко, в основном для сварки мелких деталей, проволок и т. п. из различных металлов.
Электролитическая ячейка
Электролити'ческая яче'йка, сосуд с электролитом (электролитами), снабженный электродами, в котором реализуются электрохимические реакции. Основной конструкционный элемент промышленных электролизёров . Как самостоятельный аппарат используется главным образом в лабораторных условиях при изучении электродных процессов , проведении электроаналитических измерений, получении и очистке веществ электролизом . Конструкции Э. я. чрезвычайно разнообразны. В электрохимических работах обычно применяют Э. я. с тремя электродами: рабочим (исследуемым), вспомогательным (поляризующим) и электродом сравнения . Сложные Э. я. могут содержать также электроды индикаторные и др.; специальные Э. я. должны удовлетворять ряду дополнительных требований, например обеспечивать сочетание электрохимических и других физико-химических методов исследования.
Э. я. находят применение при моделировании физическом , в частности, с помощью Э. я. можно моделировать электрические поля электронных устройств, например электронных ламп.
А. Н. Чемоданов.
Электролиты
Электроли'ты (от электро... и греч. lytos – разлагаемый, растворимый), жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока. В узком смысле Э. называются вещества, растворы которых проводят электрический ток ионами, образующимися в результате электролитической диссоциации . Э. в растворах подразделяют на сильные и слабые. Сильные Э. практически полностью диссоциированы на ионы в разбавленных растворах. К ним относятся многие неорганические соли и некоторые неорганические кислоты и основания в водных растворах, а также в растворителях, обладающих высокой диссоциирующей способностью (спирты, амиды и др.). Молекулы слабых Э. в растворах лишь частично диссоциированы на ионы, которые находятся в динамическом равновесии с недиссоциированными молекулами. К слабым Э. относится большинство органических кислот и многие органические основания в водных и неводных растворах. Деление Э. на сильные и слабые в некоторой степени условно, т. к. оно отражает не свойства самих Э., а их состояние в растворе. Последнее зависит от концентрации, природы растворителя, температуры, давления и др.
По количеству ионов, на которые диссоциирует в растворе одна молекула, различают бинарные, или одно-одновалентные, Э. (обозначаются 1-1 Э., например КС1), одно-двухвалентные Э. (обозначаются 1-2 Э., например CaCl2 ) и т. д. Э. типа 1-1, 2-2, 3-3 и т. п. называются симметричными, типа 1-2, 1-3 и т. п. – несимметричными.
Свойства разбавленных растворов слабых Э. удовлетворительно описываются классической теорией электролитической диссоциации. Для не слишком разбавленных растворов слабых Э., а также для растворов сильных Э. эта теория неприменима, поскольку они являются сложными системами, состоящими из ионов, недиссоциированных молекул или ионных пар, а также более крупных агрегатов. Свойства таких растворов определяются характером взаимодействий ион-ион, ион-растворитель, а также изменением свойств и структуры растворителя под влиянием растворённых частиц. Современные статистические теории сильных Э. удовлетворительно описывают свойства лишь очень разбавленных (<0,1 моль/л ) растворов.
Э. чрезвычайно важны в науке и технике. Все жидкие системы в живых организмах содержат Э. Важный класс Э. – полиэлектролиты . Э. являются средой для проведения многих химических синтезов и процессов электрохимических производств. При этом всё большую роль играют неводные растворы Э. Изучение свойств растворов Э. важно для создания новых химических источников тока и совершенствования технологических процессов разделения веществ – экстракции из растворов и ионного обмена .
Лит. см. при ст. Электролитическая диссоциация .
А. И. Мишустин.
Электролов
Электроло'в, промышленный способ лова рыб, использующий их характерные реакции на протекающий через тело электрический ток. В зависимости от силы тока (постоянного или импульсного) в поведении рыб различают 3 стадии: отпугивание, направленное движение к аноду (т. н. анодная реакция) и электронаркоз. При Э. может использоваться любая из трёх стадий. Границы стадий зависят от вида, размеров и физиологического состояния рыб. Кроме того, реакция рыб разных видов зависит от длительности и частоты импульсов. При Э. ток через тело рыб протекает при попадании их в электрическое поле, возникающее между электродами, находящимися в воде и подключенными к источнику тока. Э. на постоянном токе осуществляется с помощью относительно маломощных электрических генераторов; применяется на пресных водоёмах. В морской воде более перспективен Э. с помощью импульсного тока, т. к. при этом резко сокращается расход электроэнергии. Основные разновидности Э. – лов электрифицированным тралом и бессетевой лов . Для лова донных рыб электроды устанавливают в устьевой части трала, а параметры электрических импульсов подбирают так, чтобы вызвать у рыб анодную реакцию и не дать им уйти под нижнюю подбору трала. При лове рыб, обитающих в толще воды, используют эффект электронаркоза, а электроды устанавливают на предмешковой части трала. Рыбы, попавшие в межэлектродное пространство, наркотизуются и смываются потоком воды в куток, что ускоряет формирование улова. Кроме того, эффективность лова растет за счёт уменьшения выхода рыб из трала. Бессетевым Э. вылавливают рыб, обладающих заметной анодной реакцией. Под влиянием тока они направляются в область действия насосов. Э. с помощью импульсных токов часто используют в сочетании со светоловом . Для повышения эффективности Э. проводятся исследования по выбору параметров электрического поля и его конфигурации, силы тока, частоты следования импульсов и т. д.
Лит.: Стернин В. Г., Никоноров И. В., Бумейстер Ю. К., Электролов рыбы. М., 1972.
С. К. Малькявичюс.