355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ЭЛ) » Текст книги (страница 19)
Большая Советская Энциклопедия (ЭЛ)
  • Текст добавлен: 9 октября 2016, 03:37

Текст книги "Большая Советская Энциклопедия (ЭЛ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 19 (всего у книги 47 страниц)

  Перспективы развития Э. Одна из основных проблем, стоящих перед Э., связана с требованием увеличения количества обрабатываемой информации вычислительными и управляющими электронными системами с одновременным уменьшением их габаритов и потребляемой энергии. Эта проблема решается путём создания полупроводниковых интегральных схем, обеспечивающих время переключения до 10-11сек; увеличения степени интеграции на одном кристалле до миллиона транзисторов размером 1—2 мкм; использования в интегральных схемах устройств оптической связи и оптоэлектронных преобразователей (см. Оптоэлектроника ), сверхпроводников ; разработки запоминающих устройств ёмкостью несколько мегабит на одном кристалле; применения лазерной и электроннолучевой коммутации; расширения функциональных возможностей интегральных схем (например, переход от микропроцессора к микроЭВМ на одном кристалле); перехода от двумерной (планарной) технологии интегральных схем к трёхмерной (объёмной) и использования сочетания различных свойств твёрдого тела в одном устройстве; разработки и реализации принципов и средств стереоскопического телевидения , обладающего большей информативностью по сравнению с обычным; создания электронных приборов, работающих в диапазоне миллиметровых и субмиллиметровых волн, для широкополосных (более эффективных) систем передачи информации, а также приборов для линий оптической связи; разработки мощных, с высоким кпд, приборов СВЧ и лазеров для энергетического воздействия на вещество и направленной передачи энергии (например, из космоса). Одна из тенденций развития Э. – проникновение её методов и средств в биологию (для изучения клеток и структуры живого организма и воздействия на него) и медицину (для диагностики, терапии, хирургии). По мере развития Э. и совершенствования технологии производства электронных приборов расширяются области использования достижения Э. во всех сферах жизни и деятельности людей, возрастает роль Э. в ускорении научно-технического прогресса.

  А. И. Шокин.

Электронная автоматическая телефонная станция

Электро'нная автомати'ческая телефо'нная ста'нция (ЭАТС), телефонная станция , в которой коммутация линий и каналов, а также управление процессами коммутации осуществляются устройствами на электронных элементах (полупроводниковых приборах , интегральных схемах , ферритах и т. д.). Принципы построения коммутационных устройств ЭАТС определяются главным образом методами разделения каналов – пространственного, частотного, временного разделения (коммутации); при этом методы частотного и временного разделения аналогичны методам уплотнения линий связи (см. Линии связи уплотнение ). Распространение (1978) получили ЭАТС, в которых используются пространственная или (и) временная коммутация линий и каналов (см. Электросвязь ). К ЭЛТС с пространственной коммутацией относятся станции, выполненные на основе т. н. пространственных полупроводниковых соединителей. Пространственная коммутация используется в основном в ЭАТС малой и средней ёмкости. В ЭАТС с временной коммутацией линия связи или групповой тракт связи посредством электронных коммутаторов в определённые моменты предоставляется для передачи импульсных сигналов каждого канала. В таких ЭАТС для разделения сообщений применяют импульсную модуляцию колебаний : в оконечных ЭАТС малой и средней ёмкости – амплитудно-импульсную и широтно-импульсную; в транзитных ЭАТС большой и средней ёмкости – импульсно-кодовую (ИКМ). Наиболее перспективны системы с ИКМ, при использовании которых открывается возможность объединения (интеграции) процессов передачи и коммутации и создания на этой основе интегральных цифровых систем связи. В англоязычной научно-технической литературе к ЭАТС с пространственной коммутацией относят также механоэлектронные автоматические телефонные станции (построенные на миниатюрных многократных координатных соединителях ) и квазиэлектронные автоматические телефонные станции .

  Лит.: Лутов М. Ф., Электронные АТС, в кн.: Радиотехника и электросвязь, М., 1966 (ВИНИТИ. Итоги науки и техники); Прагер Э., Трнка Я., Электронные телефонные станции, пер. с чешск., М., 1976.

  М. Ф. Лутов.

Электронная вычислительная машина

Электро'нная вычисли'тельная маши'на (ЭВМ), вычислительная машина , основные функциональные элементы которой (логические, запоминающие, индикационные и т. д.) выполнены на электронных лампах или полупроводниковых приборах, либо на интегральных микросхемах и т. д. Первые ЭВМ, как аналоговые (см. Аналоговая вычислительная машина ), так и цифровые (см. Цифровая вычислительная машина ), появились в середине 40-х гг. 20 в. Благодаря преимуществам ЭВМ по сравнению с вычислительными машинами других типов (высокое быстродействие, компактность, надёжность, автоматизация вычислительного процесса и др.) они получили преимущественное использование при научно-технических расчётах, обработке информации (в том числе планировании, учёте, прогнозировании и др.), автоматическом управлении. См. также Вычислительная техника , Кибернетика техническая , Сеть вычислительных центров , Управления автоматизированная система , Управление в технике.

Электронная и ионная оптика

Электро'нная и ио'нная о'птика, наука о поведении пучков электронов и ионов в вакууме под воздействием электрических и магнитных полей. Т. к. изучение электронных пучков началось ранее, чем ионных, и первые используют гораздо шире, чем вторые, весьма распространён термин «электронная оптика». Э. и и. о. занимается главным образом вопросами формирования, фокусировки и отклонения пучков заряженных частиц, а также получения с их помощью изображений, которые можно визуализировать на люминесцирующих экранах или фотографических плёнках. Такие изображения принято называть электроннооптическими и ионнооптическими изображениями. Развитие Э. и и. о. в значительной степени обусловлено потребностями электронной техники.

  Зарождение Э. и и. о. связано с созданием в конце 19 в. электроннолучевой трубки (ЭЛТ). В первой осциллографической ЭЛТ, изготовленной в 1897 К. Ф. Брауном , электронный пучок отклонялся магнитным полем. Отклонение с помощью электростатического поля осуществил в своих опытах по определению отношения заряда электрона к его массе Дж. Дж. Томсон , пропуская пучок через плоский конденсатор, помещенный внутри ЭЛТ. В 1899 немецкий физик И. Э. Вихерт применил для фокусировки электронного пучка в ЭЛТ катушку из изолированной проволоки, по которой протекал электрический ток. Однако лишь в 1926 немецкий учёный Х. Буш теоретически рассмотрел движение заряженных частиц в магнитном поле такой катушки и показал, что она пригодна для получения правильных электроннооптических изображений и, следовательно, является электронной линзой (ЭЛ). Последующая разработка электронных линз (магнитных и электростатических) открыла путь к созданию электронного микроскопа , электроннооптического преобразователя и ряда др. приборов, в которых формируются правильные электроннооптические изображения объектов – либо испускающих электроны, либо тем или иным образом воздействующих на электронные пучки. Конструирование специализированных ЭЛТ для телевизионной и радиолокационной аппаратуры, для записи, хранения и воспроизведения информации и т. п. привело к дальнейшему развитию разделов Э. и и. о., связанных с управлением пучками заряженных частиц. Значительное влияние на развитие Э. и и. о. оказала разработка аппаратуры для анализа потоков электронов и ионов (бета-спектрометров , масс-спектрометров и других аналитических приборов). В Э. и и. о., как правило, не рассматриваются вопросы, возникающие в сверхвысоких частот технике , лишь изредка рассматриваются процессы в электронных лампах , ускорителях заряженных частиц и других приборах и устройствах, специфика которых отделяет их от основных направлений Э. и и. о.

  Для решения большинства задач Э. и и. о. достаточно рассматривать движение заряженных частиц в рамках классической механики , т. к. волновая природа частиц (см. Корпускулярно-волновой дуализм ) в этих задачах практически не проявляется. В таком приближении Э. и и. о. носит название геометрической Э. и и. о., что обусловлено наличием глубокой аналогии между геометрической Э. и и. о. и геометрической оптикой световых лучей, которая выражается в том, что поведение пучков заряженных частиц в электрических и магнитных полях во многом подобно поведению пучков лучей света в неоднородных оптических средах. В основе указанной аналогии лежит более общая аналогия между классической механикой и световой геометрической оптикой, установленная У. Р. Гамильтоном , доказавшим в 1834, что общее уравнение механики (уравнение Гамильтона – Якоби) по форме подобно оптическому уравнению эйконала. Как и в световой геометрической оптике, в геометрической Э. и и. о. вводится понятие преломления показателя , при вычислении погрешностей изображения – аберраций, большая часть которых аналогична аберрациям оптических систем , — зачастую используется метод эйконала. Когда приближение геометрической Э. и и. о. недостаточно, например при исследовании разрешающей способности электронного микроскопа, привлекаются методы квантовой механики .

  В электроннооптических устройствах широко применяются электрические и магнитные поля, обладающие симметрией вращения относительно оптической оси системы. ЭЛ и электронные зеркала с такими полями называются осесимметричными. Электрические поля с симметрией вращения создаются электродами в виде цилиндров, чашечек, диафрагм с круглыми отверстиями и т. п. (рис. 2 ). Для получения осесимметричных магнитных полей используют электромагниты (иногда постоянные магниты) с полюсами в форме тел вращения или тороидальные катушки с намоткой из изолированной проволоки, по которой пропускается электрический ток (рис. 3 ). Осесимметричные линзы и зеркала создают правильные электроннооптические изображения, если заряженные частицы движутся достаточно близко к оси симметрии поля, а их начальные скорости мало отличаются друг от друга. Если эти условия не выполняются, погрешности изображения становятся весьма значительными. Когда предмет и изображение лежат за пределами поля, осесимметричные ЭЛ – всегда собирающие. В электростатических осесимметричных ЭЛ, как и в светооптических линзах со сферическими поверхностями, изображение может быть только прямым или перевёрнутым, в магнитных ЭЛ – оно дополнительно повёрнуто на некоторый угол. Электроннооптические свойства поля с симметрией вращения определяются положением его кардинальных точек, аналогичных кардинальным точкам осесимметричных светооптических изображающих систем: двух фокусов, двух главных точек и двух узловых точек. Построение изображения производится по правилам световой геометрической оптики. Электростатическим осесимметричным полям свойственны те же пять видов геометрических аберраций третьего порядка, что и светооптическим центрированным системам сферических поверхностей: сферическая аберрация , астигматизм , кривизна поля изображения, дисторсия и кома . В магнитных полях к ним добавляются ещё три: т. н. анизотропные дисторсия, астигматизм и кома. Кроме того, существуют три вида хроматических аберраций (в электростатических полях – два), обусловленных некоторым неизбежным разбросом энергий поступающих в поле частиц. Вообще говоря, аберрации полей с симметрией вращения в сопоставимых условиях значительно превышают по величине аберрации светооптических центрированных систем, т. е. ЭЛ и электронные зеркала по качеству существенно уступают светооптическим. Вопрос о компенсации аберраций или их уменьшении является одним из основных в теоретических Э. и и. о.

  Существуют и другие типы ЭЛ и зеркал, поля которых обладают различными видами симметрии. Они формируют изображения точечных объектов в виде отрезков линий, однако иногда способны осуществлять и стигматическую фокусировку (точка в точку). Так называемые цилиндрические электростатические и магнитные линзы и зеркала создают линейные изображения точечных предметов. Поля в таких ЭЛ «двумерны» (их напряжённости описываются функциями только двух декартовых координат) и симметричны относительно некоторой средней плоскости, вблизи которой движутся заряженные частицы. В ряде аналитических электровакуумных приборов высококачественная фокусировка необходима только в одном направлении. В этих случаях целесообразно применять так называемые трансаксиальные электростатические ЭЛ или трансаксиальные электронные зеркала, аберрации которых в средней плоскости очень малы (сравнимы с аберрациями светооптических линз). Для воздействия на пучки заряженных частиц с большими энергиями используют квадрупольные ЭЛ (электрические и магнитные). Для отклонения пучков заряженных частиц используют электроннооптические устройства с электрическими или магнитными полями, направленными поперёк пучка. Простейшим электрическим отклоняющим элементом является плоский конденсатор (рис. 4 ). В ЭЛТ с целью уменьшения отклоняющего напряжения применяют системы с электродами более сложной формы. Магнитные поля, предназначенные для отклонения пучков, создаются электромагнитами (рис. 5 ) или проводниками, по которым течёт ток.

  Очень разнообразны формы отклоняющих электрических и магнитных полей, применяемых в аналитических приборах, в которых используется свойство этих полей разделять (разрешать) заряженные частицы по энергии и массе. Широко используется также их свойство фокусировать пучки.

  Электрические поля обычно формируются различными конденсаторами: плоским, цилиндрическим (рис. 6 ), сферическим (рис. 7 ). Из магнитных полей часто применяются однородное поле (рис. 8 ) и секторное поле (рис. 9 ). Для улучшения качества фокусировки искривляют границы секторных магнитных полей, а также применяют неоднородные магнитные поля, напряжённость которых меняется по определенному закону.

  Перечисленные отклоняющие электрические и магнитные устройства, иногда называются электронными (ионными) призмами, отличаются от светооптических призм тем, что они не только отклоняют, но и фокусируют пучки заряженных частиц. Фокусировка приводит к тому, что попадающие в поля таких устройств параллельные пучки после отклонения перестают быть параллельными. Между тем для создания высококачественных аналитических электронных и ионных приборов по точной аналогии со светооптическим призменным спектрометром необходимы электронные (ионные) призмы, которые подобно световым призмам сохраняют параллельность пучков. В качестве таких электронных призм применяют телескопические системы электронных линз. Добавив к электронной призме две ЭЛ, одну так называемую коллиматорную на входе, другую – фокусирующую на выходе, можно получить аналитический прибор, в котором сочетаются высокая разрешающая способность и большая электроннооптическая светосила.

  Лит.: Арцимович Л. А., Лукьянов С. Ю., Движение заряженных частиц в электрических и магнитных полях, М., 1972; Бонштедт Б. Э., Маркович М. Г., Фокусировка и отклонение пучков в электроннолучевых приборах, М., 1967; Брюхе Е., Шерцер О., Геометрическая электронная оптика, пер. с нем., Л., 1943; Глазер В., Основы электронной оптики, пер. с нем., М., 1957; Гринберг Г. А., Избранные вопросы математической теории электрических и магнитных явлений, М. – Л., 1948; Зинченко Н, С., Курс лекций по электронной оптике, 2 изд., Хар., 1961; Кельман В. М., Явор С. Я., Электронная оптика, 3 изд., Л., 1968; Страшкевич А. М., Электронная оптика электростатических систем, М. – Л., 1966; Явор С. Я., Фокусировка заряженных частиц квадрупольными линзами, М., 1968.

  В. М. Кельман, И. В. Родникова.

Рис. 2. Электроннооптическая система с симметрией вращения, предназначенная для формирования электронного пучка (электронный прожектор): 1 – подогревной катод; 2 – фокусирующий электрод; 3 – первый анод; 4 – второй анод; 5 – сечения эквипотенциальных поверхностей электростатического поля плоскостью рисунка. Штриховой линией обозначены контуры пучка. У электродов указаны их потенциалы по отношению к катоду, потенциал которого принят равным нулю. Электроды 1, 2, 3 образуют катодную электронную линзу, электроды 3 и 4 – иммерсионную.

Рис. 7. Сферический конденсатор: 1 – электроды конденсатора; 2 – точечный предмет; 3 – изображение предмета; 4 – кольцевые диафрагмы, ограничивающие пучок. Электроды имеют форму частей двух концентрических сфер. Изображение лежит на прямой, проходящей через источник и центр О этих сфер.

Рис. 8. Отклонение и фокусировка пучка заряженных частиц однородным магнитным полем: 1 – предмет; 2 – изображение. Заряженные частицы, испущенные линейным предметом (щелью) в пределах небольшого угла 2a, сначала расходятся, а затем, описав полуокружности с радиусом r, который для всех частиц с одной и той же массой и энергией одинаков, фокусируются, формируя изображение предмета в виде полоски шириной ra2 . Линейный предмет и полоска-изображение расположены параллельно силовым линиям магнитного поля, направленным перпендикулярно плоскости рисунка. О1 , О2 и О3 – центры круговых траекторий частиц.

Рис. 3. Магнитная линза в виде тороидальной катушки: а – вид сбоку; б – вид спереди; 1 – катушка; 2 – силовые линии магнитного поля; 3 – электронная траектория. Штриховой линией обозначены контуры электронного пучка, выходящего из точки А (предмет) и фокусируемого в точке В (изображение).

Рис. 6. Отклонение и фокусировка пучка заряженных частиц секторным цилиндрическим конденсатором: 1 – электроды конденсатора; 2 – выходная щель источника заряженных частиц; 3 – входная щель приемника заряженных частиц; 4 – диафрагмы, ограничивающие пучок. Электроды имеют форму частей круглых цилиндров. Щель источника играет роль предмета. Выходящий из неё расходящийся пучок частиц с определённой энергией фокусируется, образуя перпендикулярное к плоскости рисунка линейное изображение щели источника, с которым совмещается щель приемника.

Рис. 5. Отклонение пучка положительно заряженных частиц поперечным магнитным полем. N и S – магнитные полюса. Стрелки показывают направление магнитного поля в межполюсном зазоре.

Рис. 4. Отклонение пучка положительно заряженных частиц в поле плоского электростатического конденсатора. Стрелки показывают направление электрического поля внутри конденсатора.

Рис. 1. Отклонение электронного пучка в однородном поле плоского конденсатора: 1 – пластины конденсатора; 2 – электронный прожектор, испускающий электронный пучок. Силовые линии поля изображены пунктирными линиями, сечения эквипотенциальных поверхностей плоскостью рисунка – сплошными линиями. Потенциал поля V возрастает при перемещении сверху вниз.

Рис. 9. Отклонение и фокусировка пучка заряженных частиц секторным магнитным полем: 1 – магнитное поле; 2 – предмет (щель источника); 3 – изображение. Силовые линии магнитного поля направлены перпендикулярно плоскости рисунка. Изображение лежит на линии, соединяющей предмет с вершиной сектора О. Ширина изображения – того же порядка, что и в однородном магнитном поле.

Электронная камера

Электро'нная ка'мера , электроннооптический прибор для воспроизведения изображений объектов на фотоэмульсии (так называемая электронографическая пластинка), чувствительной к воздействию потока электронов. В астрономии Э. к. применяются в сочетании со светосильными телескопами, с помощью которых оптическое изображение объекта проецируется на фотокатод камеры. Возникающий при этом поток фотоэлектронов проецируется с помощью той или иной электроннооптической системы (электростатической, магнитной, электромагнитной или комбинированной; см. Электронная и ионная оптика ) на электронографическую пластинку, где и фиксируется электронное изображение объекта, соответствующее его оптическому изображению на фотокатоде. Благодаря более эффективному, в сравнении с обычной фотографией, использованию светового потока, особенно в инфракрасной области спектра, Э. к. позволяют значительно сокращать выдержки, а в ряде случаев повышать проницающую силу телескопов .

  Поскольку плотность изображения на эмульсии пропорциональна плотности падающего потока электронов, а последняя таким же образом зависит от освещённости фотокатода, то в характеристической кривой Э. к. нет области недодержек, свойственной обычным фотографическим эмульсиям. Это обстоятельство, а также значительная способность электронографической эмульсии к накоплению суммарного по времени воздействия электронов и её высокая разрешающая способность позволяют применять Э. к. для выявления слабых деталей спектров и структуры протяжённых небесных объектов.

  Первая Э. к. для астрономических целей была создана А. Лаллеманом (Франция) в 50-х гг. 20 в.

  Лит.: Курс астрофизики и звездной астрономии, под ред. А. А. Михайлова, 3 изд., т. 1, М., 1973.

  Н. П. Ерпылёв.


    Ваша оценка произведения:

Популярные книги за неделю