355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ПИ) » Текст книги (страница 19)
Большая Советская Энциклопедия (ПИ)
  • Текст добавлен: 7 октября 2016, 03:02

Текст книги "Большая Советская Энциклопедия (ПИ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 19 (всего у книги 30 страниц)

Пирометрия

Пирометри'я (от греч. pýr – огонь и... метрия), группа методов измерения температуры. Раньше к П. относили все методы измерения температуры, превышающей предельную для ртутных термометров; с 60-х гг. 20 в. к П. всё чаще относят лишь оптические методы, в частности основанные на применении пирометров, и не включают в неё методы, в которых применяются термометры сопротивления, термоэлектрические термометры с термопарами, и ряд др. методов (см. Термометрия). Почти все оптические методы основаны на измерении интенсивности теплового излучения (иногда – поглощения) тел. Интенсивность теплового излучения сильно зависит от температуры Т тел и очень резко убывает с её уменьшением. Поэтому методы П. применяют для измерения относительно высоких температур (например, серийным радиационным пирометром от 200 °С и выше). При Т £ 1000 °С методы П. играют в целом второстепенную роль, но при Т > 1000 °С они становятся главными, а при Т > 3000 °С – практически единственными методами измерения Т. Методами П. в промышленных и лабораторных условиях определяют температуру в печах и др. нагревательных установках, температуру расплавленных металлов и изделий из них (проката и т.п.), температуру пламён, нагретых газов, плазмы. Методы П. не требуют контакта датчика измерительного прибора с телом, температура которого измеряется, и поэтому могут применяться для измерения очень высоких температур. Основное условие применимости методов П.– излучение тела должно быть чисто тепловым, т. е. оно должно подчиняться Кирхгофа закону излучения. Твёрдые тела и жидкости при высоких температурах обычно удовлетворяют этому требованию, в случае же газов и плазмы необходима специальная проверка для каждого нового объекта или новых физических условий. Так, излучение однородного слоя плазмы подчиняется закону Кирхгофа, если распределения молекул, атомов, ионов и электронов плазмы по скоростям соответствуют Максвелла распределению, заселённости возбуждённых уровней энергии соответствуют закону Больцмана (см. Больцмана статистика), а диссоциация и ионизация определяются: действующих масс законом, причём во все эти соотношения входит одно и то же значение Т. Такое состояние плазмы называется термически равновесным. Интенсивность излучения однородной равновесной плазмы и в линейчатом, и в сплошном спектрах однозначно определяется её химическим составом, давлением, атомными константами и равновесной температурой. Если плазма неоднородна, то даже при повсеместном выполнении условий термического равновесия её излучение не подчиняется закону Кирхгофа. В этом случае методы П. применимы лишь к источникам света, обладающим осевой симметрией.

  Измерения наиболее просты для твёрдых тел и жидкостей, спектр излучения которых чисто сплошной. В этом случае измерения температуры осуществляют пирометрами, действие которых основано на законах излучения абсолютно чёрного тела. Обычно поверхности исследуемого тела придают форму полости, чтобы коэффициент поглощения был близок к единице (оптические свойства такого тела близки к свойствам абсолютно чёрного тела).

  Наиболее универсальны методы П., основанные на измерении интенсивностей спектральных линий. Они обеспечивают максимальную точность, если известны абсолютная вероятность соответствующего перехода и концентрация атомов данного сорта. Если же концентрация атомов не известна с достаточной точностью, применяют метод относительных интенсивностей, в котором температуру вычисляют по отношению интенсивностей двух (или нескольких) спектральных линий. Варианты этих методов разработаны для измерения температуры как оптически тонких слоев плазмы, так и оптически толстых.

  В др. группе методов П. температура определяется по форме или ширине спектральных линий, которые зависят от температуры либо непосредственно благодаря Доплера эффекту, либо косвенно – благодаря Штарка эффекту и зависимости плотности плазмы от температуры. В некоторых методах температура определяется по абсолютной или относительной интенсивности сплошного спектра («континуума»). Особое значение имеют методы определения температуры по спектру рассеянного плазмой излучения лазера, позволяющие исследовать неоднородную плазму. К недостаткам методов П. следует отнести трудоёмкость измерений, сложность интерпретации результатов, невысокую точность (например, погрешности измерений температуры плазмы в лучших случаях оказываются не ниже 3—10%).

  Применение методов П. для исследования неравновесной плазмы даёт ценную информацию о её состоянии, хотя понятие температуры в этом случае неприменимо.

  Лит.: Оптическая пирометрия плазмы. Сб. статей, [пер. с англ.], под ред. Н. Н. Соболева, М., 1960; Грим Г., Спектроскопия плазмы, пер. с англ., М., 1969; Методы исследования плазмы (Спектроскопия, лазеры, зонды), пер. с англ., под ред. С. Ю. Лукьянова, М., 1971.

  В. Н. Колесников.

Пирометры

Пиро'метры (от греч. pýr – огонь и ...метр), приборы для измерения температуры непрозрачных тел по их излучению в оптической диапазоне спектра. Тело, температуру которого определяют при помощи П., должно находиться в тепловом равновесии и обладать коэффициентом поглощения, близким к единице (см. Пирометрия). Распространены яркостные, цветовые и радиационные П. Основным типом является яркостный П., обеспечивающий наибольшую точность измерений температуры в диапазоне 103104К. В простейшем визуальном яркостном П. с исчезающей нитью (рис. 1) объектив фокусирует изображение исследуемого тела на плоскость, в которой расположена нить (ленточка) эталонной лампы накаливания. Через окуляр и красный фильтр, позволяющий выделять узкую спектральную область около длины волны lэ = 0,65 мкм, нить рассматривают на фоне изображения тела и, изменяя ток накала нити, добиваются выравнивания яркостей нити и тела (нить в этот момент становится неразличимой). Шкала прибора, регистрирующего ток накала, прокалибрована обычно в °С или К, и в момент выравнивания яркостей прибор показывает так называемую яркостную температуру(Tb) тела. Истинная температура тела Т определяется на основе законов теплового излучения Кирхгофа и Планка по формуле:

  Т = TbC2/(C2 + l эТь Inal,T), (1)

где C2= 0,014388 м ×К, al, T – коэффициент поглощения тела, l э – эффективная длина волны П.

  Точность результата в первую очередь зависит от строгости выполнения условий пирометрия, измерений (al, T » 1 и др.). В связи с этим наблюдаемой поверхности придают форму полости. Основная инструментальная погрешность обусловлена нестабильностью температурной лампы. Заметную погрешность могут вносить также индивидуальные особенности глаза наблюдателя. У фотоэлектрических П. (рис. 2) этот вид погрешности отсутствует. Погрешность образцовых лабораторных фотоэлектрических П. не превышает сотых долей градуса при Т = 1000 °С. Промышленные серийные фотоэлектрические П. обладают на порядок большей погрешностью, визуальные – ещё на порядок большей. Образцовые яркостные П. приняты в качестве основных интерполяционных приборов, определяющих Международную практическую температурную шкалу(МПТШ-68) при температурах выше точки затвердевания золота (1064,43 °С).

  Для измерения температуры тел, у которых a » const в оптическом диапазоне спектра, применяют цветовые П. Этими П. определяют отношение яркостей обычно в синей и красной областях спектра b1(l1, T)/b2(l2, T) (например, для длин волн l1 = 0,48 мкм и l2 = 0,60 мкм). Шкала прибора прокалибрована в °С и показывает цветовую температуру Tc. Истинная температура Т тела определяется по формуле

.(2)

  Цветовые П. менее точны, менее чувствительны и более сложны, чем яркостные; применяются в том же диапазоне температур.

  Наиболее чувствительны (но и наименее точны) радиационные П., или П. суммарного излучения, регистрирующие полное излучение тела. Действие их основано на Стефана – Больцмана законе излучения и Кирхгофа законе излучения. Объектив радиационных П. фокусирует наблюдаемое излучение на приёмник (обычно термостолбик или болометр), сигнал которого регистрируется прибором, прокалиброванным по излучению абсолютно чёрного тела и показывающим радиационную температуру Tr. Истинная температура определяется по формуле

 (3)

где aT– полный коэффициент поглощения тела. Радиационными П. можно измерять температуру, начиная с 200°С. В промышленности П. широко применяют в системах контроля и управления температурными режимами разнообразных технологических процессов.

  Лит.: Рибо Г., Оптическая пирометрия, пер. с франц., М. – Л., 1934; Гордов А. Н., Основы пирометрии, 2 изд., М., 1971.

  В. Н. Колесников.

Рис. 2. Оптическая система автоматического фотоэлектрического пирометра: 1 – источник излучения; 2 – линзы оптической системы; 3 – модулятор, попеременно пропускающий излучение источника и эталонной лампы 4 к фотоэлементу 7; 5 – фильтр с узкой частотной полосой пропускания; 6 – погнутая линза. Фотоэлемент поочерёдно освещается то источником, то лампой. При неравенстве создаваемых ими освещённостей в цепи фотоэлемента возникает переменная составляющая фототока, амплитуда которой пропорциональна разности освещённостей. При измерениях ток накала лампы регулируют так, чтобы переменная составляющая фототока стала равна нулю.

Рис. 1. Принципиальная схема визуального яркостного пирометра с исчезающей нитью: 1 – источник излучения; 2 – оптическая система (телескоп пирометра); 3 – эталонная лампа накаливания; 4 – фильтр с узкой полосой пропускания; 5 – объектив; 6 – реостат, которым регулируют ток накала; 7 – измерительный прибор (миллиамперметр).

Пироморфит

Пироморфи'т (от греч. pýr – огонь и morphé – форма), минерал химического состава Pb5[РО4]3Cl; содержит 82,0% PbO; 15,4% P2O5; 2,6% Cl. В виде примеси иногда присутствует As, изоморфно замещающий фосфор. П. кристаллизуется в гексагональной системе, образуя призматические или бочонкообразные кристаллы, реже зернистые, волокнистые и натёчные агрегаты. Твёрдость по минералогической шкале 3,5—4; плотность 6700—7100 кг/м3; хрупок; цвет зелёный с различными оттенками, реже жёлтый, оранжевый и др. П. распространён в зонах окисления месторождений свинцовых и свинцово-цинковых руд. Вместе с П. встречаются др. минералы Pb: церуссит, англезит, миметезит, ванадинит, вульфенит и др. Крупных скоплений не образует. Совместно с др. минералами свинцовых руд служит для извлечения металлического свинца (см. Полиметаллические руды).

Пироны

Пиро'ны, кетопираны, гетероциклические соединения, оксопроизводные пиранов. Простейшие П.– a-П. (кумалин, бесцветная жидкость с запахом свежего сена, tкип 206—209 °С) и g -П. (бесцветные кристаллы, t 3132 °С).

  П.– весьма реакционноспособные соединения; например, они взаимодействуют с аммиаком и первичными аминами, легко восстанавливаются; a-П. вступает в реакцию Дильса – Альдера (см. Диеновый синтез). П. можно получить декарбоксилированием их производных – пиронкарбоновых кислот (соответственно кумалиновой и хелидоновой). Производные П. широко распространены в природе: в бобах тонка содержится бензо-a-пирон (кумарин), в опии – меконовая кислота, в соке чистотела – хелидоновая кислота; некоторые пигменты растений являются производными g-П.

Рис. к ст. Пироны.

Пироп

Пиро'п (от греч. pyropós – подобный огню), минерал из группы гранатов, представляющий собой в чистом виде магнезиальный алюмогранат Mg3Al2 [SiO4]3 с содержанием MgO 20,45%. Обычны примеси Fe, Mn и др. П. отличается красивым густым тёмно-красным цветом. Характерен для некоторых перидотитов, кимберлитов, а также серпентинитов. Прозрачные кроваво-красные разновидности П. являются драгоценными камнями. Наиболее известны П. из месторождений ЧССР, где они присутствуют в обломках базальтовой брекчии, включенной в перидотиты, и добываются из россыпей. В СССР известен в кимберлитах (где П. является спутником алмаза) и эклогитахЯкутии.

Пироплазмидозы

Пироплазмидо'зы, группа широко распространённых кровепаразитарных болезней домашних и диких млекопитающих, птиц, рыб и земноводных (известны случаи заражения и человека); вызываются одноклеточными организмами пироплазмидами. Экономический ущерб складывается из гибели животных (смертельность 30—60%), снижения продуктивности, значительных затрат на проведение профилактических и лечебных мероприятий. Возбудители П. паразитируют внутри эритроцитов животных; в окрашенных препаратах имеют округлую, грушевидную, парногрушевидную, амёбовидную и др. формы.

  П.– сезонные болезни, регистрируются преимущественно в весенне-летний период, что связано с передачей возбудителей членистоногими переносчиками – иксодовыми клещами. П. характеризуются лихорадкой, анемией, желтушностью слизистых оболочек, гемоглобинурией. Животные угнетены, аппетит понижен или отсутствует, нарушается деятельность сердечнососудистой и пищеварительной систем. Переболевшие П. животные приобретают иммунитет в пределах срока паразитоносительства (от 4 месяцев до 2—3 лет). Профилактика – предохранение животных от нападения зараженных клещей, а также обработка животных специальными препаратами (химиопрофилактика). См. также бабезиозы, нутталлиоз, пироплазмоз, тейлериоз.

  Лит.: Абрамов И. В., Особенности пироплазмоза и нутталиоза лошадей различных зон СССР, М., 1962 (Автореферат дисс.); Догель В. А., Полянский Ю. И., Хейсин Е. М., Общая протозоология, М.– Л., 1962; Марков А. А., Кровопаразитарные заболевания сельскохозяйственных животных (пироплазмозы, бабезиеллозы, нутталиоз, тейлериозы, анаплазмозы) и принципы борьбы с ними в СССР, «Тр. Всес. института экспериментальной ветеринарии», 1957, т. 21, с. 3—33.

  Л. П. Дьяконов.

Пироплазмиды

Пироплазми'ды (Piroplasmidae), бабезииды (Babesiidae), семейство простейших; их относят к классу споровиков пли саркодовых (в зависимости от признания или непризнания у них способности к половому размножению в организме клещей). Паразитируют в эритроцитах у рогатого скота, лошадей, ослов, свиней, собак, крыс и др. млекопитающих. Переносчиками П. служат клещи. Размножаются в кровяных клетках бесполым путём (делением или почкованием). Попав вместе с кровью в организм клеща, П. размножаются там, затем внедряются в яйцеклетки. Так происходит трансовариальная (через яйца) передача П. клещам следующего поколения, у которых они локализуются в разных тканях, в том числе в слюнных железах. При кровососании зараженные клещи передают П. позвоночному. К П. относятся роды Babesia (или Piroplasma), Babesiella (или Microbabesia) и Nuttallia, представители которых вызывают у животных тяжёлые заболевания – пироплазмидозы, бабезиозы, нутталлиозы.

Пироплазмоз

Пироплазмо'з, трансмиссивная болезнь лошадей, рогатого скота, свиней, собак, характеризующаяся высокой лихорадкой, анемией, желтушностью, гемоглобинурией. Возбудители П. – пироплазмы, которые, паразитируя в эритроцитах животных, вызывают их разрушение. Переносчики пироплазм – иксодовые клещи. Переболевшие животные приобретают нестерильный иммунитет и остаются паразитоносителями от 4 месяцев до 2—3 лет. Диагноз ставят с учётом клинических признаков, эпизоотологических данных и результатов лабораторных исследований. При лечении используют химиотерапевтические препараты (трипансинь, трипафлавин, акаприн, беренил и др.). О профилактике см. ст. Пироплазмидозы.

  Лит. см. при ст. Пироплазмидозы.

Пироплазмы

Пиропла'змы, бабезии, род кровепаразитов из семейства пироплазмид.

Пирос

Пи'рос, озеро, расположенное в пределах Валдайской возвышенности, на границе Калининской и Новгородской областей РСФСР. Площадь около 31,2 км2; глубина до 11,5 м. Питание смешанное, с преобладанием снегового. Замерзает в конце ноября – декабре, вскрывается в конце апреля – мае. Через П. протекает р. Березайка (бассейн р. Мста), на которой при выходе из П. сооружена плотина. Сток из П. регулируется с целью увеличения стока и улучшения судоходства на р. Мста.

Пиросманашвили Нико

Пиросманашви'ли Нико (Николай Асланович) [1862(?), село Мирзаани, ныне Цителцкаройского района,– 5.5(?).1918, Тбилиси], грузинский художник-самоучка. Представитель примитивизма. Работал в Тбилиси. Писал вывески для духанов-столовых и увеселительных заведений города и картины на темы из жизни тбилисских горожан, мелких торговцев и ремесленников, крестьян, а также пейзажи, натюрморты, изображения животных. Материалом для живописи П. служили клеёнка, жесть, картон, краски собственного изготовления. П., со свойственным ему непосредственным, наивно-поэтическим видением мира, создал величаво-торжественные по духу произведения, персонажи которых внутренне драматичны и внешне спокойны, романтичны и не лишены конкретных бытовых черт. Пластически завершенные по форме произведения П. отличаются статичностью четко построенных композиций, часто многоплановых (как бы развивающих действие во времени), строгим колоритом, выдержанным в тёмных тонах с введением немногих ярких цветовых пятен. Произведения: «Натюрморт», «Кутёж трёх князей», «Дворник» (все три названные произведения – в Музее искусств Грузинской ССР, Тбилиси), «Рыбак среди скал» (Третьяковская галерея, Москва), сцены из пьесы Сумбатова-Южина «Измена» (собр. Д. Какабадзе, Тбилиси), «Компания Бего» (собрание К. Симонова, Москва).

  Лит.: Каталог выставки картин Н. Пиросманашвили, Тб., 1960; Зданевич К. М., Нико Пиросманашвили, М., 1964; Нико Пиросманашвили. Альбом. Вступ. ст. Ш. Амиранашвили, М., 1967.

Пиросманашвили. «Женщина с кружкой пива». Музей искусств Грузинской ССР. Тбилиси.

Пиросманашвили. «Гумно» («Молотьба хлеба в деревне»). Третьяковская галерея. Москва.

Пиросманашвили. «Жираф». Музей искусств Грузинской ССР. Тбилиси.

Пиросманашвили. «Кутёж трёх князей». Музей искусств Грузинской ССР. Тбилиси.

Пиросманашвили. «Марани в лесу». Музей искусств Грузинской ССР. Тбилиси.

Н. Пиросманашвили. «Медведь в лунную ночь» 1913 (?). Музей искусств Грузинской ССР. Тбилиси.

Пиросманашвили. «Натюрморт». Музей искусств Грузинской ССР. Тбилиси.

Пиросманашвили. «Дворник». Музей искусств Грузинской ССР. Тбилиси.

Пиросомы

Пиросо'мы (Pyrosomata; от греч. pýr – огонь и soma – тело), огнетелки, подкласс хордовых животных класса Thaliacea подтипа оболочников. Морские свободноплавающие колониальные животные. Размеры колонии П. обычно не превышают 20—30 см, но Pyrosoma spinosum из южной части Тихого океана достигает 30 м в длину. Колония П. имеет форму полого цилиндра. В стекловидно прозрачной стенке колонии располагаются в один слой тысячи небольших одинаковых зооидов, похожих по строению на асцидий. Ротовое отверстие каждого зооида открывается наружу, а выводное – внутрь в общую клоаку колонии. Возле глотки зооида расположена пара светящихся органов, в клетках которых содержатся симбиотические бактерии, способные ярко светиться в темноте. Известно около 15 видов П.

Пиротерапия

Пиротерапи'я (от греч. pýr – огонь, жар и терапия), совокупность лечебных методов, в основе которых лежит искусственное повышение температуры тела больных – так называемая искусственная лихорадка. Лихорадку вызывают введением в организм чужеродного белка, возбудителей некоторых заболеваний (малярии), химических веществ (например, пирогенала, взвеси серы в масле) и др. способами. П. активизирует кровообращение, обмен веществ, иммунобиологические (защитные) реакции организма; применяется редко (при лечении некоторых форм дерматозов, сифилиса, шизофрении и т.д.). П. противопоказана при злокачественных опухолях, гипертонической болезни, заболеваниях крови, тиреотоксикозе и ряде др.

Пиротехника

Пироте'хника (от греч. pýr – огонь и техника), отрасль техники, связанная с производством и применением огневых составов и снаряжаемых ими изделий.

  В военных целях применяются: осветительные пиротехнические составы (ПС), фотосмеси, трассирующие и сигнальные, зажигательные, а также дымовые ПС (см. Дымообразующие вещества). ПС используются и для имитации на поле боя разрывов снарядов, орудийных выстрелов, атомного взрыва и т.д.; известны также ПС инфракрасного излучения.

  В промышленности термитные ПС (см. Алюминотермия и Термит) используются для сварки рельсов, труб, электрических проводов, а также при производстве различных сплавов (феррохрома и др.). ПС применяются для «накачки» лазеров, создания цезиевой плазмы, при исследовании верхних слоев атмосферы. Иногда ПС служат для получения газов: кислорода (хлоратные шашки), водорода и др. Составы, используемые при производстве спичек, также являются одним из видов ПС. Сигнальные ПС (аварийные сигналы) находят применение на различных видах транспорта. ПС используются при киносъёмках и для изготовления фейерверков.

  В сельском хозяйстве ПС служат для окуривания растений (особенно цитрусовых), борьбы с вредителями, дезинфекции овощехранилищ и винных бочек (серные шашки) и др. целей; разработаны и применяются противоградовые составы.

  Основой большинства ПС являются двойные смеси окислителя с горючим, однако имеется много составов, в которых горючее только частично сгорает за счёт кислорода, содержащегося в окислителе, и частично – за счёт кислорода воздуха. В высокотемпературных ПС в качестве горючих компонентов используются Mg, Al и их сплавы, реже Ti и Zr; в дымовых составах – главным образом органические вещества. Окислителями в ПС служат чаще всего нитраты и перхлораты. В термитных ПС в качестве окислителей используются оксиды металлов (Fe3O4, MnO2 и др.); в дымовых ПС окислителем является хлорат калия – бертоллетова соль (см. Хлораты). Помимо окислителя и горючего в ПС, как правило, вводят различные добавки: соли, окрашивающие пламя, органические красители (для получения сигнальных дымов), связующие (для придания спрессованным ПС необходимых механических свойств), флегматизаторы и стабилизаторы (для обеспечения безопасности при изготовлении и хранении ПС). Большинство ПС, в особенности хлоратные и перхлоратные, обладают взрывчатыми свойствами.

  Пиротехнический эффект (в том числе и скорость горения ПС) зависит от степени измельчения компонентов, тщательности смешения, степени уплотнения ПС, а также от конструкции изделия. Смешение компонентов и уплотнение ПС пожаро– и взрывоопасны. Заполнение ПС картонных или металлических гильз производится чаще всего на прессах, реже шнекованием или заливкой. Воспламенение пиротехнических изделий осуществляется воспламенительными ПС, дымным порохом, огнепроводным шнуром или стопином.

  Теплота сгорания ПС (содержащих окислители) 1,2—8,4 Мдж/кг (300—2000 ккал/кг), температура горения от 400 до 3500 °С; скорость горения спрессованных ПС от 0,5 до 20 мм/сек (при давлении 1 кгс/см2).

  Лит.: Шевчук М. К., Зажигательные средства и защита от них, М., 1961; Лихачев В. А., Пиротехника в кино, 2 изд., М., 1963; Вспомогательные системы ракетно-космической техники, пер. с англ., М., 1970; Шидловский А. А., Основы пиротехники, 4 изд.,, М., 1973; Clark F. P., Special effects in motion pictures, N. Y., 1966; Ellern Н., Military and civilian pyrotechnics, N. Y., 1968; Lancaster R., Shimizu Т., Fireworks, N. Y., 1972.

  А. А. Шидловский.


    Ваша оценка произведения:

Популярные книги за неделю

    wait_for_cache