355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ЭЛ) » Текст книги (страница 29)
Большая Советская Энциклопедия (ЭЛ)
  • Текст добавлен: 9 октября 2016, 03:37

Текст книги "Большая Советская Энциклопедия (ЭЛ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 29 (всего у книги 47 страниц)

  Каналы ИКМ и дельта-модуляции (без оконечных аналого-цифровых преобразующих устройств) – дискретные и часто используются непосредственно для передачи дискретных сигналов. Основным достоинством систем с временным разделением каналов является отсутствие накопления шумов в линии; искажение формы сигналов при их прохождении устраняется с помощью регенераторов, устанавливаемых на определённом расстоянии друг от друга (аналогично усилителям в системах с частотным разделением). Однако в системах с временным разделением существует шум «квантования», возникающий при преобразовании аналогового сигнала в последовательность кодовых чисел, характеризующих этот сигнал лишь с точностью до единицы. Шум «квантования», в отличие от обычного шума, не накапливается по мере прохождения сигнала в линии.

  К сер. 70-х гг. разработаны системы с ИКМ на 30, 120 и 480 каналов; находятся в стадии разработки системы на несколько тыс. каналов. Развитие систем передачи с разделением каналов во времени стимулируется тем, что в них широко используют элементы и узлы ЭВМ, и это в конечном счёте приводит к удешевлению таких систем как в проводной связи, так и радиосвязи. Весьма перспективны импульсные системы передачи на основе находящихся в стадии разработки волноводных и световодных линий связи (число каналов ТЧ может достигать 105 в волноводной трубе диаметром примерно 60 мм или в паре стеклянных световодных нитей диаметром 30—70 мкм ).

  Системы коммутационных устройств. Применяемые в Э. системы коммутационных устройств бывают двух типов: узлы и станции коммутации каналов (КК), позволяющие при конечном числе каналов создавать временное прямое соединение через канал связи любого источника с любым приёмником (после окончания переговоров соединение разрывается, а освободившийся канал используется для организации другого соединения); узлы и станции коммутации сообщений (КС), используемые в Э. тех видов, в которых допустима задержка (накопление) передаваемых сообщений во времени. Задержка бывает необходима при невозможности их немедленной передачи вызываемому абоненту из-за отсутствия в данный момент свободного канала либо занятости вызываемой абонентской установки. Узлы и станции КК, применяемые в Э. наиболее массовых видов – телефонной и телеграфной, – представляют собой телефонные станции или телеграфные станции , а также телефонные или телеграфные узлы связи , размещаемые в определённых пунктах телефонной сети или телеграфной сети . Станции и узлы КК различаются в зависимости от выполняемых ими функций и их расположения в сети. Например, в телефонной сети существуют такие автоматические телефонные станции (АТС), как сельские, городские, междугородные, а также различные коммутационные узлы: узлы автоматической коммутации, узлы входящих и исходящих сообщений и другие. Характерной особенностью узлов является то, что они связывают между собой различные АТС. Любая современная станция или узел КК содержит комплекс управляющих устройств, построенных на базе электромеханических или электронных приборов, и коммутационных устройств, которые под воздействием сигналов управления осуществляют соединение или разъединение соответствующих каналов (рис. 4 ). В наиболее распространённых (1978) системах КК устройства управления строятся на основе электромеханического реле , а коммутационные устройства – на основе многократных координатных соединителей . Такие станции и узлы называются координатными.

  Системы КС используются преимущественно в телеграфной связи и при передаче данных. Дополнительно к управляющим и коммутирующим устройствам в системах КС имеются устройства для накопления передаваемых сигналов. В процессе прохождения сигналов от передатчика к приемнику в системах КС осуществляются такие технологические операции с накапливаемыми сообщениями, как изменение порядка их следования к абонентам (с учётом возможных приоритетов, т. е. преимущественного права на передачу), приём сообщений по каналу одного типа (характеризующемуся одной скоростью передачи), а передача – по каналу другого типа (с др. скоростью) и ряд дополнительных операций в соответствии с заданным алгоритмом работы. В некоторых случаях могут создаваться комбинированные узлы КС и КК, позволяющие обеспечить наиболее благоприятные режимы передачи сообщений и использования сетей Э.

  Для развития современных коммутационных станций и узлов характерны тенденции использования в коммутационных устройствах быстродействующих миниатюрных герметизированных контактов (например, герконов ) для реализации соединений, а для управления процессами соединений – специализированных ЭВМ. Коммутационные станции и узлы такого типа получили название квазиэлектронных. Введение ЭВМ позволяет предоставлять абонентам дополнительные услуги: возможность применения сокращённого (с меньшим кол-вом знаков) набора номеров наиболее часто вызываемых абонентов; установку аппаратов на «ожидание», если номер вызываемого абонента занят; переключение соединения с одного аппарата на другой и т. д. С внедрением систем передачи с временным разделением каналов намечается возможность перехода к чисто электронным (без механических контактов) станциям и узлам коммутации. В таких системах коммутируются непосредственно дискретные каналы (без преобразования дискретных сигналов в аналоговые). В результате происходит объединение (интеграция) процессов передачи и коммутации, что служит предпосылкой к созиданию интегральной сети связи, в которой сообщения всех видов передаются и коммутируются едиными методами. В СССР Э. развивается в рамках разработанной и планомерно внедряемой Единой автоматизированной сети связи (ЕЛСС). ЕАСС представляет собой комплекс технических средств связи, взаимодействующих посредством использования общей – «первичной» – сети каналов, на основе которой с помощью коммутационных станций и узлов и оконечных аппаратов создаются различные «вторичные» сети, обеспечивающие организацию Э. всех видов.

  Лит.: Чистяков Н. И., Хлытчиев С. М., Малочинский О. М., Радиосвязь и вещание, 2 изд., М., 1968; Многоканальная связь, под ред. И. А. Аболица, М., 1971; Автоматическая коммутация и телефония, под ред. Г. Б. Метельского, ч. 1—2, М., 1968—69; Емельянов Г. А., Шварцман В. О., Передача дискретной информации и основы телеграфии, М., 1973; Румпф К. Г., Барабаны, телефон, транзисторы, пер. с нем., М., 1974; Лившиц Б. С., Мамонтова Н. П., Развитие систем автоматической коммутации каналов, М., 1976: Давыдов Г. Б., Рогинекий В. Н., Толчан А. Я., Сети электросвязи, М., 1977; Давыдов Г. Б., Электросвязь и научно-технический прогресс, М., 1978.

  Г. Б. Давыдов.

Рис. 1. Структурная схема одного из возможных способов сочетания аналогового и дискретного методов передачи электрических сигналов: АОА – оконечный аппарат аналогового типа; ДОА – оконечный аппарат дискретного типа; АДП – аналого-дискретный (цифровой) преобразователь; ДАП – дискретно(цифро)-аналоговый преобразователь: пунктирными линиями показан путь дискретных сигналов, сплошными – аналоговых сигналов.

Рис. 3. Осциллограммы, поясняющие принцип дельта-модуляции: а – передаваемый аналоговый сигнал (плавная линия) и результат его квантования по уровню (ступенчатая линия); б – последовательность импульсов, отображающая ход ступенчатой функции; в – восстановленный сигнал (пунктирными линиями указаны границы разброса его мгновенных значений, обусловленного шумами квантования).

Рис. 2. Осциллограммы, поясняющие принцип импульсно-кодовой модуляции: а – передаваемый аналоговый сигнал, который преобразуется в последовательность импульсных сигналов (показаны штриховкой); б – кодовые сигналы, несущие информацию о величине импульсных сигналов (показанных пунктиром); в – импульсы, восстановленные из кодовых сигналов на приёмном конце; г – восстановленный исходный аналоговый сигнал (пунктирными линиями указаны границы разброса его мгновенных значений, обусловленного шумами «квантования»); t – время.

Рис. 4. Структурная схема коммутационной станции (узла): ЛК – линейные комплекты для сопряжения каналов и устройств управления; M1, М2, ...Мn, N1, N2, ...Nn – каналы или абонентские линии; СК– станционные комплекты для обеспечения функционирования оконечных аппаратов (питание микрофонов, посылка адресной информации и др.): ШК – шнуровые комплекты.

«Электросвязь»

«Электросвя'зь», ежемесячный научно-технический журнал, орган министерства связи СССР и научно-технического общества радиотехники, электроники и связи им. А. С. Попова. Издаётся в Москве с 1933 (до 1938 выходил под названием «Научно-технический сборник по электросвязи»). Основные вопросы, освещаемые в журнале: радиосвязь, телефония, телеграфия и фототелеграфия, передача данных, телевидение, радиовещание, проводное вещание; многоканальная связь; автоматическая коммутация; аппаратура и оборудование систем связи; вопросы теории распространения электромагнитных колебаний, теории электрических цепей, теории информации и др. Тираж (1978) около 10 тыс. экз.

«Электросила»

«Электроси'ла», см. Ленинградское электромашиностроительное объединение «Электросила» .

Электросинтез

Электроси'нтез (от электро... и синтез ), метод получения сложных неорганических или органических соединений с помощью электролиза . Характерная особенность Э. – многостадийность присоединения или отдачи электронов, связанная с образованием промежуточных стабильных или нестабильных продуктов. Каждой стадии Э. соответствует определённое значение электродного потенциала .

  Многостадийные процессы Э. могут быть выражены с помощью следующих уравнений:

  R + nH+ + ne ® RHk + (n – k ) Н+ + (n —k ) e ® RHk+r + (n—k– r ) Н+ + (n —k – r ) е ® RHn ,            (1)

  R' + nOH – ne ® R'Ok + (n – k ) OH + k H++ (n – k ) е ® R'Ok+r + (n – k – r ) OH- + (k + r) H+ – (n – k – r ) e ® R'On + nH+,   (2)

  где R и R' – исходные продукты; RHn и R'On – конечные продукты; n, k, r – число электронов (е ), участвующих в электрохимических реакциях.

  Реакции, выражаемые уравнением (1), протекают на катоде и называются реакциями электровосстановления, или электрохимического восстановления. Реакции, выражаемые уравнением (2), протекают на аноде и называются реакциями электроокисления, или электрохимического окисления. Промежуточные и конечные продукты могут принимать участие в различных электрохимических реакциях на поверхности электродов.

  Если целевой продукт Э. образуется на промежуточной стадии, то электролиз необходимо проводить при контролируемом электродном потенциале, соответствующем данной стадии. Продукт можно быстро выводить из сферы реакции путём отгонки, экстракции или связывания в соединение, не вступающее в электрохимические превращения. Выход продукта Э. может изменяться и в результате различных химических реакций в объёме раствора с участием промежуточных, исходных и конечных веществ. Например, некоторые окислители, получаемые на аноде, могут разлагаться в объёме раствора с потерей активного кислорода, гидролизоваться, диспропорционировать и т. д. Роль химических реакций в объёме раствора учитывается по объёмной плотности тока, или концентрации тока. Эта величина определяется как сила тока, проходящего через единицу объёма электролита, и выражается в а/л. Процессы Э., в которых химические реакции в объёме раствора приводят к уменьшению выхода целевого продукта, должны проводиться с высокими объёмными плотностями тока (до нескольких сотен а/л ).

   С наибольшей эффективностью электровосстанавливаются или электроокисляются исходные вещества, диссоциированные в растворе на ионы, а также органические соединения, имеющие полярные функциональные группы. Нейтральные молекулы органических веществ во многих случаях не обладают достаточной реакционной способностью и не вступают в реакции на поверхности электрода. В этом случае применяются методы непрямого электровосстановления или электроокисления, осуществляемые в объёме раствора посредством катализаторов-переносчиков, в качестве которых используются ионы металлов или неметаллов переменной валентности. Процесс в общем виде может быть описан следующими уравнениями:

 – химическая реакция,

  —электрохимическая реакция, где R – исходный продукт, К – катализатор-переносчик, С – конечный продукт, z — степень окисления, n — число электронов (е ), участвующих в реакции.

  Роль электролиза в данном случае сводится к регенерации на электродах химического восстановителя или окислителя, которые при взаимодействии с исходным веществом в электролизе или вне его превращают это вещество в целевой продукт.

  Э. находит практическое применение для получения ряда ценных неорганических и органических соединений. Путём электроокисления синтезируют, например, кислородсодержащие соединения хлора в различных степенях окисления.

  В промышленности применяют способ получения надсерной (пероксодисерной) кислоты и её солей – персульфатов (см. Пероксосульфаты ), основанный на электроокислении серной кислоты и сульфатов. Надсерная кислота и часть её солей используются при производстве перекиси водорода. Перманганат калия получают электроокислением манганата или анодным растворением сплавов марганца с железом – ферромарганца. Двуокись марганца в значительных масштабах производится электролизом сернокислых растворов сульфата марганца.

  Э. применяется и при получении различных органических соединений (см. Кольбе реакция ).

  Электрохимическое фторирование используется для промышленного получения ряда перфторсорганических соединений. Электрохимическим методом получают тетраэтилсвинец и многие другие вещества.

  Лит.: Прикладная электрохимия, под ред. А. Л. Ротиняна, 3 изд., Л., 1974; Фиошин М. Я., Успехи в области электросинтеза неорганических соединений, М., 1974; Прикладная электрохимия, под ред. Н. Т. Кудрявцева, 2 изд., М., 1975; Томилов А. П., Фиошин М. Я., Смирнов В. А., Электрохимический синтез органических веществ, Л., 1976; Фистин М. Я., Павлов В. Н., Электролиз в неорганической химии, М., 1976; Электрохимия органических соединений, пер. с англ., М., 1976.

  М. Я. Фиошин.

Электроскоп

Электроско'п (от электро... и ...скоп ), простейший прибор для обнаружения электрических зарядов и приблизительного определения их величины. Э. состоит из металлического стержня (обычно с шариком на конце), к которому снизу прикреплены один или два лёгких металлических листочка. Стержень вставлен внутрь стеклянного сосуда и закреплен с помощью пробки из изолирующего материала. При соприкосновении шарика Э. с заряженным телом к листочкам переходит часть заряда тела и они отталкиваются друг от друга (при одном листочке – от стержня). По углу расхождения листочков можно судить о величине их заряда, а следовательно, и заряда тела.

  Лит.: Калашников С. Г., Электричество, 3 изд., М., 1970 (Общий курс физики, т. 2).

Электроснабжение

Электроснабже'ние, служит для обеспечения электроэнергией всех отраслей хозяйства: промышленности, сельского хозяйства, транспорта, городского хозяйства и т. д. В систему Э. входят источники питания, повышающие и понижающие подстанции электрические , питающие распределительные электрические сети , различные вспомогательные устройства и сооружения. Основная часть вырабатываемой электроэнергии потребляется промышленностью, например в СССР – около 70% (1977). Структура Э. определяется исторически сложившимися особенностями производства и распределения электроэнергии в отдельных странах. Принципы построения систем Э. в промышленно развитых странах являются общими. Некоторая специфика и местные различия в схемах Э. зависят от размеров территории страны, её климатических условий, уровня экономического развития, объёма промышленного производства и плотности размещения электрифицированных объектов и их энергоёмкости.

  Источники питания. Основные источники питания электроэнергией – электростанции и питающие сети районных энергетических систем . На промышленных предприятиях и в городах для комбинированного снабжения энергией и теплом используют теплоэлектроцентрали (ТЭЦ), мощность которых определяется потребностью в тепле для технологических нужд и отопления. Для крупных энергоёмких предприятий, например металлургических заводов с большим теплопотреблением и значительным выходом вторичных энергоресурсов, сооружаются мощные ТЭЦ, на которых устанавливают генераторы, вырабатывающие ток напряжением до 20 кв. Такие электростанции, обычно расположенные за пределами завода на расстоянии до 1—2 км, имеют районное значение и, кроме предприятия, снабжают электрической энергией и теплом близлежащие промышленные и жилые районы. Для разгрузки источников питания в часы пик служат так называемые «потребители-регуляторы», которые без существенного ущерба для технологического процесса допускают перерывы или ограничения в потреблении электроэнергии. К числу таких электроприёмников относится, например, большинство электропечей, обладающих значительной тепловой инерцией, некоторые электролизные установки, которые позволяют выравнивать графики нагрузок в энергетических системах.

  Напряжения в системах Э. являются оптимальными значениями, проверенными на практике. В каждом конкретном случае выбор напряжения зависит от передаваемой мощности и (от расстояния источника питания до потребителя. Шкалы напряжений, принятые в разных странах, не имеют между собой принципиальных различий. Используемые в СССР напряжения (6, 10, 20, 35, 110, 220, 300 кв и т. д.) характерны и для других стран. В шкалах некоторых стран имеются напряжения промежуточных значений, которые были введены на раннем этапе строительства электрических сетей и продолжают использоваться, хотя в ряде случаев уже и не являются оптимальными. Питание электроэнергией крупных промышленных и транспортных предприятий и городского хозяйства осуществляется на напряжениях 110 и 220 кв (в США часто 132 кв ), а для особо крупных и энергоёмких – 330 и 500 кв. Распределение энергии на первых ступенях при этом выполняется на напряжении 110 или 220 кв. Напряжение 110 кв применяется чаще, т. к. в этом случае легче разместить воздушные линии электропередачи на застроенных территориях предприятий и городов. Распределение энергии между потребителями при напряжении 220 кв целесообразно тогда, когда это напряжение является также и питающим. При определённых условиях имеет преимущества сетевое напряжение 60—69 кв (применяется в ряде стран Западной Европы и в США). Напряжение 35 кв используют в питающих и распределительных сетях промышленных предприятий средней мощности, в небольших и средних городах и в сельских электрических сетях, а также для питания на крупных предприятиях мощных электроприёмников: электропечей, выпрямительных установок и т. п. Напряжение 20 кв используется сравнительно редко для развития сетей, имеющих это напряжение; оно может оказаться целесообразным в районах с небольшой плотностью электрических нагрузок, а также в больших городах и на крупных предприятиях при наличии ТЭЦ с генераторным напряжением 20 кв . Напряжения 10 и 6 кв применяют при распределении электроэнергии (на различных ступенях Э.) на промышленных предприятиях, в городах и др. Эти напряжения пригодны также для питания объектов небольшой мощности, недалеко отстоящих от источника питания. В большинстве случаев целесообразно использование напряжения 10 кв в качестве основного. При этом питание электродвигателей производится от понизительных подстанций 10/6 кв по схеме трансформатор – двигатель или от обмоток 6 кв трансформатора 110/220 кв с расщепленными вторичными обмотками (10и 6 к; 6).

  Схемы систем Э. строят, исходя из принципа максимально возможного приближения источника электроэнергии высшего напряжения к электроустановкам потребителей с минимальным количеством ступеней промежуточной коммутации и трансформации. Для этих целей применяют т. н. глубокие вводы (35—220 кв ) кабельных и воздушных линий электропередачи. Понижающие подстанции размещаются в центрах расположения основных потребителей электроэнергии, т. е. в центрах электрических нагрузок. В результате такого размещения снижается потеря электроэнергии, сокращается расход материалов, уменьшается число промежуточных сетевых звеньев, улучшается режим работы электроприёмников. Элементы системы Э. несут постоянную нагрузку, рассчитываются на взаимное резервирование с учётом допустимых перегрузок и разумного ограничения потребления электроэнергии и в послеаварийном режиме, когда производятся восстановительные работы на поврежденном элементе или участке сети. В большинстве случаев предусматривается раздельная работа элементов с использованием средств автоматики и глубокого секционирования всех звеньев. Параллельная работа применяется лишь при необходимых обоснованиях.

  Глубокие вводы выполняют магистральными и радиальными линиями (рис. 1 ) в зависимости от условий окружающей среды, застройки территории и др. факторов. Схема ввода кабельных радиальных линий непосредственно в трансформатор подстанции является простейшей наиболее компактной и надёжной. При использовании глубоких вводов возможно применение компактных, полностью закрытых ячеек КРУЭ (комплектных распределит, устройств с элегазовым наполнением) на напряжение 110 кв.

  Схемы распределит, сетей 6—20 кв выполняют магистральными, радиальными или смешанными (рис. 2 ) с модификациями по степени надёжности. Первые ступени Э. крупных предприятий обычно выполняют по магистральным схемам с мощными токопроводами 6—10 кв, от которых через распределительные пункты питаются цеховые трансформаторные пункты. В городских сетях при напряжениях 6 и 10 кв применяют петлевые, двухлучевые и многолучевые схемы, являющиеся разновидностями магистральных.

  На крупных узловых подстанциях 110—220 кв (на больших заводах, в городах с развитой электрической сетью, большим числом присоединений и т. п.) электрические схемы обычно имеют двойную систему шин. При напряжениях 6 и 10 кв в крупных распределительных устройствах в случае необходимости разделения питания или выделения потребителей (например, на крупных преобразовательных подстанциях) двойная система шин позволяет переводить некоторые агрегаты на пониженное напряжение, сохраняя для прочих потребителей нормальное напряжение. В потребительских электроустановках наиболее часто используют схемы подстанций с одной системой секционированных шин с применением (при необходимости) автоматики на секционных выключателях или вводах. При частых оперативных переключениях и ревизиях (осмотрах и проверках) выключателей целесообразными являются схемы с обходной (дополнительной) системой шин, которая позволяет произвести ревизию или ремонт любой рабочей системы шин и любого выключателя без перерыва питания. Эти схемы применяют, например, на крупных электропечных подстанциях промышленных предприятий. Распространены простейшие схемы подстанций без шин первичного напряжения на подстанциях глубоких вводов 210 и 220 кв и на трансформаторных подстанциях 10 и 6 кв, питаемых по блочным схемам линия – трансформатор (см. рис. 1 и 2 ). На трансформаторных подстанциях на стороне 10 и 6 кв ставят выключатели нагрузки, а при радиальном питании применяют глухое присоединение трансформаторов.

  На крупных объектах рационально строительство электрических сетей с мощными токопроводами 10 и 6 кв (взамен большого числа кабелей), кабельных эстакад и галерей (вместо дорогих и громоздких туннелей), прокладка кабелей 110 и 220 кв (взамен воздушных линий).

  Надёжность Э. зависит от требований бесперебойности работы электроприёмников. Необходимая степень надёжности определяется тем возможным ущербом, который может быть нанесён производству при прекращении их питания. Существуют 3 категории надёжности электроприёмников. К 1-й категории относят те, питание которых обеспечивают не менее чем 2 независимых автоматически резервируемых источника. Такие электроприёмники необходимы на объектах с повышенными требованиями к бесперебойности работы (например, непрерывное химическое производство). Наилучшие в этом случае схемы Э. с территориально разобщёнными независимыми источниками. Допустимый перерыв в Э. для некоторых производств не должен превышать 0,15—0,25 сек , поэтому важным условием является необходимое быстродействие восстановления питания. Для особо ответственных электроприёмников в схеме Э. предусматривают дополнительный третий источник. Ко 2-й категории относятся электроприёмники, допускающие перерыв питания на время, необходимое для включения ручного резерва. Для приёмников 3-й категории допускается перерыв питания на время до 1 сут, необходимое на замену или ремонт поврежденного элемента системы.

  Качество электроэнергии. В системы Э. часто входят электроприёмники, работа которых сопровождается ударными нагрузками и неблагоприятно отражается на работе других («спокойных») электроприёмников, общем режиме работы системы, на качестве электроэнергии (см. Электроэнергии качество ). К таким электроприёмникам относятся вентильные преобразователи, дуговые электропечи, электросварочные аппараты, электровозы, работа которых сопровождается резкопеременными толчками нагрузки, колебаниями напряжения, снижением коэффициента мощности, образованием высших гармоник, возникновением несимметрии напряжений. Показатели качества электроэнергии улучшаются при повышении мощности короткого замыкания в точке сети, к которой приключены электроприёмники с неблагоприятными характеристиками. Чтобы создать такие условия, уменьшают реактивное сопротивление питающих линий, не включая в них реакторы электрические или уменьшая их реактивность, исключая из схем токопроводы и др. При этом должна быть соответственно увеличена отключаемая мощность выключателей.

  Вопросы улучшения качества электроэнергии решаются комплексно при проектировании систем Э. и электропривода. Хорошие результаты даёт разделение питания электроприёмников с ударными и т. н. спокойными нагрузками путём присоединения их к разным трансформаторам и различным ветвям расщепленных трансформаторов или плечам сдвоенных реакторов. Улучшению качества электроэнергии способствует внедрение в схемы Э. электроприводов с пониженным потреблением реактивной мощности, применение многофазных схем выпрямления и др. При недостаточности этих мероприятий применяют специальные устройства: синхронные компенсаторы с быстродействующим возбуждением, большой кратностью перегрузки по реактивной мощности (в 3—4 раза), работающие в т. н. режиме слежения за реактивной мощностью электроприёмников; синхронные электродвигатели со спокойной нагрузкой, присоединяемые к общим с вентильными преобразователями шинам и имеющие необходимую располагаемую мощность и быстродействующее возбуждение с высоким уровнем форсировки; статические источники реактивной мощности с высоким быстродействием, безынерционностью и плавным изменением реактивной мощности; продольную ёмкостную компенсацию, дающую возможность мгновенного безынерционного и непрерывного автоматического регулирования напряжения; силовые резонансные электрические фильтры для гашения высших гармоник.

  Лит.: Князевский Б. Л., Липкин Б. Ю., Электроснабжение промышленных предприятий, М., 1969; Крупович В. И., Ермилов А. А., Трунковский Л. Е., Проектирование и монтаж промышленных электрических сетей, М., 1971; Козлов В. А., Билик Н. И., Файбисович Д. Л., Справочник по проектированию систем электроснабжения городов, Л., 1974; Ермилов А. А., Основы электроснабжения промышленных предприятий, 3 изд., М., 1976.

  А. А. Ермилов.

Рис. 1. Схема глубоких вводов 110 и 220 кв: а – радиальная; б – магистральная; ПГВ – подстанции глубокого ввода; УРП – узловая распределительная подстанция.

Рис. 2. Схемы сетей 6 и 10 кв: а – двухступенчатая радиальная с промежуточными распределительными пунктами (РП); б – магистральная с токопроводами; в – двухлучевая с автоматическим включением резерва (АВР) на напряжение 0,4 кв; ГПП – главная понизительная подстанция; ТП – трансформаторная подстанция.


    Ваша оценка произведения:

Популярные книги за неделю