Текст книги "Большая Советская Энциклопедия (ЭЛ)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 27 (всего у книги 47 страниц)
Электрооптика
Электроо'птика, раздел физики, в котором изучаются изменения оптических свойств сред под действием электрического поля и вызванные этими изменениями особенности взаимодействия оптического излучения (света) со средой, помещенной в поле. К Э. обычно относят эффекты, связанные с зависимостью преломления показателя n среды от напряжённости электрического поля Е (см. Поккельса эффект , Керра эффект , Штарка эффект ).
Электрооптический дальномер
Электроопти'ческий дальноме'р, светодальномер, прибор для измерения расстояний по времени прохождения измеряемого расстояния электромагнитными волнами оптического или инфракрасного диапазонов. Э. д. делятся на импульсные и фазовые (в зависимости от того, каким способом определяют время прохождения световым импульсом расстояния до объекта и обратно). Э. д. первого вида измеряют расстояние по времени между моментом испускания импульса передатчиком и моментом возвращения импульса, приходящего от отражателя, установленного на конце измеряемой линии, второго вида – по разности фаз посылаемого синусоидально модулированного излучения и принятого. Наибольшее распространение получили фазовые Э. д., упрощённая блок-схема которых дана на рис. Источниками света ранее служили лампы накаливания (3– 30 вт ) и газосветные лампы (50—100 вт ), ныне – газовые и полупроводниковые оптические квантовые генераторы (ОКГ). В Э. д. обычно применяют амплитудную модуляцию с частотами в 10—80 мгц, при которой разности фаз в 1° соответствует изменение расстояния менее, чем на 1 см. Конструктивно модулятор н демодулятор одинаковы, их действие основано на использовании Керра эффекта или Поккельса эффекта . Модулирующее световой поток переменное напряжение вырабатывает генератор масштабной частоты, называется так потому, что соответствующая ей длина волны определяет масштаб перевода разности фаз в расстояния. Промодулированный свет линзовой или зеркально-линзовой оптической системой формируется в узконаправленный пучок, посылаемый на отражатель. Отражённый свет фокусируется на демодулятор оптической системой, аналогичной передающей. Регистрируемая индикатором разности фаз интенсивность на выходе демодулятора зависит от соотношения фаз в принятом световом сигнале и в управляющем демодулятором напряжении; фазовращатель позволяет установить заданное соотношение и отсчитать полученную разность фаз, по которой и вычисляется расстояние. Индикатором разности фаз может служить глаз наблюдателя (Э. д. с визуальной индикацией) или фотоэлектрическое устройство со стрелочным прибором на выходе.
Дальность действия Э. д. доходит до 50 км, средняя квадратическая погрешность составляет ± (1+0,2Дкм ) см, где Д — расстояние, масса комплекта 30—150 кг, потребляемая мощность 5—150 вт.
Лит.: ГОСТ 19223—73. Светодальномеры. Типы. Основные параметры и технические требования; Генике А. А., Ларин Б. А., Назаров В. М., Геодезические Базовые дальномеры, М., 1974; Литвинов Б. А., Лобачев В. М., Воронков Н. Н., Геодезическое инструментоведение, [2 изд.], М., 1971; Кондрашков А. В., Электрооптические и радиогеодезические измерения, М., 1972.
Г. Г. Гордон.
Блок-схема электрооптического дальномера.
Электрооптический эффект
Электроопти'ческий эффект, изменение оптических свойств вещества под действием электрического поля. Различают: 1) линейный Э. э., называется Поккельса эффектом ; 2) квадратичный Э. э., называется Керра эффектом . См. также Электрооптика .
Электроосмос
Электроо'смос (от электро... и греч. osmós – толкание, давление), электроэндоосмос, движение жидкости через капилляры или пористые диафрагмы при наложении внешнего электрического поля. Э. – одно из основных электрокинетических явлений . Э. используют для удаления избыточной влаги из почв при прокладке транспортных магистралей и гидротехническом строительстве, для сушки торфа, а также для очистки воды, технических жидкостей и др.
Электроотрицательность
Электроотрица'тельность атома, величина, характеризующая способность атома в молекуле притягивать электроны, участвующие в образовании химической связи. Известно несколько способов вычисления Э. Так, согласно Р. Малликену (1935), мерой Э. может служить сумма ионизационного потенциала атома и его сродства к электрону ; Л. Полинг предложил (1932) другой, более сложный способ вычисления Э. (см. в ст. Химическая связь ). Оказалось, однако, что все способы практически приводят к одинаковым результатам. Зная Э., можно приближённо оценить распределение электронной плотности в молекулах многих химических веществ, например определить полярность ковалентной связи .
Электроофтальмия
Электроофтальми'я (от электро... и офтальмия ), поражение глаз при достаточно длительном и интенсивном действии ультрафиолетовых и других лучей во время электро– или газовой сварки, киносъёмки и т. п. Проявляется гиперемией и отёком конъюнктивы, слезотечением, светобоязнью, спазмом век. При поражении роговицы в ней наблюдаются точечные инфильтраты – помутнения, поверхностное отторжение эпителия. Профилактика: применение специальных защитных очков (светофильтров).
Электропередача
Электропереда'ча, совокупность электрических установок и устройств, обеспечивающих передачу электрической энергии на расстояние. В состав Э. входят понижающие и повышающие трансформаторы, воздушные и (или) кабельные линии электропередачи (ЛЭП), высоковольтные выключатели, аппаратура защиты и противоаварийной автоматики. Возможность передачи значительных количеств электроэнергии на расстояние определяется пропускной способностью Э., которая зависит от напряжения и протяжённости ЛЭП, обеспечения устойчивости её режима, условий эксплуатации, величины допустимых потерь и т. д. Повышение пропускной способности Э. связано, главным образом, с увеличением напряжения ЛЭП (см. Высоких напряжений техника , Передача электроэнергии ).
Лит.: Электрические системы, под ред. В. А. Веникова, т. 3, М., 1972.
Электропирексия
Электропирекси'я (от электро... и греч. pyréssein – быть в жару, лихорадить), метод лечения искусственной лихорадкой , вызываемой электрическим полем УВЧ или высокочастотным магнитным полем (индуктопирексия); разновидность пиротерапии , позволяющая регулировать температуру тела во время лечебной процедуры. В результате поглощения тканями организма энергии электрического или магнитного полей температура тела повышается до 38—40°С. Проводят Э. с помощью стационарных аппаратов «УВЧ-ЗОО», «Экран-1» и «ДКВ-2». Применяют при хронических полиартритах, гинекологических заболеваниях и др.
Электроплавка
Электропла'вка, см. Электрометаллургия .
Электропогрузчик
Электропогру'зчик, колёсный погрузчик периодического действия с приводом от аккумуляторной батареи. Э. общего назначения применяется для работы в помещениях, ж.-д. вагонах и на открытых площадках с твёрдым и ровным покрытием. Основное рабочее оборудование Э. – грузоподъёмник с вилочным захватом. Грузоподъёмник состоит из вертикальной рамы, внутри которой на цепи перемещается с помощью гидроцилиндра каретка с установленными на ней вилами (см. рис. при ст. Погрузчик ). Рама укреплена на шасси Э. шарнирно и может наклоняться с помощью другого гидроцилиндра вперёд на 3—5° при подхвате и выдаче грузов и назад на 8—15° при их транспортировании. Помимо вилочного захвата применяются штыревой захват для работы с грузами тороидальной формы (автопокрышки, трос в бухтах, проволока в мотках), различные зажимы с грузозахватными челюстями плоской или полукруглой формы для работы с бочками, рулонами, ящиками и пр. Для обслуживания высокорасположенных объектов и для ремонтных работ Э. оснащаются рабочей подъёмной платформой, а для удобства штабелирования грузов – сталкивателем. Шасси Э. выполняют по трёх– и четырёхопорной схемам на пневматических или монолитных массивных шинах. Всё электрооборудование, включая электродвигатели механизма передвижения и привода насосов, работает на постоянном токе напряжением 24—50 в. Основные параметры вилочных Э.: грузоподъёмность 0,5—5 т, высота подъёма вил до 4,5 м, наибольшая скорость подъёма груза 12 м/мин, наибольшая транспортная скорость с грузом 12 км/ч. Грузоподъёмность специального Э. достигает 40 т и более.
Среди специальных Э. широкое применение получили электроштабелёр (см. Штабелёр ) и Э. с боковым выдвижным грузоподъёмником, транспортирующий длинномерные грузы.
Лит. см. при ст.Погрузочно-разгрузочная машина .
Е. М. Стариков.
Электропоезд
Электропо'езд, разновидность мотор-вагонного поезда, моторные вагоны которого получают энергию от электрической сети. Используются в основном на линиях с большим потоком пассажиров (пригородное ж.-д. сообщение, метрополитен). В состав Э. могут входить моторные и прицепные вагоны (из них 2 головных). Общее число вагонов 4—12, причём моторными могут быть как все (характерно для метрополитена ), так и часть вагонов (см. также Моторвагонный подвижной состав ). На Прибалтийской ж. д. эксплуатируется небольшое количество так называемых контактно-аккумуляторных Э., тяговые двигатели которых на неэлектрифицированных участках пути питаются от аккумуляторных батарей.
На пригородных железных дорогах СССР наиболее распространены 10-вагонные (из них 5 моторных) Э. серий ЭР2 и ЭР9П (см. табл.).
Электропоезд | ЭР2 | ЭР9П |
Род тока | постоянный | переменный |
Напряжение в контактной сети, кв | 3 | 25 |
Масса моторного вагона, т | 54,6 | 59 |
Масса прицепного вагона, т | 38,3 | 37 |
Масса головного вагона, т | 40,9 | 39 |
Длина вагона, м | 19,6 | 19,6 |
Общая мощность тяговых электродвигателей, квт | 4000 | 3600 |
Каждый вагон имеет механическую часть, электрическое и пневматическое оборудование. Механическая часть состоит из цельнометаллического кузова, работающего как единая конструкция, и двух сварных тележек с двумя колёсными парами каждая. Электрооборудование включает тяговые электродвигатели постоянного тока (по 4 в каждом моторном вагоне), токосъёмники , преобразователи напряжения для питания низковольтных вспомогательных приборов и оборудования (например, вентиляции и освещения), а у Э. переменного тока – силовые трансформаторы и выпрямители для питания электродвигателей. Часть Э. оборудуются устройствами для торможения электрического . Пневматическое оборудование включает компрессоры и баллоны со сжатым воздухом для тормозной системы и автоматического открывания дверей. Для машинистов в головных (концевых) вагонах оборудуются кабины с необходимой контрольной аппаратурой и устройствами управления.
Современные Э. – надёжное, экономичное и скоростное транспортное средство: расход электроэнергии менее 40 (вт ·ч )/ (т ·км ) при частых остановках, т. е. при больших затратах энергии на разгон и торможение. В СССР проходит испытания Э. ЭР200 с конструкционной (допустимой конструкцией Э.) скоростью 200 км/ч. Этот Э. состоит из 14 вагонов (в т. ч. 12 моторных), число мест 816. Мощность его тяговых электродвигателей 10320 квт. Э. оборудован автомашинистом, электрическими, магниторельсовыми и дисковыми электропневматическими тормозами. В Японии эксплуатируются Э., скорость движения которых выше 200 км/ч.
«Электропривод»
«Электропро'вод», завод производственного объединения «Москабель», образованного в 1975; одно из старейших предприятий электротехнической промышленности СССР (г. Москва). Выпускает силовые, контрольные морские, радиочастотные, шланговые электрические кабели, провода, осветительные шнуры и др. Часть продукции экспортируется. Предприятие основано в 1785, принадлежало фирме «Владимир Алексеев» (с 1862), затем «Московскому товариществу торговли и золотоканительного производства» (с 1894). В начале 1900-х гг. реконструировано, построен первый в России цех алмазного волочильного инструмента. Выпускало (1916) «голые» электрические провода, изолированные проводники, освинцованные кабели, а также автомобильные свечи, электрические лампы и др., было создано производство эмалированной проволоки; разработаны также многожильные телефонные кабели на 1200 пар. Рабочие завода активно участвовали в Революции 1905—07 (на его территории находился боевой штаб рабочих дружин и склад оружия) и Октябрьской революции 1917. В 1924—33 объединено с заводом «Москабель». На основе исследовательских работ завода по химии и металлургии тугоплавких металлов было организовано производство вольфрама и молибдена, нитей накаливания для электрических ламп и проволоки из этих материалов (1925—26). В 1929—40 выпускал продукцию для новостроек первых пятилеток; в период Великой Отечественной войны 1941—45 – для фронта и оборонной промышленности. В 1943 разработаны высокочастотные (радиолокационные) кабели и освоено их промышленное производство. В 50—60-е гг. в результате реконструкции были механизированы и автоматизированы производственные процессы, введены в действие высокопроизводительные агрегаты непрерывной вулканизации, осуществлен переход на прогрессивные виды изоляционных материалов (полиэтилен, фторопласт, кремнийорганическая резина и др.). Это позволило увеличить валовой выпуск продукции в 1966—75 в 2 раза.
Лит.: Ламан Н. К., Кречетникова Ю. И., История завода «Электропровод», М., 1967.
Н. К. Ламан.
Электропривод
Электропри'вод, электрический привод, совокупность устройств для преобразования электрической энергии в механическую и регулирования потока преобразованной энергии по определённому закону. Э. является наиболее распространённым типом привода .
Историческая справка. Создание первого Э. относится к 1838, когда в России Б. С. Якоби произвел испытания электродвигателя постоянного тока с питанием от аккумуляторной батареи, который был использован для привода гребного винта судна. Однако внедрение Э в промышленность сдерживалось отсутствием надежных источников электроэнергии. Даже после создания в 1870 промышленного электромашинного генератора постоянного тока работы по внедрению Э. имели лишь частное значение и не играли заметной практической роли. Начало широкого промышленного применения Э связано с открытием явления вращающегося магнитного поля и созданием трехфазного асинхронного электродвигателя , сконструированного М. О. Доливо-Добровольским . В 90-х гг. широкое распространение на промышленных предприятиях получил Э., в котором использовался асинхронный электродвигатель с фазным ротором для сообщения движения исполнительным органам рабочих машин. В 1890 суммарная мощность электродвигателей по отношению к мощности двигателей всех типов, применяемых в промышленности, составила 5%, уже в 1927 этот показатель достиг 75%, а в 1976 приближался к 100%. Значительная доля принадлежит Э., используемому на транспорте.
Основные типы Э. По конструктивному признаку можно выделить три основных типа Э.: одиночный, групповой и многодвигательный. Одиночный Э. применяют в ручных машинах , простых металлообрабатывающих и древообрабатывающих станках и приборах бытовой техники. Групповой, или трансмиссионный, Э. в современном производстве практически не применяется. Многодвигательные Э. – приводы многооперационных металлорежущих станков, мономоторный тяговый Э. рельсовых транспортных средств. Кроме того, различают Э. реверсивные и нереверсивные (см. Реверсивный электропривод ), а по возможности управления потоком преобразованной механической энергии – нерегулируемые и регулируемые (в том числе автоматизированный с программным управлением и др.)
Основные части Э. Э. всех типов содержат основные части, имеющие одинаковое назначение: исполнительную и устройства управления.
Исполнительная часть Э. состоит обычно из одного или нескольких электродвигателей (см. Двигатель электрический ) и передаточного механизма – устройства для передачи механической энергии двигателя рабочему органу приводимой машины. В нерегулируемых Э. чаще всего используют электродвигатели переменного тока, подключаемые к источнику питания либо через контактор или автоматический выключатель, играющий роль защитного устройства, либо при помощи штепсельного разъёма (например, в бытовых электроприборах). Частота вращения ротора электродвигателя такого привода, а следовательно, и скорость перемещения связанного с ним рабочего механизма, изменяется только в зависимости от нагрузки исполнительного механизма. В мощных нерегулируемых Э. применяют асинхронные электродвигатели. Для ограничения пусковых токов между двигателем и источником устанавливают пусковые реакторы или автотрансформаторы, которые после разгона двигателя отключают. В регулируемых Э. чаще всего применяют электродвигатели постоянного тока, частоту вращения якорей которых можно изменять плавно, т. е. непрерывно, в широком диапазоне при помощи достаточно простых устройств управления.
В устройства управления входят: кнопочный пульт (для пуска и останова электродвигателя), контакторы , блок-контакты, преобразователи частоты и напряжения, предохранители, а также блоки защиты от перегрузок в аварийных режимах. При питании Э. от источника переменного тока, что характерно для Э., используемых в промышленности и на электроподвижном составе, двигатели которого питаются от сети переменного тока, в качестве преобразующих устройств применяют электромашинные или статические преобразователи электроэнергии – выпрямители. При питании от источника постоянного тока, что характерно для автономных электроэнергетических систем и электроподвижного состава, двигатели которого питаются от сети постоянного тока, преобразующие устройства выполняют в виде релейно-контакторных систем или статических преобразователей (см. Преобразовательная техника ). В 70-е гг. 20 в. всё чаще и в регулируемых Э. стали применять трёхфазные асинхронные и синхронные двигатели, регулирование режимов работы которых осуществляют с помощью статических, в основном полупроводниковых, преобразователей частоты . Э. со статическими преобразователями энергии, выполненными на базе ртутных или полупроводниковых вентилей, называются вентильными Э. Единичная мощность вентильных Э. переменного тока, используемых, например, для шахтных мельниц, достигает 10 Мвт и более. Применение в Э. вентильных преобразовательных устройств позволяет решать наиболее экономичным образом задачу возврата энергии от электродвигателя источнику питания (см. Рекуперативное торможение ).
К важным показателям, определяющим характеристики устройств управления регулируемого Э., следует отнести плавность регулирования режима работы рабочего механизма, во многом зависящую от плавности регулирования приводного электродвигателя, и быстродействие. Релейно-контакторные устройства управления при сравнительно низком быстродействии обеспечивают ступенчатое (дискретное) регулирование режимов работы, быстродействующие статические системы – непрерывное регулирование. В простейших Э. относительно небольшой мощности операции, связанные с регулированием режима работы исполнительного механизма, производят при помощи ручного управления. Недостатком ручного управления является инерционность процесса регулирования и вызываемое этим снижение производительности исполнительного механизма, а также невозможность точного воспроизведения повторяющихся производственных процессов (например, при частых пусках). Регулирование режимов работы исполнительных механизмов Э. обычно осуществляют при помощи устройств автоматического управления. Такой Э., называется автоматизированным, широко используется в системах автоматического управления (САУ). В разомкнутых САУ изменение возмущающего воздействия (например, нагрузки на валу электродвигателя) вызывает изменение заданного режима работы Э. В замкнутых САУ благодаря связи между входом и выходом системы во всех режимах работы автоматически поддерживаются заданные характеристики, которые при этом можно и регулировать по определенному закону. В таких системах находят все более широкое применение ЭВМ. Одной из разновидностей автоматизированного Э. является следящий электропривод , в котором исполнительный орган с определённой точностью воспроизводит движения рабочего механизма, задаваемые управляющим органом. По способу действия различают следящие Э. с релейным, или дискретным, управлением и с непрерывным управлением. Следящие Э. характеризуются мощностями от нескольких вт до десятков и сотен квт, применяются в различных промышленных установках, военной технике и др. В 60-е гг. 20 в. в различных областях техники нашли применение Э. с числовым программным управлением (ЧПУ). Такой Э. используют в многооперационных металлорежущих станках, автоматических и полуавтоматических линиях. Создание автоматизированного Э. для обслуживания отдельных технологических операций и процессов – основа комплексной автоматизации производства. Для решения этой задачи необходимо совершенствование Э. как в направлении расширения диапазона мощностей Э. и возможностей регулирования, так и в направлении повышения надёжности и создания Э. с оптимальными габаритами и массой.
Лит.: Чиликин М. Г., Общий курс электропривода, 5 изд., М., 1971; Авен О. И., Доманицкий С. М., Бесконтактные исполнительные устройства промышленной автоматики, М. – Л., 1960; Электропривод систем управления летательных аппаратов. М., 1973; Основы автоматизированного электропривода, М., 1974.
Ю. М. Иньков.