355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (КИ) » Текст книги (страница 17)
Большая Советская Энциклопедия (КИ)
  • Текст добавлен: 8 октября 2016, 09:39

Текст книги "Большая Советская Энциклопедия (КИ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 17 (всего у книги 63 страниц)

  В случае квантовых систем функция распределения зависит от спина частиц (или квазичастиц). В частности, для частиц с полуцелым спином равновесной функцией распределения служит распределение Ферми – Дирака, а для частиц (квазичастиц) с целым или нулевым спином – распределение Бозе – Эйнштейна (см. Статистическая физика ).

  В кинетических уравнениях наряду с внешними воздействиями учитываются взаимодействия между частицами или квазичастицами, причем эти взаимодействия рассматриваются как парные столкновения. Именно эти взаимодействия приводят к установлению равновесных состояний. Во многих случаях функция распределения не зависит явно от времени. Такая функция называется стационарной, она описывает процессы, течение которых не претерпевает изменений со временем. При стационарных процессах изменение функции распределения вследствие внешних воздействий компенсируется её изменением в результате столкновений.

  В простых случаях можно грубо оценить изменение функции распределения f системы в результате столкновений, считая, что оно пропорционально величине отклонения от равновесной функции (так как только при отклонении от состояния равновесия столкновения меняют функцию распределения). Величина, обратная коэффициенту пропорциональности в этом соотношении, называется временем релаксации. В общем случае учесть взаимодействие таким простым способом невозможно, и в кинетическое уравнение входит так называемый интеграл столкновений, который более точно учитывает результат изменения функции распределения вследствие взаимодействия частиц (квазичастиц).

  Решая кинетическое уравнение, находят неравновесную функцию распределения и вычисляют потоки энергии, массы и импульса, что позволяет получить уравнения теплопроводности, диффузии и переноса импульса (уравнение Навье – Стокса) с кинетическими коэффициентами, выраженными через молекулярные постоянные. [Однако кинетическое уравнение можно построить лишь для газов (из частиц или квазичастиц)].

  Основные принципы теории неравновесных процессов надёжно установлены. Разработаны методы построения уравнений переноса энергии, массы и импульса в различных системах, не только в газах, а, например, и в жидкостях. При этом получают выражения для кинетических коэффициентов, входящих в эти уравнения, через корреляционные функции (функции, описывающие корреляцию в пространстве и во времени) потоков этих физических величин, то есть в конечном счете, через молекулярные постоянные. Эти выражения очень сложны и могут быть вычислены лишь средствами современной вычислительной математики.

  Лит.: Гуревич Л. Э., Основы физической кинетики, М.– Л., 1940; Боголюбов Н. Н., Проблемы динамической теории в статистической физике, М.—Л., 1946; Гуров К. П,, Основания кинетической теории. Метод Н. Н. Боголюбова, М., 1966; Ландау Л. Д., Лифшиц Е. М., Статистическая физика, М., 1964 (Теоретическая физика, т. 5): Климонтович Ю. Л., Статистическая теория неравновесных процессов в плазме, М., 1964; Пригожин И. Р., Неравновесная статистическая механика, пер. с англ., М., 1964; Зубарев Д. Н., Неравновесная статистическая термодинамика, М., 1971; Гроот С., Мазур П., Неравновесная термодинамика, пер. с англ., М., 1964; Честер Дж., Теория необратимых процессов, пер. с англ., М., 1966; Хаазе Р., Термодинамика необратимых процессов, пер. с нем., М., 1967.

  Г. Я. Мякишев.

Рис. 3. Типичная кинетическая кривая цепного разветвленного процесса. Формально аналогичный вид имеют и кривые автокаталитических реакций.

Рис. 2. Изменение концентрации исходного 1, промежуточного 2 и конечного 3 веществ в последовательной реакции.

Рис. 1. Кинетические кривые химических реакций простых типов.

Кинетика химическая

Кине'тика хими'ческая , кинетика химических реакций, учение о химических процессах – о законах их протекания во времени, скоростях и механизмах. С исследованиями кинетики химических реакций связаны важнейшие направления современной химии и химической промышленности: разработка рациональных принципов управления химическими процессами; стимулирование полезных и торможение и подавление нежелательных химических реакций; создание новых и усовершенствование существующих процессов и аппаратов в химической технологии; изучение поведения химических продуктов, материалов и изделий из них в различных условиях применения и эксплуатации.

  В реальных условиях, например в крупных промышленных аппаратах, химический процесс осложняется в связи с передачей тепла, выделяемого или поглощаемого в реакции, транспортом веществ в зону реакции, их искусственным или естественным перемешиванием. Эти проблемы решает так называемая макрокинетика .

  Вместе с тем многие уравнения, описывающие протекание во времени химических реакций, пригодны и для описания ряда физических процессов (распад радиоактивных ядер, деление ядерного горючего), а также для количественной характеристики развития некоторых биохимических, в том числе ферментативных, и других биологических процессов (нормальный и злокачественный рост тканей, развитие лучевого поражения, кинетические критерии оценки эффективности лечения). К. х. лежит в основе исследования сложных процессов горения газов и взрывчатых веществ, помогает изучению процессов в двигателе внутреннего сгорания. Таким образом, можно говорить об общей кинетике, частным случаем которой является кинетика химических реакций. Эти аналогии весьма удобны для практического использования, но всегда следует иметь в виду принципиальные различия в природе рассматриваемых явлений.

  Ввиду сложности реальных химических систем и необходимости учета большого числа факторов и условий проведения процесса, при выяснении оптимальных режимов получения нужных продуктов в современной К. х. широко используются быстродействующие электронные вычислительные машины.

  Историческая справка. Отдельные работы в области К. х. были выполнены ещё в середине 19 в. В 1850 немецкий химик Л. Вильгельми изучил скорость инверсии тростникового сахара, в 1862—63 М. Бертло – скорость реакций этерификации. В работах Н. А. Меншуткина получили развитие (1882—90) такие основные проблемы химии, как связь между строением веществ и их реакционной способностью, влияние среды на ход химического превращения. В 80-х гг. 19 в. Я. Вант-Гофф и С. Аррениус сформулировали основные законы, управляющие простыми химическими реакциями, и дали трактовку этих законов, исходя из молекулярно-кинетической теории. Дальнейшее развитие этих работ привело к созданию в 30-х гг. 20 в. Г. Эйрингом и М. Поляни на базе квантовой механики и статистической физики теории абсолютных скоростей реакций, открывающей перспективы расчёта скоростей простых (элементарных) реакций, исходя из свойств реагирующих частиц (см. Активированный комплекс ).

  Параллельно развивались работы по изучению кинетики сложных реакций. Среди первых в этой области были исследования А. Н. Баха и Н. А. Шилова по реакциям окисления. Они включили в предмет К. х. представления о решающей роли промежуточных продуктов и промежуточных реакций в химическом превращении. Большую роль в разработке общих методов подхода к изучению сложных реакций сыграли работы М. Боденштейна. Выдающимся достижением теории сложных химических процессов явилась созданная в 30-х гг. Н. Н. Семеновым общая теория цепных реакций . Широкие исследования механизма сложных кинетических процессов, особенно цепных реакций, были выполнены С. Н. Хиншелвудом .

  Основные понятия и законы. Химическая реакция может протекать гомогенно, то есть в объеме одной фазы, и гетерогенно, то есть на границе раздела фаз. Наиболее полно разработана К. х. реакций в газовой фазе, так как она отправляется от хорошо развитой кинетической теории газового состояния. В то же время интенсивно развивается кинетика реакций в жидкой фазе и твердых телах. В зависимости от того, в какой форме подводится к реагирующей системе необходимая для реакций энергия (теплота, свет, электрический ток, излучение, плазма, лазерные пучки, высокие и сверхвысокие давления, ударные волны), они подразделяются на тепловые, фотохимические, электрохимические, радиационно-химические и др.

  В основе К. х. как учения о скоростях химических превращений лежит действующих масс закон , согласно которому скорость реакции веществ А, В, С,... пропорциональна произведению их концентраций. Скорость реакции характеризуется обычно изменением за единицу времени концентрации какого-либо из исходных веществ или конечных продуктов реакции. Например, скорость вступления в реакцию вещества А (уменьшение его концентрации в единицу времени) выражается уравнением:

  –  = k [A]a [B]b [C]g ...,

  где к – константа скорости реакции, [А], [В], [С]... – концентрации реагирующих веществ (в качестве действующих веществ могут выступать молекулы, радикалы и ионы, в зависимости от типа реакции); знак минус показывает, что концентрация вещества А убывает со временем. Сумма величин a, b, g... называется порядком реакции . В зависимости от числа молекул, участвующих в элементарном акте химического взаимодействия, различают реакции мономолекулярные, в которых реагируют отдельные молекулы одного вида, бимолекулярные – протекающие при двойном соударении (при встрече двух молекул), тримолекулярные – при тройном соударении. Реакции, требующие в элементарном акте встречи более трех молекул, мало вероятны. Порядок простой гомогенной реакции совпадает с числом молекул, участвующих в элементарном акте реакции. Однако чаще всего такого совпадения не бывает. В частности, показатели a, b, g... могут быть дробными величинами. Это говорит о том, что реакция имеет сложный механизм, то есть протекает в несколько элементарных стадий, каждая из которых является строго моно-, би– или тримолекулярной реакцией. В тех случаях, когда сложная по существу реакция описывается простым кинетическим уравнением, говорят, что она имитирует простой закон протекания (см. Сложные реакции ).

  Температурная зависимость скорости реакции определяется уравнением Аррениуса: k-=k e—E/RT ,

  где k множитель, который в ряде простейших случаев может быть предвычислен, исходя из молекулярно-кинетических представлений о механизме элементарного акта, е – основание натуральных логарифмов, Е – энергия активации реакции, R — универсальная газовая постоянная, Т — абсолютная температура.

  На графически показано убывание со временем концентрации исходных веществ в случае реакций, удовлетворяющих простым законам. Кривые, показывающие изменение концентраций реагирующих веществ со временем, называются кинетическими кривыми.

  По механизму химические процессы делятся на 3 основных типа: простые реакции между молекулами; радикальные, в том числе цепные реакции (протекающие через промежуточное образование свободных радикалов и атомов); ионные (идущие при участии ионов).

  Кинетика реакций между молекулами. Реакции непосредственно между валентно-насыщенными молекулами весьма редки, т.к. происходящая при этом перестройка молекул требует разрыва химических связей, энергия которых достигает значительных величин (50—100 ккал/моль, или 209,3—418,7 кдж/моль ). Поэтому в газовой фазе реакции идут чаще всего как цепные, а в жидкой фазе – и как цепные, и как ионные. Примерами реакций насыщенных молекул в газовой фазе могут служить: 1) мономолекулярная реакция распада азометана: CH3 N2 CH3 ® C2 H6 +N2 ; 2) бимолекулярная реакция превращения йодистого нитрозила: NOI+NOI®2NO+I2 и 3) тримолекулярная реакция окисления окиси азота в двуокись азота: 2NO+O2 ®2NO2 .

  Реакции, в которых превращение исходных веществ идёт по двум или нескольким направлениям, называются параллельными; механизм и кинетические закономерности реакций в разных направлениях могут быть самыми разнообразными – простыми и сложными (см. Параллельные реакции ). Реакции, в которых превращение исходных веществ в конечные продукты происходит через несколько следующих друг за другом стадий с образованием промежуточных продуктов, называются последовательными (см. Последовательные реакции ).

  На показаны кинетические кривые для исходного, промежуточного и конечного веществ в последовательной реакции. Характерной особенностью этих кривых является наличие максимума у кривой промежуточного продукта и точки перегиба на кривой образования конечного продукта реакции. Однако эти особенности не могут служить однозначным признаком последовательной реакции. Известно много случаев, когда конечные продукты превращения ускоряют реакцию. Скорость таких автокаталитических процессов сначала возрастает вследствие увеличения количества продукта, являющегося катализатором, а затем уменьшается вследствие израсходования исходных веществ (см. Автокатализ ). Реакция, идущая под влиянием другой, протекающей одновременно и в том же участке пространства, называется индуцированной, или сопряжённой (см. Сопряжённые реакции ).

  Кинетика цепных реакций. Реакции, в которых один первичный акт активации приводит к превращению большого числа молекул исходных веществ, называются цепными. В реакции зарождения цепи образуется активная частица – свободный радикал или атом. Эта активная частица реагирует с молекулой исходного вещества, образуя молекулу продукта реакции и (вследствие неуничтожимости свободной валентности) регенерируя новую активную частицу; образовавшийся радикал в свою очередь реагирует с исходной молекулой и т.д. (неразветвлённая цепь). Энергия активации взаимодействия радикалов и атомов с молекулами не превышает 10 ккал/моль (41,86 кдж/моль ), поэтому длина цепи из элементарных химических реакций достигает тысяч и сотен тысяч звеньев. В некоторых цепных реакциях увеличивается число свободных валентностей, что приводит к появлению новых активных центров, то есть новых цепей. Таким образом, цепь разветвляется и реакция ускоряется (становится нестационарной).

  Цепь обрывается в результате соединения (рекомбинации) двух радикалов, в случае реакции радикала с некоторыми примесными частицами, соударения со стенкой сосуда. Скорость неразветвленной цепной реакции вначале растет, затем достигает постоянного значения и, наконец, медленно убывает. Скорость разветвленной цепной реакции возрастает со временем и при благоприятных условиях может произойти воспламенение реагирующей смеси. Достигнув максимального значения, скорость реакции уменьшается из-за расходования исходных веществ (подробнее см. Цепные реакции ). В соответствии с этим кинетические кривые цепных разветвленных процессов имеют характерную S -oбразную форму (). Точка перегиба на кривой отвечает максимуму скорости реакции.

  Основы теории цепных реакций разработаны и экспериментально подтверждены в исследованиях советского ученого Н. Н. Семенова и его школы. В СССР успешно изучаются скорость и механизм важнейших групп цепных процессов: полимеризации, крекинга, окисления. На базе цепной теории окислительных реакций разработаны новые высокоэффективные технологические процессы получения важных химических продуктов (в частности, мономеров для получения полимеров) путем окисления нефтяного сырья и углеводородных газов.  Цепная теория процессов ингибированного окисления позволяет предотвращать окислительную порчу (старение) полимеров, смазочных масел и бензинов, пищевых продуктов и лекарственных препаратов. Ингибиторы окисления, или стабилизаторы окислительных процессов (см. Ингибиторы химические ), — это важнейшие представители малотоннажных продуктов органического синтеза.

  Кинетика ионных реакций. Значительное число реакций в растворах протекает при участии ионов. Скорость ионных реакций сильно зависит от растворителей, так как в разных растворителях молекулы в разной степени диссоциированы на ионы. Энергия активации реакции ионов с молекулами невелика: заряд иона снижает энергию активации. При изучении кинетики реакций в растворах учитывают влияние полярных групп, наличие большого межмолекулярного взаимодействия, влияние растворителя и т.п.

  Кинетика гетерогенных каталитических реакций. Для реакций газов и жидкостей, протекающих у поверхности твёрдых тел (см. Катализ ), по-видимому, имеют место те же 3 основных типа химических превращений, которые были рассмотрены для гомогенных процессов, т. е. простые, радикально-цепные и ионные реакции. Различие заключается лишь в том, что в соответствующие кинетические уравнения входят концентрации реагирующих веществ в поверхностном адсорбционном слое (см. Адсорбция ). Наблюдаются разные кинетические зависимости, которые обусловлены характером адсорбции исходных веществ и продуктов реакции на поверхности. Основной суммарный кинетический эффект катализатора заключается в снижении энергии активации реакции. Важной проблемой в области гетерогенного катализа является предвидение каталитического действия. Представления и методы, свойственные теории гетерогенного катализа, все больше сближаются с областью гомогенного катализа жидкофазных реакций, особенно при использовании в качестве катализаторов комплексных соединений переходных металлов. Выясняется механизм действия биологических катализаторов (ферментов), особенно с целью создания принципиально новых высокоэффективных катализаторов для химических реакций.

  Советскими и зарубежными учёными успешно разрабатываются и многие другие актуальные проблемы К. х., например, применение квантовой механики к анализу элементарного акта реакции; установление связей между строением веществ и кинетическими параметрами, характеризующими их реакционную способность; изучение кинетики и механизма конкретных сложных химических реакций с применением новейших физических экспериментальных методов и современной вычислительной техники; использование кинетических констант в инженерных расчётах в химической и нефтехимической промышленности.

  Лит.: Семенов Н. Н., О некоторых проблемах химической кинетики и реакционной способности, 2 изд., М., 1958; Кондратьев В. Н., Кинетика химических газовых реакций, М., 1958; Эмануэль Н. М., Кнорре Д. Г., Курс химической кинетики, 2 изд., М., 1969; Бенсон С., Основы химической кинетики, пер. С англ., М., 1964: Эмануэль Н. М., Химическая кинетика, в сборнике: Развитие физической химии в СССР, М., 1967.

  Н. М. Эмануэль.

Кинетическая теория газов

Кинети'ческая тео'рия га'зов, раздел теоретической физики, исследующий статистическими методами свойства газов на основе представлений о молекулярном строении газа и определенном законе взаимодействия между его молекулами. Обычно под К. т. г. Понимается теория неравновесных процессов в газах, а теория равновесных состояний относится к равновесной статистической механике. Область применения К. т. г. – собственно газы, газовые смеси и плазма. Основы К. т. г. были заложены во 2-й половине 19 в. в работах Л. Больцмана .

  Газ представляет собой простейшую по сравнению с жидкостью и твердым телом систему. Среднее расстояние между молекулами газа много больше их размеров. Так как силы взаимодействия между электрически нейтральными атомами являются очень короткодействующими (то есть очень быстро убывают с увеличением расстояния между частицами и на расстояниях в несколько молекулярных диаметров практически уже не сказываются), то взаимодействие молекул происходит лишь при их непосредственном сближении – при столкновениях. Время столкновения гораздо меньше времени свободного пробега – времени между двумя последовательными столкновениями молекулы. Вследствие этого большую часть времени молекулы газа движутся свободно.

  В К. т. г. наблюдаемые макроскопические эффекты (давление, диффузия , теплопроводность и т.д.) рассматриваются как средний результат действия всех молекул исследуемого газа. Для вычисления этих средних Больцман ввёл функцию распределения f (n, r, t ), зависящую от скоростей n и координат r молекул газа и времени t. Произведение f (n, r, t )Dn Dr даёт среднее число молекул со скоростями, лежащими в интервале от n до n +Dn , и координатами в интервале от r до r + Dr . Функция распределения f подчиняется кинетическому уравнению Больцмана. В этом уравнении изменение f со временем рассматривается как результат движения частиц, действия на них внешних сил и парных столкновении между частицами. Уравнение Больцмана применимо лишь для достаточно разреженных газов. В состоянии статистического равновесия при отсутствии внешних сил функция распределения зависит только от скоростей молекул и называется Максвелла распределением .

  Основная задача К. т. г. – определение (из уравнения Больцмана) вида функции распределения f , так как знание f (n, r, t ) позволяет рассчитать средние величины, характеризующие состояние газа и процессы в нём, – среднюю скорость частиц, коэффициенты диффузии, вязкости , теплопроводности и др. (см. Кинетика физическая ). Методы решения кинетического уравнения Больцмана были разработаны английскими учёными С. Чепменом и Д. Энскогом. уравнение Больцмана в частном случае отсутствия внешних сил описывает эволюцию системы к состоянию равновесия.

  В ионизированных газах (плазме) частицы взаимодействуют друг с другом посредством кулоновских сил, медленно убывающих с расстоянием. Для таких сил нельзя говорить о парных столкновениях, так как друг с другом взаимодействует сразу большое число частиц. Но и в этом случае можно получить кинетическое уравнение (оно называется уравнением Ландау), если учесть, что в подавляющем числе случаев обмен импульсами (количеством движения) при столкновении частиц мал. Если столкновениями вообще можно пренебречь, то существенную роль будут играть кулоновские силы, действующие на данную частицу со стороны всех остальных частиц системы (т. н. приближение самосогласованного поля ). В этом случае для плазмы справедливо кинетическое уравнение Власова (см. Плазма ). Наиболее последовательные и эффективные методы вывода кинетических уравнений на основе динамики систем из большого числа частиц были разработаны Н. Н. Боголюбовым .

  Лит.: Больцман Л., Лекции по теории газов, пер. с нем., М., 1953; Чепмен С., Каулинг Т., Математическая теория неоднородных газов, пер. с англ., М., 1960; Боголюбов Н. Н., Проблемы динамической теории в статистической физике, М. – Л., 1946; Силин В. ГГ., Введение в кинетическую теорию газов, М., 1971; Коган М. Н., Динамика разреженного газа, М., 1967: Некоторые вопросы кинетической теории газов, пер. с англ., М., 1965; Климентович Ю. Л., Статистическая теория неравновесных процессов в плазме, М., 1964; Зоммерфельд А., Термодинамика и статистическая физика, пер. с нем., М., 1955; Кикоин И. К., Кикоин А. К., Молекулярная физика, М., 1963, гл. 1 и 2.

  Г. Я. Мякишев.


    Ваша оценка произведения:

Популярные книги за неделю