355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ЭЛ) » Текст книги (страница 2)
Большая Советская Энциклопедия (ЭЛ)
  • Текст добавлен: 9 октября 2016, 03:37

Текст книги "Большая Советская Энциклопедия (ЭЛ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 2 (всего у книги 47 страниц)

Элеватор (механич.)

Элева'тор (лат. elevator, буквально – поднимающий, от elevo – поднимаю), машина непрерывного действия, транспортирующая грузы в вертикальном или наклонном направлениях. Различают Э. ковшовые, полочные, люлечные. Ковшовые Э. предназначены для подъёма по вертикали или крутому наклону (более 60°) насыпных грузов (пылевидных, зернистых, кусковых), полочные и люлечные Э. – для вертикального подъёма штучных грузов (деталей, мешков, ящиков и т. п.) с промежуточной погрузкой-разгрузкой. Ковшовые Э. используются в металлургии, машиностроении, химическом и пищевом производствах, на обогатительных фабриках и зернохранилищах, а полочные и люлечные – на предприятиях различных отраслей промышленности, базах, в магазинах, а также на складах, в том числе в виде подвижных стеллажей для хранения и выдачи изделий.

  Ковшовый Э. (рис. 1 ) представляет собой замкнутое полотно с тяговым органом, огибающим приводной и натяжной барабаны (звёздочки), и прикрепленными к нему ковшами. Несущей и ограждающей частью Э. является сварной стальной кожух с загрузочным и разгрузочным патрубками. Привод имеет электродвигатель, редуктор, муфты и останов, предотвращающий обратное движение полотна. На Э. применяется винтовое или грузовое натяжное устройство. Скорость движения полотна тихоходных Э. до 1 м /сек, быстроходных до 4 м /сек. Подача ковшовых Э. 5—500 м3 /ч, высота подъёма Н не превышает 60 м. Основными параметрами ковшовых Э. являются (рис. 1 ) ширина ВК, высота h, вылет А, полезная (до кромки передней стенки) вместимость ковша и расстояние (шаг) между ковшами aK . Быстроходные Э. имеют расставленные глубокие и мелкие ковши, для которых ak= (2,5—3) h, a в качестве тягового органа – конвейерную резинотканевую ленту или короткозвенную цепь. На тихоходных Э. применяются сомкнутые (ak = h ) с бортовыми направляющими остроугольные и со скруглённым днищем ковши, прикрепленные боковыми стенками к двум тяговым цепям.

  Полочный Э. (рис. 2 , а) имеет 2 вертикальные пластинчатые втулочные цепи, огибающие верхние тяговые и нижние натяжные звёздочки. К цепям жестко прикреплены захваты-полки, соответствующие форме и размерам груза. Загрузка полок производится вручную или автоматически с гребенчатого стола, а разгрузка в верхней части нисходящей ветви – при опрокидывании полок. Скорость движения цепей полочного Э. 0,2—0,3 м/сек.

  Люлечный Э. (рис. 2 , б) отличается от полочного способом крепления рабочего органа – люльки, которая благодаря шарнирному подвесу на всех участках трассы сохраняет горизонтальное положение днища. Загрузка люлечных Э. производится на восходящей, а разгрузка – на нисходящей ветви. Скорость движения полотна 0,2—0,3 м/сек.

  Лит.: Спиваковский А. О., Дьячков В. К., Транспортирующие машины, 2 изд., М., 1968; Машины непрерывного транспорта, под ред. В. И. Плавинского, М., 1969.

Рис. 1. Вертикальный ленточный ковшовый элеватор: 1 – тяговый орган; 2 – ковш; 3 – приводной барабан; 4 – останов; 5 – привод; 6 – разгрузочный патрубок; 7 – шпиндель натяжного устройства; 8 – загрузочный патрубок.

Рис. 2. Схемы вертикальных двухцепных элеваторов для штучных грузов: а – полочного; б – люлечного.

Элеваторная печь

Элева'торная печь, термическая печь периодического действия, отличающаяся от колпаковой печи тем, что нагревательный колпак неподвижен, а стенд с нагруженными на него изделиями поднимают к колпаку. После проведения термической обработки стенд вновь опускают на уровень пола цеха и выгружают изделия.

Элевация

Элева'ция (от франц. elevation – подъём, возвышение), термин в классическом танце. По определению А. Я. Вагановой , состоит из двух элементов: собственно Э. (высокий прыжок по воздуху) и баллона (способность исполнителя сохранять в воздухе позу и положение, как бы замирать в воздухе).

Элевон

Элево'н (от лат. elevator – поднимающий и элерон ), подвижная поверхность, расположенная вдоль задней кромки крыла самолёта и выполняющая функции руля высоты и элерона. С помощью системы управления правый и левый Э. могут отклоняться одновременно вверх-вниз (действуя, как обычные рули высоты) или в разные стороны (действуя, как элероны). Применяются в основном у самолётов с треугольным крылом, не имеющих горизонтального оперения (например, Ту-144, «Конкорд»). Для повышения эффективности элеронов и рулей на больших скоростях у самолётов с обычным горизонтальным оперением правую и левую половины стабилизатора, а также руля высоты иногда разъединяют, что позволяет им работать, как Э. (см. Оперение самолёта , Воздушные рули ).

Элевсин

Элевси'н, Элефсис (Eleusis), город в Аттике (Греция), в 22 км к 3. от Афин. Поселение в Э. существовало непрерывно с эпохи неолита. Во 2-м тыс. до н. э. – центр одного из государств ахейцев . Остатки оборонительных стен, дворца, царской усыпальницы и погребений знати указывают на значит, роль Э. в 16—12 вв. до н. э. Э. – культовый центр Деметры и Персефоны , где в 1-м тыс. до н. э. проводились элевсинские мистерии . Раскопками (с 1882) открыты часть священной дороги, ведущей из Афин в Э., остатки святилищ 6 в. до н. э. – 3 в. н. э. и др. Архитектурные памятники и комплексы (сохранились фрагментарно): некрополь с толосами и мегарон (оба – 15—13 вв. до н. э.), святилище с остатками расположенных один под другим телестерионов (залов для собраний, посвященных мистериальному культу) времён Перикла (основное строительство – архитектор Иктин) и других правителей, Малыми (около 40 дон. э.) и Большими (2-я половина 2 в. н. э.) пропилеями, древнеримские постройки (2 триумфальные арки, храм Артемиды). В Э. около 525 до н. э. родился Эсхил . В 396 н. э. город был разрушен готами . Археологический музей.

  Лит.: Noack F., Eleusis, Bd 1—2, В. – Lpz., 1927; Kourouniotes К., Eleusis. A guide to the excavations and museum, Athens, 1934; Mylonas G. Е., Eleusis and the Eleusinian mysteries, Princeton, 1961.

Элевсин. Общий вид комплекса святилищ.

Элевсинские мистерии

Элевси'нские мисте'рии, религиозный праздник в Аттике (Древняя Греция) в честь богинь Деметры и её дочери Персефоны (Коры), культ которых относится к числу древнейших аграрных культов. Э. м., совершавшиеся издревле в Элевсине , после присоединения Элевсина к союзу аттических общин (конец 7 в. до н. э.) стали общегосударственным афинским празднеством. Правом посвящения в Э. м. пользовались все жители Аттики без различия пола и социального положения, в том числе и рабы.

  Справлялись в конце сентября – начале октября; в их ритуал входили среди прочего торжественное шествие по священной дороге из Афин в Элевсин и собственно мистерии, т. е. представления, в которых изображались горести Деметры, потерявшей дочь, поиски её и радость по поводу возвращения Персефоны. Детали Э. м., включающих, по-видимому, пантомиму и декламацию священных текстов, неизвестны.

  Лит.: Новосадский Н. И., Елевсинские мистерии, СПБ, 1887; Foucart P., Les mysteres d'Eleusis, P., 1914; Deubner L., Attische Feste, [2 Aufl.], B., 1966.

Элевтеры

Элевте'ры (греч. eléutheroi, буквально – свободные), в Византии с 10 в. определённые категории зависимого сельского населения. Первоначально Э. – юридически свободные, безземельные поселенцы в феодальном поместье. Большинство Э., получая от землевладельцев земельные участки и постепенно приобретая на держание прочные владельческие права, слилось в 12 в. с париками . Часть Э. составляла в этот период челядь феодалов, другие входили в их дружины. В 13—15 вв. Э. – чаще всего неимущие работники в поместье, подвергавшиеся особенно тяжёлой эксплуатации.

  В Византии употреблялся термин «Э.» и в широком значении – все свободные подданные императора.

  Лит.: Острогорски Г., Елевтери, в кн.: Зборник филозофского факултета, књ. 1, Београд, 1948.

Элегантный

Элега'нтный (франц. élégant), изящный, изысканный.

Элегический дистих

Элеги'ческий ди'стих,двустишие , состоящее из гекзаметра и пентаметра : в античной литературе – основной размер элегии , эпиграммы и других жанров. Пример имитации Э. д. в русской поэзии:

  Слышу умолкнувший звук божественной эллинской речи,

  Старца великого тень чую смущенной душой.

  («На перевод Илиады» А. С. Пушкина).

Элегия

Эле'гия (греч. elegeia, от elegos – жалобная песня), литературный и музыкальный жанр; в поэзии – стихотворение средней длины, медитативного или эмоционального содержания (обычно печального), чаще всего – от первого лица, без отчётливой композиции. Э. возникла в Греции в 7 в. до н. э. (Каллин, Мим-нерм, Тиртей, Феогнид), первоначально имела преимущественно морально-политическое содержание; потом, в эллинистической и римской поэзии (Тибулл, Проперций, Овидий), преобладающей становится любовная тематика. Форма античной Э. – элегический дистих . В подражание античным образцам Э. пишутся в латинской поэзии средних веков и Возрождения; в 16—17 вв. Э. переходит в новоязычную поэзию (П. Ронсар во Франции, Э. Спенсер в Англии, М. Опиц в Германии, Я. Кохановский в Польше), но долго считается второстепенным жанром. Расцвет наступает в эпоху предромантизма и романтизма («унылые Э.» Т. Грея, Э. Юнга, Ш. Мильвуа, А. Шенье, А. Ламартина, «любовные Э.» Э. Парни, реставрация античной Э. в «Римских элегиях» Гёте); затем Э. постепенно теряет жанровую отчётливость, и термин выходит из употребления, оставаясь лишь как знак традиции («Дуинские элегии» Р. М. Рильке, «Буковские элегии» Б. Брехта). В русской поэзии Э. появляется в 18 в. у В. К. Тредиаковского и А. П. Сумарокова, переживает расцвет в творчестве В. А. Жуковского, К. Н. Батюшкова, А. С. Пушкина («Погасло дневное светило...», «Редеет облаков...», «Безумных лет угасшее веселье...»), Е. А. Баратынского, Н. М. Языкова; со 2-й половины 19 в. слово «Э.» употребляется лишь как заглавие циклов (А. А. Фет) и отдельных стихотворений некоторых поэтов (А. Ахматова, Д. Самойлов).

  Э. в музыке – воплощение элегического стихотворения (например, романс «Для берегов отчизны дальней» Бородина, «Элегия» Массне для голоса с сопровождением фортепьяно и виолончели). По образцу таких сочинений создаются и чисто инструментальные пьесы (Э. из серенады для струнного оркестра Чайковского, Э. для фортепьяно Рахманинова, Листа и др.).

  Лит.: Фризман Л. Г., Жизнь лирического жанра. Русская элегия от Сумарокова до Некрасова, М., 1973.

  М. Л. Гаспаров (Э. в литературе)

Элейская школа

Эле'йская шко'ла, школа древнегреческой философии 6—5 вв. до н. э. Основатель – Ксенофан Колофонский, главные представители – Парменид и Зенон из Элеи (греческая колония в Южной Италии, отсюда название), Мелисс Самосский. Э. ш. впервые противопоставила мышление (и мыслимое бытие) чувственному восприятию (и чувственно-воспринимаемому бытию), отмечая неустойчивость, текучесть человеческих ощущений и чувственного бытия и отводя главную роль в познании мышлению. Э. ш. впервые в истории философии выдвинула и сделала основой философствования понятие единого бытия. Оно понимается Э. ш. как непрерывное, неизменное, нераздельное, одинаково присутствующее в каждом мельчайшем элементе действительности, исключающее какую-либо множественность вещей и их движение (знаменитые рассуждения Зенона Элейского о невозможности движения и др.). В дальнейшем понятие единого неизменного бытия послужило одним из источников философии Платона и неоплатонизма .

  Фрагменты: Die Fragmente der Vorsokratiker, griechisch und deutsch, von Н. Diels, hrsg. von W. Kranz, 9 Aufl., Bd I, B., 1959, S. 21, 28, 29, 30.

  Лит.: Мандес М. И., Элеаты. Филологические разыскания в области истории греческой философии, Од., 1911; Лосев А. Ф., История античной эстетики. (Ранняя классика), М., 1963. с. 327—39; Prauss G., Platon und der logische Eleatismus, B., 1966.

  А. Ф. Лосев.

Элективные культуры

Электи'вные культу'ры, клетки микроорганизмов, выращенные на избирательных (элективных) питательных средах. Предложены русским микробиологом С. Н. Виноградским . Благодаря специально подобранному составу элективных сред создаются условия, благоприятные для преимущественного роста микроорганизмов с определёнными физиологическими свойствами. Например, при посеве почвы, воды или грунта водоёмов в питательную среду, в состав которой входят глюкоза и ряд минеральных солей, но отсутствуют соединения, содержащие азот, на ней начинают расти азотфиксирующие микроорганизмы . Э. к. бактерий, разлагающих целлюлозу, получают на питательной среде, содержащей в качестве единственного источника углерода целлюлозу. Выделению чистых культур этих микробов всегда предшествует получение их Э. к. В присутствии факторов роста (витаминов, аминокислот и др.) Э. к. могут быть получены при внесении в питательную среду меньшего количества клеток бактерий, что позволяет обнаруживать в почве и воде в 4—10 раз больше микробов, чем при посевах на среды без факторов роста.

  А. А. Имшенецкий.

Элективные среды

Электи'вные сре'ды (от франц. électif – избранный), специальные питательные среды, создающие более благоприятные условия для роста определённого вида микроорганизмов. Подробнее см. в статьях Питательные среды , Элективные культуры .

Электра (звезда)

Эле'ктра (17 Тельца), звезда 3,7 визуальной звёздной величины , входит в состав рассеянного звёздного скопления Плеяды . Светимость в 97 раз больше солнечной, расстояние от Солнца 62 парсека.

Электра (мифологич.)

Эле'ктра, в древнегреческой мифологии дочь Агамемнона и Клитемнестры . В сохранившихся трагедиях афинских драматургов 5 в. до н. э. («Э.» Софокла и Еврипида, «Хоэфоры» Эсхила) при различии в оттенках основным содержанием образа Э. является поглощающая всё её существо жажда мести убийцам отца – Клитемнестре и её любовнику Эгисфу и страстное ожидание брата Ореста , который должен осуществить эту месть. К образу Э. обращались драматурги, начиная с эпохи Возрождения (П. Ж. Кребийон, Вольтер, И. Бодмер, Г. Гофмансталь, А. Сюарес и др.).

Электренай

Эле'ктренай, посёлок городского типа в Тракайском районе Литовской ССР. Расположен в 5 км от ж.-д. станции Каугонис и в 50 км к С.-3. от Вильнюса. Возник при строительстве Литовской ГРЭС им. В. И. Ленина (проект 1959, главный инженер В. Н. Трусов), филиал Каунасского политехникума. С 1960 застраивался по принципу свободной, функционально обоснованной планировки 4—5-этажными жилыми домами из крупных железобетонных панелей (генеральный план 1960, архитекторы Б. Касперавичене-Палукайтите и К. Бучас). Новое здание средней школы с применением сборного железобетонного каркаса, построенное по типовому проекту (архитектора Л. Мардосас, в интерьере – каменная мозаика «Мир», 1963, М. Юшкевичюте-Мачюлене).

Электреты

Электре'ты,диэлектрики , сохраняющие поляризованное состояние длительное время после снятия внешнего воздействия, вызвавшего поляризацию. Если вещество, молекулы которого обладают постоянными дипольными моментами, расплавить и поместить в сильное постоянное электрическое поле, то молекулы частично ориентируются по полю. При охлаждении расплава до затвердевания и выключения электрического поля в затвердевшем веществе поворот молекул затруднён, и они длительное время сохраняют ориентацию. Э., изготовленный таким способом, может оставаться в поляризованном состоянии в течение довольно длительного времени (от нескольких суток до многих лет). Первый такой Э. был изготовлен из воска японским физиком Ёгути в 1922.

  Остаточная поляризация диэлектрика может быть обусловлена также ориентацией «квазидиполей» в кристаллах (2 вакансии противоположного знака, примесный атом и вакансия и т. п.), миграцией носителей заряда к электродам, а также инжекцией носителей заряда из электродов или межэлектродных промежутков в диэлектрик во время поляризации. Носители могут быть введены искусственно, например облучением диэлектрика электронным пучком. Поляризация Э. со временем уменьшается, что связано с релаксационными процессами (см. Релаксация ), а также с перемещением носителей заряда во внутреннем поле Э.

  Практически все известные органические и неорганические диэлектрики могут быть переведены в электретное состояние. Стабильные Э. получены из восков и смол (канаубский воск, пчелиный воск, парафин и т. д.), из полимеров (полиметилметакрилат, поливинилхлорид, поликарбонат, политетрафторэтилен и др.), неорганических поликристаллических диэлектриков (титанаты щёлочноземельных металлов, стеатит, фарфор и другие керамические диэлектрики), монокристаллических неорганических диэлектриков (например, галогениды щелочных металлов, корунд), стекол и ситаллов и др.

  Стабильные Э. можно получить, нагревая диэлектрики до температуры, меньшей или равной температуре плавления, а затем охлаждая их в сильном электрическом поле (термоэлектреты), освещая в сильном электрическом поле (фотоэлектреты), радиоактивным облучением (радиоэлектреты), просто помещая в сильное электрическое поле (электроэлектреты), в магнитное поле (магнетоэлектреты), при застывании органических растворов в электрическом поле (криоэлектреты), с помощью механической деформации полимеров (механоэлектреты), путём трения (трибоэлектреты), помещая диэлектрик в поле коронного разряда (коронноэлектреты). Все Э. имеют стабильный поверхностный заряд ~10-8к/см2 .

  Э. применяются как источники постоянного электрического поля (электретные микрофоны и телефоны, вибродатчики, генераторы слабых переменных сигналов и т. п.), для создания электрического поля в электрометрах , электростатического в вольтметрах и др. Э. могут служить чувствительными элементами в устройствах дозиметрии, электрической памяти, как фокусирующие устройства в барометрах, гигрометрах и газовых фильтрах, пьезодатчиками и др. Фотоэлектреты применяются в электрофотографии.

  Лит.: Губкин А. Н., Электреты, М., 1961; Фридкин В. М., Желудев И. С., Фотоэлектреты и электрофотографический процесс, М., 1960; Браун В., Диэлектрики, пер. с англ., М., 1961; Физический энциклопедический словарь, т. 5, М., 1966, с. 442; Лущейкин Г. А., Полимерные электреты, М., 1976.

  А. Н. Губкин.

Электрификации сельского хозяйства институт

Электрифика'ции се'льского хозя'йства институ'т Всесоюзный научно-исследовательский (ВИЭСХ) ВАСХНИЛ (Москва). Создан в 1931. Отделы (1978): комплексной механизации и электрификации молочных ферм и комплексов; технологических линий производства кормов; электроснабжения и эксплуатации электроустановок; автоматизации свиноводческих, птицеводческих и овцеводческих ферм и комплексов и др.; лаборатории: применения оптического излучения, электрифицированных тепловых процессов и др.; конструкторское бюро. Два филиала (Тамбов, Смоленск), Истринское опытное хозяйство (Московская область). Исследования по вопросам электрификации сельского хозяйства. Институт имеет очную и заочную аспирантуру. Издаёт «Научные труды по электрификации сельского хозяйства», «Научно-технический бюллетень по электрификации сельского хозяйства» и др.

Электрификация

Электрифика'ция [от электричество и ...фикация ], широкое внедрение в народное хозяйство электрической энергии, вырабатываемой централизованно на электростанциях, объединённых линиями электропередачи в энергосистемы . Э. позволяет правильно использовать природные энергетические ресурсы, более эффективно размещать производительные силы, механизировать и автоматизировать производство, увеличивать производительность труда. Начало Э. относится к концу 19 в., когда были созданы электрические генераторы для производства электроэнергии и освоена её передача на значительные расстояние.

  В 1879 в Петербурге построена ТЭС для освещения Литейного моста, несколькими годами позже в Москве – для освещения Лубянского пассажа. Одна из первых ТЭС общего пользования была построена Т. А. Эдисоном в 1882 в Нью-Йорке. В 1913 Россия занимала 8-е место в мире по выработке электроэнергии. Электростанции принадлежали главным образом иностранному капиталу. Крупнейшее акционерное «Общество электрического освещения 1886» контролировалось немецкой фирмой «Сименс и Гальске», строившей ТЭС в Петербурге, Москве, Баку, Лодзи и других городах. Мощность электростанций в России в 1900 составляла 80 Мвт, а в 1913 – 1141 Мвт; они производили 2 млрд. квт ч электроэнергии.

  Э. в СССР. После Октябрьской революции 1917 началось восстановление и реконструкция электроэнергетического хозяйства страны, разрушенного в годы 1-й мировой (1914—18) и Гражданской (1918—20) войн. В декабре 1917—июне 1918 были национализированы крупнейшие электростанции страны. Одновременно началась подготовка к строительству крупных ГЭС и районных ТЭС. В 1920 по инициативе В. И. Ленина был разработан первый план Э. России – план ГОЭЛРО , в основу которого была положена ленинская формула «Коммунизм – это есть Советская власть плюс электрификация всей страны». В 1922 введены в строй Каширская ГРЭС и «Уткина заводь» (ныне 5-я ГРЭС Ленэнерго); в 1924 – Кизеловская ГРЭС на Урале, в 1925 – Горьковская и Шатурская ГРЭС. 8 ноября 1927 состоялась торжественная закладка Днепровской ГЭС. К 1931 основные задания плана ГОЭЛРО по наращиванию мощности районных электростанций и по производству электроэнергии были выполнены. В годы предвоенных пятилеток (1929—40) созданы крупные энергосистемы на территории Украины, Белоруссии, Северо-Запада и др. В начале Великой Отечественной войны 1941—45 оборудование многих электростанций было эвакуировано в тыловые районы, где в рекордные сроки вводились в эксплуатацию новые энергетические мощности. За 1942—44 введено 3,4 Гвт, главным образом на Урале, в Сибири, Казахстане и Средней Азии. За годы войны разрушена 61 крупная электростанция общей мощностью около 5 Гвт, вывезено в Германию 14 тыс. котлов, 1,4 тыс. турбин и свыше 11 тыс. электродвигателей.

  В послевоенные годы Э. страны развивалась быстрыми темпами. К 1947 СССР вышел на 2-е место в мире (после США) по производству электроэнергии, а в 1975 производил электроэнергии больше, чем ФРГ, Великобритания, Франция, Италия, Швеция и Австрия вместе взятые. Увеличился среднегодовой прирост производства электроэнергии. Если в 1966—70 он составлял в среднем за год 46,9 млрд. квт ·ч, то в 1971—77 – 58,4 млрд. квт ·ч. Установленная мощность электростанций выросла за 1966—77 почти в 2 раза, а доля СССР в мировом производстве электроэнергии в 1977 увеличилась до 16% против 9,2% в 1950. Данные о динамике производства электроэнергии в СССР приведены в табл. 1.

Табл. 1. – Производство электроэнергии и мощность электростанций СССР


Годы Производство электроэнергии, млрд. квт·чУстановленная мощность, Гвт
всего в том числе на ТЭС всего в том числе на ТЭС
1921 0,5 0,5 1,2 1,2
1930 8,4 7,8 2,9 2,7
1940 48,6 43,2 11,2 8,6
1950 91,2 78,5 19,6 16,4
1960 292,3 241,4 66,7 51,9
1970 740,9 616,5 166,2 134,8
1977 1150,0 968,2 237,8 185,5

  Основу Э. составляют тепловые электростанции (ТЭС), производящие свыше 80% всей электроэнергии (см. Теплоэнергетика , Теплоэлектроцентраль ) Для ТЭС характерна высокая степень концентрации генерирующих мощностей. Крупнейшие ГРЭС в стране – Запорожская и Углегорская мощностью 3,6 Гвт каждая. В 1977 эксплуатировалось 51 ТЭС мощностью свыше 1 Гвт каждая, в работе было 137 энергоблоков мощностью по 300 Мвт, головные энергоблоки по 800 Мвт на Славянской, Запорожской и Углегорской ГРЭС, сооружался блок мощностью 1200 Мвт на Костромской ГРЭС.

  Развитие гидроэнергетики шло по пути комплексного использования водных ресурсов для нужд электроснабжения, орошения, водного транспорта, водоснабжения и рыбоводства. Общая мощность ГЭС (см. Гидроэлектрическая станция ) составила в 1977 45,2 Гвт, а выработка гидроэлектроэнергии – 147 млрд. квт ·ч (13% общей выработки в стране). Крупнейшая электростанция в мире Красноярская ГЭС им. 50-летия СССР в 1973 достигла мощности 6 Гвт (12 гидроагрегатов по 500 Мвт каждый). В 1977 работало 20 ГЭС мощностью свыше 500 Мвт каждая, составляющие около 1 /3 всех мощностей ГЭС. Освоено строительство ГЭС в условиях вечной мерзлоты. Введены в строй Усть-Хантайская ГЭС в Таймырском национальном округе, Вилюйская ГЭС в Якутской АССР. К середине 70-х гг. в основном закончено сооружение Волжского и Днепровского каскадов ГЭС, строится крупнейший в стране Ангаро-Енисейский каскад, обеспечивающий около половины выработки электроэнергии ГЭС страны. Введены в эксплуатацию гидроаккумулирующая электростанция — Киевская ГАЭС мощностью 225 Мвт и первая опытная Кислогубская приливная электростанция (ПЭС).

  После пуска в 1954 первой атомной электростанции (АЭС) в Обнинске ядерная энергетика превратилась в одно из наиболее перспективных направлений Э. В 1975 все АЭС произвели 22 млрд. квт (ч электроэнергии (свыше 2% общей выработки). Крупнейшая в СССР в 1977 – Ленинградская АЭС, на которой установлены два многоканальных уран-графитовых реактора мощностью 1 Гвт каждый. В 1976 введён в действие первый реактор такого же типа на Курской АЭС, в 1977 – на Чернобыльской АЭС, работают реакторы водо-водяного типа мощностью 440 Мвт на Нововоронежской, Кольской и Армянской АЭС. В 1973 был пущен реактор на быстрых нейтронах мощностью 350 Мвт на Шевченковской АЭС, которая, кроме производства электроэнергии, осуществляет также опреснение морской воды. Введена в строй теплофикационная Билибинская АЭС в Магаданской области. Строится (1977) ряд крупных АЭС с реакторами мощностью 1 Гвт (Калининская, Смоленская, Южно-Украинская, Ровенская и др.).

  Большое значение для развития Э. имело начавшееся в 1942 создание объединённых энергосистем (ОЭС). Соединение энергосистем Центра, Урала и Среднего Поволжья положило начало формированию Единой энергосистемы Европейской части СССР (ЕЕЭС СССР). С подключением к ней ОЭС Юга, Северо-Запада, Закавказья и Северного Кавказа, Северного Казахстана, Кольской, Омской энергосистем началось формирование Единой электроэнергетической системы СССР (ЕЭС). В 1977 в ЕЭС входило более 900 электростанций, которые производили 867 млрд. квт ·ч электроэнергии (75,4% общей выработки СССР). Помимо ЕЭС, действуют объединённые энергосистемы (мощность в 1977): Сибири (30,1 Гвт ) и Средней Азии (16,1 Гвт ). Централизованное энергоснабжение через все ОЭС составляло в 1977 93,5%.

  Структура потребления электроэнергии в СССР в 1965—77 характеризуется данными табл. 2.

Табл. 2. – Баланс электроэнергии в народном хозяйстве СССР, млрд. квт×ч


1965 1970 1977
Производство электроэнергии 506,7 740,9 1150,1
Потребление электроэнергии 505,2 735,7 1138,5
В том числе:
Промышленностью 349,4 488,4 712,2
Строительством 11,9 15,0 23,2
Транспортом 37,1 54,4 86,9
Сельским хозяйством 21,1 38,5 88,3
Другими отраслями 50,6 81,1 133,7
Потери в сети общего пользования 35,1 58,3 94,2
Экспорт 1,5 5,2 11,6

  Основные потребители электроэнергии в промышленности – машиностроение и металлообработка, топливная, химическая и нефтехимическая отрасли, чёрная и цветная металлургия. Почти 3 /4 всей потребляемой промышленностью электроэнергии расходуется в электродвигателях и осветительных приборах. Э. промышленности позволила создать новые отрасли, основанные на технологическом использовании электроэнергии (производство алюминия, ферросплавов, качественных сталей, цветных металлов и различных электрохимических производств, а также электросварку). Электровооружённость труда в промышленности в 1976 превысила уровень 1950 более чем в 4 раза.

  Резкое увеличение в 1966—77 протяжённости газо-, нефте– и нефтепродуктопроводов (более чем в 2 раза) привело к росту потребления электроэнергии в этом виде транспорта: с 5,6 млрд. квт ·ч до 21,5 млрд. квт ·ч. Развитие всех видов городского транспорта за тот же период (трамвай, троллейбусы и метрополитен) увеличило расход электроэнергии на эти нужды с 3,9 млрд. квт ·ч до 7,5 млрд. квт ·ч. Значительно возросла техническая оснащённость городского электрифицированного транспорта. Получила дальнейшее развитие электрификация железных дорог .

  Э. сельского хозяйства – одно из важнейших условий его развития на индустриальной основе. Электроснабжение колхозов и совхозов от государственных энергосистем позволяет демонтировать мелкие неэкономичные сельские электростанции. Если в 1956 энергосистемы давали сельскому хозяйству свыше 30% электроэнергии, то в 1976 – свыше 90%. Резко возросла протяжённость сельских воздушных электросетей (в 1965 – 1,9 млн. км, в 1970 – 2,7 млн. км и в 1975 – 3,1 млн. км ). В 1975 суммарная мощность электродвигателей в сельском хозяйстве составила 45 Гвт. Э. сельского хозяйства охватывает процессы обработки земли, с.-х. продукции и механизацию трудоёмких работ в животноводстве и птицеводстве, в ремонтных мастерских и подсобных предприятиях. Электродойка коров в колхозах и совхозах в 1976 составила 84% (в % ко всему поголовью скота), электрострижка овец – 89% ; подача воды электроагрегатами производилась на 80% ферм крупного рогатого скота и 92% свиноводческих ферм и т. д. Электроэнергия применяется также в тепловых процессах (инкубаторные установки, облучение молодняка, обогрев теплиц, животноводческих и птицеводческих ферм, электрохолодильные установки и т. п.). Электровооружённость труда в сельском хозяйстве за 1971—76 увеличилась более чем в 2 раза и достигла 1962 квт ·ч на одного работника в год.

  Э. в зарубежных социалистических странах. Удельный вес производства электроэнергии социалистическими странами (включая СССР) в мировом производстве электроэнергии составлял в 1977 24,3% (в 1950 – 15% ). Данные о производстве электроэнергии в социалистических странах приведены в табл. 3.

Табл. 3. – Производство электроэнергии в зарубежных социалистических странах, млрд. квт ·ч


1965 1970 1977
Албания 0,3 0,9 1,8
Болгария 10,2 19,5 29,7
Венгрия 11,2 14,5 23,4
ГДР 53,6 67,7 92,0
СРВ 1,2 1,8 3,0*
КНР 68,0** 74,0** 125**
КНДР 13,3 16,5 28,0
Куба 3,4 4,9 7,7
Монголия 0,3 0,5 1,1
Польша 43,8 64,5 109,4
Румыния 17,2 35,1 59,9
Чехословакия 34,2 45,2 66,4
Югославия 15,5 26,0 48,6

  * Данные за 1976. ** Оценка.

  Основу энергоснабжения в социалистических странах составляют ТЭС, производящие 80—99% электроэнергии (за исключением Югославии, КНР и КНДР). Топливом служат главным образом каменные и бурые угли [кроме Румынии, где основное топливо (свыше 50% ) – природный газ]. Крупнейшая ГЭС – Железные Ворота (Джердан) на р. Дунай (на границе Югославии и Румынии) мощностью 2100 Мвт. В ряде стран начала развиваться ядерная энергетика: введены в действие АЭС в ГДР, НРБ, ЧССР, строятся АЭС в ВНР, Югославии и др. Наиболее протяжёнными линиями электропередачи напряжением в 110 кв и выше располагают (в тыс. км ). ПНР – 29,7, ГДР – 22,5, Румыния – 17,3, Чехословакия – 14,6. Энергетические системы европейских стран – членов СЭВ связаны между собой и входят в объединённую энергосистему «Мир». В 1962 для организации параллельной работы энергосистем европейских стран – членов СЭВ в Праге создано Центральное диспетчерское управление (см. также Энергетические объединения ).


    Ваша оценка произведения:

Популярные книги за неделю