Текст книги "Тайны пространства и времени"
Автор книги: Виктор Комаров
сообщить о нарушении
Текущая страница: 12 (всего у книги 37 страниц)
По мере развития науки все больший интерес и все большую ценность приобретает изучение «единичных» явлений, от исследования которых естествознание на протяжении своей истории упорно открещивалось. Считалось, что единичные явления ни с чем нельзя сравнить и поэтому их изучение сталкивается с непреодолимыми трудностями. В особенности это касалось явлений, происходящих во Вселенной, поскольку их, как правило, невозможно воспроизвести и повторить в эксперименте.
Но, с другой стороны, именно «единичные» явления представляют собой особый интерес для современной науки, поскольку они уникальны, а все уникальное содержит в себе неповторимую информацию, позволяющую осуществлять успешное наступление на самые сокровенные тайны природы!
Популяризаторы науки любят повторять, что Вселенная неистощима на всевозможные сюрпризы. Но это справедливо лишь отчасти. Хотя течение времени в различных регионах Вселенной зависит от величины сил тяготения, «в среднем», по нашим земным меркам, космические события происходят чрезвычайно медленно. А по этой причине промежутки времени между «единичными» уникальными космическими событиями и явлениями чрезвычайно велики. Так что, если что-то подобное удается зарегистрировать – это означает, что нам в высшей степени повезло, поскольку это явление пришлось как раз на тот краткий отрезок времени, в течение которого существует астрофизика. А это придает явлениям, о которых идет речь, особую ценность.
Одно из таких уникальных загадочных космических явлений было зарегистрировано в 1978 году, когда астрономам удалось обнаружить в созвездии Водолея объект, получивший в дальнейшем условное обозначение SS433.
Первая загадка возникла уже при изучении его спектра. Оказалось, что у этого объекта часть спектральных линий смещена к красному концу спектра, а часть – к фиолетовому. Известно, что подобное смещение спектральных линий наблюдается в тех случаях, когда источник излучения соответственно от нас удаляется или к нам приближается. Получалось, что объект SS433 удаляется от нас со скоростью около 80 тысяч километров в секунду и одновременно… приближается к нам со столь же высокой скоростью!
Но никакое материальное тело в реальном мире не может в одно и то же время перемещаться в двух диаметрально противоположных направлениях. Так способна вести себя только очень сложная система, различные части которой движутся по-разному.
Вскоре обнаружился еще один не менее удивительный факт. Выяснилось, что линии в спектре SS433 меняют свое положение с периодом, равным 164 суткам!
Мало того, оказалось, что загадочный объект интенсивно излучает в рентгеновском диапазоне, является переменным источником инфракрасного излучения и радиоисточником с чрезвычайно сложной структурой!..
Не слишком ли много загадок для одного и того же космического объекта? Естественно, возник вопрос: какова его физическая природа? Других космических объектов с аналогичными свойствами астрономы никогда не регистрировали. В подобных ситуациях единственным способом поисков объяснения является построение теоретической модели, при создании которой используется все многообразие уже» известных нам физических явлений во Вселенной. Точнее, комбинация подходящих фрагментов таких явлений.
Многое при этом, разумеется, зависит от изобретательности и творческого воображения исследователя, но зато появляется возможность на основании полученной модели что-то предсказать, а затем сравнить подобный прогноз с результатами наблюдений.
И такая модель была построена. Суть ее состоит в следующем. Из центральной части некоего объекта выбрасываются с большой скоростью две газовые струи. Одна из них движется по направлению к земному наблюдателю, другая – от него. Именно этим обстоятельством объясняется то таинственное «раздвоение» SS433, о котором шла речь выше.
В центральной же области SS433 расположен компактный газовый диск, вращающийся вокруг центрального массивного тела. При этом струи газа движутся в плоскости, образующей с осью вращения газового диска угол около 20 градусов. Таким образом, вся система приобретает свойства наклонного волчка.
Из механики известно, что ось вращения такой системы должна медленно менять свое положение в пространстве – испытывать так называемую прецессию. Как это, в частности, происходит с осью суточного вращения Земли. Благодаря этому, положение газовых струй в объекте SS433 относительно земного наблюдателя будет с течением времени периодически изменяться. Таково возможное объяснение второй загадки SS433 – 164-суточной периодичности в перемещении линий в его спектре.
Пока не вполне ясно, за счет каких сил движение газа в струях в SS433 остается постоянным и упорядоченным? Не исключено, что здесь существенную роль играют мощные магнитные поля. Не установлено и точное расстояние до загадочного объекта. Оценки колеблются от 11 до 17 тысяч световых лет, но во всяком случае ясно, что объект SS433 расположен в пределах нашей Галактики.
При разработке описанной модели астрофизики исходили из того, что выбросы газовых струй происходят в ядрах так называемых радиогалактик, а также в сверхмощных источниках космической энергии – квазарах. Принимались во внимание и явления, происходящие в так называемых двойных системах, которые представляют собой комбинацию нейтронной звезды или черной дыры и обычной массивной звезды-гиганта, обращающихся вокруг общего центра масс. Так что не исключено, что центральным объектом в SS433 тоже является двойная система!
Дело в том, что ядра галактик обладают гигантскими массами порядка миллиарда масс Солнца, а масса любой двойной системы – сравнительно невелика. Между тем в SS433 ежегодно выбрасывается в газовых струях довольно значительное количество вещества. С одной стороны, это говорит о том, что масштабы подобных процессов, происходящих во Вселенной, могут колебаться в весьма широких пределах, а с другой – о том, что современная стадия SS433 вряд ли может быть достаточно продолжительной. Вероятно, этим и объясняется уникальность загадочного объекта в созвездии Водолея!
Видимо, нам действительно просто повезло и мы оказались современниками редчайшего космического явления, дальнейшее изучение которого может пролить свет на природу многих активных процессов, происходящих во Вселенной.
«Первый свой опыт я проделал над куском белой шерстяной материи. До чего же странно было видеть, как эта белая материя постепенно таяла, как струя пара, и затем совершенно исчезла! Мне не верилось, что я это сделал. Я сунул руку в пустоту и нащупал материю, столь же плотную, как и раньше. Я нечаянно дернул ее, и она упала на пол. Я не сразу ее нашел…» Так герой научно-фантастического романа знаменитого английского писателя Герберта Уэллса «Человек-невидимка» проводил свой первый опыт. Он изобрел способ делать невидимыми различные тела, а затем превратил в невидимку и самого себя.
Любой несамосветящийся предмет мы видим потому, что он отражает некоторую часть падающего на него света. Несветящийся предмет, который никаких лучей не отражал бы, а был бы для них абсолютно прозрачен, оказался бы невидимым. Однако материальных объектов, удовлетворяющих подобным условиям и существующих в нашем обыденном макроскопическом мире, мы не знаем. Тем не менее объекты-невидимки, полностью поглощающие любые излучения, а сами ничего не излучающие, в принципе могут существовать!
XX век принес целый ряд удивительных открытий в области физики и астрономии. Многие из них с трудом укладываются в наши обыденные представления об устройстве окружающего мира, а порой вступают с ними и в прямое противоречие. Но таков закономерный путь развития естествознания, об этом мы уже говорили не раз. Идет своеобразная цепная реакция: обнаруживаются диковинные явления, а их дальнейшее изучение и осмысление приводит к открытию явлений еще более поразительных. И к этому надо быть готовыми – мы вступили в «странный мир» современной физики и астрофизики, и по мере дальнейшего продвижения он неизбежно будет становиться все более и более странным!
Во второй половине XX столетия в астрофизике большую популярность приобрела гипотеза так называемых черных дыр. Одно название чего стоит: «дыры» во Вселенной, да еще «черные»!
Если некоторая масса вещества окажется в малом объеме, критическом для данной массы, то под действием собственного тяготения это вещество начинает неудержимо сжиматься. Наступает своеобразная гравитационная катастрофа – гравитационный коллапс.
В процессе коллапса растет концентрация массы. Растет в соответствии с общей теорией относительности и кривизна пространства. И в конце концов наступает момент, начиная с которого ни один луч света, ни одна частица, ни один вообще физический сигнал не может «вырваться» из подобного образования наружу. Оставаясь в рамках общей теории относительности, подобную ситуацию можно интерпретировать и как замыкание пространства в данном месте в результате возрастания кривизны. Образовавшийся в результате такого замыкания объект и есть черная дыра.
Если справедливо существующее представление о том, что всякая информация должна иметь материального носителя, то такой объект для внешнего наблюдателя как бы перестает существовать – от него не поступает никакая информация.
Как заметил в одной из своих работ крупнейший американский специалист по теории гравитации Кип Торн, «…из всех творений человеческого разума: от мифологических единорогов и драконов до водородной бомбы, пожалуй, наиболее фантастическое – это черные дыры. Однако из физических законов с неизбежностью следует существование черных дыр».
Радиус коллапсирующего тела, при котором оно превращается в черную дыру, называется гравитационным радиусом. Для массы Солнца гравитационный радиус равен 3 километра, для массы Земли – 0,9 сантиметра. Если бы Солнце сжалось до размеров шара с радиусом 3 километра, оно превратилось бы в черную дыру.
А сфера, радиус которой равен гравитационному, получила название «сферы Шварцшильда». Любое тело, оказавшееся на поверхности этой сферы, не может оставаться неподвижным – оно должно падать внутрь. Иногда эту сферу называют еще «горизонтом черной дыры».
На поверхности, радиус которой для данной массы равен гравитационному, сила тяготения практически становится бесконечно большой. И для того чтобы ее преодолеть и оторваться от черной дыры, надо было бы развить вторую космическую скорость, превосходящую скорость света. Вот почему черная дыра ничего не выпускает наружу.
В то же время она может втягивать в себя окружающее вещество, увеличивая при этом свои размеры.
Таким образом, возможность образования черных дыр в принципе можно объяснить и с точки зрения классической механики Ньютона. На это еще в конце XVIII века обратил внимание П. Лаплас. Однако полная теория физических процессов, происходящих в черных дырах и описывающая весь комплекс связанных с ними явлений, может быть построена только с позиций общей теории относительности.
Для внешнего наблюдателя процесс сжатия коллапсирующего вещества будет протекать бесконечно длительное время. И, как показывают расчеты, момента вхождения массы «под» гравитационный радиус он вообще никогда не дождется, так как вблизи границы черной дыры время практически останавливается.
Иную картину увидел бы воображаемый наблюдатель, падающий вместе с веществом в черную дыру. Он за конечный промежуток времени достиг бы гравитационного радиуса и продолжал падение к центру черной дыры.
Таким образом, ход времени вне черной дыры и внутри нее оказывается качественно различимым. С точки зрения обычной «земной» логики и здравого смысла, опирающегося на круг явлений, привычных для человека и протекающих в привычной для него среде обитания, эти рассуждения о неодинаковом ходе времени могут показаться по меньшей мере странными и противоречивыми. Но они, тем не менее, соответствуют реальности.
Вещество, оказавшееся внутри черной дыры, продолжает падать к ее центру, где в результате образуется так называемая сингулярность, то есть точечный объект, в котором плотность вещества достигает бесконечной величины!
Кстати, заметим, что на протяжении длительного времени в теории горячей расширяющейся Вселенной также считалось, что наша Метагалактика образовалась из точечной так называемой космологической сингулярности, которую еще образно иногда именовали «первоатомом». Это событие – Большой Взрыв – и предопределило дальнейшее расширение Вселенной.
В теории горячей расширяющейся Вселенной закономерно возникает и такой вопрос: а что было до начала расширения, то есть до момента времени t = 0? И если не было ничего, то откуда вообще могла возникнуть наша Вселенная? По мнению А.Д. Линде, это «один из наиболее мучительных вопросов, стоящих перед космологами».
В связи с этим некоторые теоретики, в частности, Я.Б. Зельдович, попытались разрубить этот «гордиев узел» с помощью идеи возникновения Вселенной «из ничего», в результате так называемой квантовой флюктуации. Подобная идея и была по сути дела реализована в «инфляционной теории».
Именно от момента «космологической сингулярности» обычно отсчитывался возраст нашей Вселенной. При этом начальный «момент времени» на оси времени предшествовал на 10-43 с (так называемый планковский интервал) тому моменту, когда Вселенная вышла из сингулярного «планковского» состояния и в ней начали проявлять себя те фундаментальные законы физики, которые пришли на смену законам «квантовой гравитации», управлявшим всеми процессами в эпоху от 0 до 10-43 с.
Что же касается сингулярности внутри черной дыры, то скорее всего это не математический точечный объект, а так называемая планковская сингулярность, обладающая размером 10-33 сантиметра.
Следует особо подчеркнуть, что в «планковской фазе» фундаментальные законы современной физики не действуют, не работают. Таким образом, и вся современная фундаментальная физика в целом, как и отдельные физические теории, тоже имеет определенные границы применимости. Поэтому мы не располагаем теоретическими средствами, с помощью которых можно было бы описать, что именно происходило на «сингулярной стадии» раздувания. Чтобы решить эту проблему, потребуется создание единой «квантово-гравитационной теории», которая была бы применима к описанию структуры, свойств и эволюции физического вакуума. Но создание подобной теории – дело будущего.
И это справедливо не только по отношению к сингулярностям, заключенным внутри черных дыр, но и по отношению к той «космологической сингулярности», которая возможно существовала в момент начала нашей Вселенной. По словам советского физика-теоретика А. Старобинского, «внутри планковской области… может быть что угодно. Точно так же, как и внутри черных дыр».
Возникает вопрос: каково будущее вещества, которое оказалось втянутым в черную дыру? Окажется ли оно «захороненным» в ней на вечные времена или все же может при определенных обстоятельствах «возвращаться» во Вселенную?
В рамках общей теории относительности существуют два независимых решения уравнений, относящихся к явлениям типа гравитационного коллапса. Одно из них описывает необратимый процесс катастрофического сжатия материи, в результате которого образуется черная дыра. Что касается второго решения, то оно в известной степени обратно первому. Согласно этому решению, материя, наоборот, движется от «сингулярности» – то есть происходит «антиколлапс», вследствие чего образуется так называемая белая дыра.
Но как говорят физики и математики, решения, о которых идет речь, не «сшиваются». Иными словами, с точки зрения общей теории относительности, коллапс, строго говоря, не может сам собой перейти в антиколлапс, а черная дыра превратиться в «белую дыру»! Если же встать на позицию внешнего наблюдателя, то центральная сингулярность в черной дыре является принципиально ненаблюдаемой, а аналогичная сингулярность в «белой дыре» в принципе может наблюдаться. Но как показывают расчеты, те белые дыры, которые, возможно, образовались на ранней стадии существования нашей Вселенной, расходуя свое вещество, к настоящему времени уже все равно стали бы ненаблюдаемыми.
Тем не менее, как показывают теоретические вычисления, наряду с черными дырами в принципе могут существовать и «белые дыры», то есть образования, в которых происходит «антиколлапс» – катастрофический разлет вещества. У вращающихся черных дыр, обладающих неким электрическим зарядом, стадия сжатия может все же смениться фазой расширения.
В то же время новые белые дыры сейчас образоваться не могут из-за того, что коллапс теоретически не может превратиться в антиколлапс. И если бы мы все-таки обнаружили в нашей Вселенной какую-нибудь «белую дыру», то это скорее всего означало бы, что мы наблюдаем проявление в нашем пространстве черной дыры, образовавшейся в каком-то смежном с нашим другом мире.
Известный советский астрофизик академик Н.С. Кардашев предложил в свое время «мысленный эксперимент», позволяющий наглядно иллюстрировать свойства черных и белых дыр.
Правда, тут следует сделать оговорку. Хотя непосредственно «увидеть» черную дыру невозможно, она, строго говоря, невидимкой, в том смысле, который вкладывал в это понятие Уэллс, не является. Мы не можем «видеть» сквозь нее. Тем самым как бы вполне оправдывается экзотическое название – черная дыра.
Рассмотрим ощущения воображаемого наблюдателя, погружающегося на космическом корабле в заряженную черную дыру. Такой путешественник уже никогда на возвратится в свой мир. Проникновение в заряженную черную дыру с последующим выходом в белую дыру будет соответствовать путешествию на «машине времени», которая проходит бесконечно большие расстояния за конечные промежутки времени и преодолевает в конечном интервале собственного времени (времени, протекающего для путешественника) бесконечно большие интервалы времени для внешнего наблюдателя. В этом путешествии наблюдатель, находящийся в корабле, «выныривает» как бы в «абсолютном будущем» – в мир, которым, быть может, станет наш мир через невообразимо огромные промежутки времени. Мало того, не исключено, что этот «новый» мир не связан с нашим миром никаким простым пространственно-временным образом, а отделен от него бесконечно большим интервалом времени. И обычным способом в него нельзя попасть никогда!
Как считает Н. Кардашев, наблюдатель во время погружения в черную дыру увидит все будущее нашей Вселенной, а при «выходе» из белой дыры в другую вселенную – все прошлое этой соседней вселенной.
В 1974 году было теоретически показано, что квантовые эффекты, связанные с черными дырами, должны приводить к тому, что и эти объекты излучают, подобно так называемому абсолютно черному телу с температурой, отличной от нуля, и в результате постепенно теряют свою массу – «испаряются».
Однако более или менее ощутимым такое испарение может быть только у черных мини-дыр с массой в миллиарды миллиардов раз меньше солнечной.
Так, «дыра» с массой порядка нескольких миллиардов тонн может полностью испариться за 10 миллиардов лет, то есть за срок, сравнимый с возрастом нашей Вселенной. В современную эпоху подобные «мини-дыры» в нашей Вселенной вряд ли могут возникать. Во всяком случае соответствующих физических процессов и условий, необходимых для этого, не наблюдается.
Но на ранней стадии расширения их образование, вероятно, было возможно. Однако к нашему времени такие минидыры должны были скорее всего полностью испариться. Что же касается черных дыр с несколько большими массами, то они в принципе могли «дожить» и до нашего времени! И если такие объекты существуют, то сейчас они, видимо, должны переживать заключительные стадии своей эволюции – стадии бурного испарения и даже ядерного взрыва! Однако поиски подобных объектов пока что успеха не принесли.
Здесь имеются в виду теоретические исследования английского физика-теоретика Стивена Хокинга, которому удалось показать, что черные дыры, по сути дела, не такие уж черные, как считалось раньше, а должны излучать так называемое абсолютно черное тело с температурой выше абсолютного нуля. В частности, согласно расчетам Хокинга, если в процессе «испарения» масса черной дыры достигнет 1015 г, то последний миллион тонн ее массы будет излучен в окружающее пространство в темпе ядерного взрыва.
По словам одного из крупнейших современных физиков-теоретиков Стивена Вейнберга, в науке «главная трудность состоит в том, что люди не воспринимают всерьез результаты, уже полученные теорией». Хотя в свое время Поль Дирак, а во второй половине XIX столетия А. Зельманов неоднократно говорили о том, что все непротиворечивые научные теоретические результаты рано или поздно обязательно обнаружат себя в реальных явлениях окружающего мира.
Следует заметить, что открытие Хокинга в какой-то мере сняло с представления о черных дырах некоторый налет фантастичности и даже «полумистицизма», сопутствовавший им с самого начала, и, таким образом, способствовало укреплению у физиков и астрономов веры в реальность их существования как важного элемента научной картины мира. И это привело к тому, что в настоящее время черные дыры представляют собой один из самих популярных, хотя пока еще чисто теоретических и не обнаруженных наблюдениями, объектов современной астрономии и астрофизики.
Не менее важным результатом исследований Хокинга является и вывод о том, что эти объекты завершают свое существование взрывным излучением и разбросом остатков своей массы. А это означает, что хотя с точки зрения классической общей теории относительности «коллапсарное» и «антиколлапсарное» решения ее уравнений не сшиваются, природа тем не менее, видимо, все же превращает коллапс в антиколлапс, хотя он и не укладывается в строгие рамки современной общей теории относительности!
Исследования советского теоретика Шварцмана наряду с выводом С. Хокинга внесли заметные изменения в существовавшие до этого представления о природе черных дыр и возможности их наблюдения. Из этого результата следовало, что материи, коллапсирующей на черную дыру для достижения «гравитационного радиуса» и сферы Шварцшильда, достаточно конечного интервала времени. Как удалось показать Шварцману, вещество, собирающееся у поверхности черной дыры, или излучение, еще не проникшие внутрь черной дыры, тем не менее увеличивают ее массу. А благодаря этому «растягивается» гравитационный радиус черной дыры. Иными словами поверхность Шварцшильда расширяется с конечной скоростью навстречу падающему на нее веществу, движение которого из-за воздействия гравитационного поля черной дыры постоянно замедляется. И захватывает его. И все это происходит с точки зрения внешнего наблюдателя, в частности земного наблюдателя, за конечный интервал времени.
Эффект, о котором идет речь, – весьма существенен. Согласно подсчетам Шварцмана, в сверхмассивных черных дырах с массой, равной 109 масс Солнца, вещество, падающее на нее с расстояния двух гравитационных радиусов, проникает внутрь всего за две недели. А в черную дыру, обладающую звездной массой, с такого же расстояния – примерно за 10-3 с.
В дальнейшем этот вывод получил подтверждение в работе И. Новикова и В. Фролова «Физика черных дыр», хотя и был получен из несколько иных соображений.
И уже одно это говорит в пользу справедливости результата, о котором идет речь. Но почему-то этот результат до сих пор внимания теоретиков в должной степени не привлек. Но, тем не менее он, вне всякого сомнения, самым существенным образом изменяет наши представления о месте и роли черных дыр в современной научной картине мира.
Теперь мы знаем, что проваливающиеся в черную дыру внешние массы, с точки зрения стороннего наблюдателя, не только достаточно быстро достигают ее внешней поверхности, но еще значительно быстрее должны «добираться» до ее центральной «планковской сингулярности».
В кибернетике рассматривается такая задача. Есть некоторый объект, внутреннее устройство которого нам неизвестно. Его называют «черным ящиком». Но у него имеются «входы» и «выходы». На «входы» поступают внешние сигналы, а на «выходе» можно наблюдать информацию о том, как черный ящик «ответил» на входные сигналы. Задача состоит в том, чтобы, не вскрывая черного ящика – только по соотношению входных и выходных сигналов, составить представление о его внутреннем устройстве.
Представьте себе, что вы не знаете ни устройства, ни принципов действия вашего телевизора. Известно лишь, что на его вход поступают электрические сигналы с антенны, а на выходе – на экране – мы видим изображение, а в динамиках слышим звук – голос, музыку. И по этим входным и выходным сигналам необходимо составить представление о конструкции черного ящика – телевизора.
В принципе существуют два способа решения этой задачи. Можно регистрировать поступающие с антенны сигналы и сравнивать с тем, что происходит на выходе. Это – путь наблюдений. Но есть и другая возможность – более активная. Самим подавать на вход различные сигналы и наблюдать, что произойдет на выходе.
Астрофизикам приходится решать аналогичные задачи. Большинство космических объектов – это типичные черные ящики, о внутреннем строении которых и происходящих там физических процессах можно судить только по внешним проявлениям.
Однако положение астрономов осложняется по меньшей мере двумя обстоятельствами. Во-первых, они, как правило, лишены возможности экспериментировать, а могут лишь наблюдать. А во-вторых, подавляющее большинство космических черных ящиков – это черные ящики без входа. Иными словами, нам неизвестны те внешние воздействия, которые способны повлиять на внутреннее состояние интересующих нас объектов.
Например, мы не знаем таких внешних воздействий, которые могли бы изменить течение физических процессов на Солнце. Есть, правда, экстравагантная гипотеза Э. Броуна, согласно которой периодические колебания солнечной активности связаны с гравитационными приливными возмущениями со стороны обращающихся вокруг светила планет. Однако пока это всего лишь предположение.
Впрочем, среди космических объектов имеются и такие, для которых внешние воздействия играют существенную роль, и мы об этом знаем. В частности, любопытные явления были обнаружены в так называемых двойных системах, состоящих из двух звезд, обращающихся вокруг общего центра масс. Если одна из этих звезд намного массивнее другой, то на нее должно «перетекать» вещество второй – обычной звезды. И подобный процесс может играть роль «входного» сигнала, воздействующего на состояние массивной звезды. Есть определенные «входы» и у таких небесных тел, как планеты и кометы. Для планет это, к примеру, влияние солнечной активности а для комет – воздействие теплового светового излучения Солнца, солнечного ветра, а также притяжения планет-гигантов.
Результат, полученный Шварцманом, означает, что и черную дыру мы можем теперь рассматривать как черный ящик, в котором поступающее извне вещество играет роль «входных сигналов».
Что же касается «выходных сигналов», то после работ Хокинга и Шварцмана на них тоже можно в принципе рассчитывать! Это, во-первых, хокинговское излучение или «испарение», а во-вторых, «не исключено», что в «планковской фазе» неизвестные нам законы квантовой гравитации могут приводить к антиколлапсу проваливающегося в черную дыру вещества. При этом «не исключено» следует понимать в смысле, сформулированном в свое время академиком А.Д. Сахаровым. А именно: «не исключено» – означает, что мы не можем на теперешнем уровне знаний ни опровергнуть, ни обосновать эту возможность.
Более того, теперь известны и другие разнообразные наблюдения явлений, возможно, связанных с антиколлапсом выбрасываемого черными дырами вещества. А это означает, что, быть может, удастся найти удовлетворительное объяснение некоторым давно наблюдаемым, но до сих пор не очень понятным астрономическим феноменам, таким, например, как движение со сверхсветовыми скоростями в квазарах и некоторых радиоисточниках, о которых мы уже говорили.
Пока же астрономы, как обычно в соответствии с «бритвой Оккама», предпочитают искать объяснение этих явлений в рамках общепризнанной фундаментальной физики.
Существует и еще одна заманчивая перспектива. Не исключено, что возможность обнаружения антиколлапсарных феноменов в черных дырах и их нетрадиционное объяснение может дать ценный материал для построения той самой «квантово-гравитационной» теории, создание которой пока что упорно не дается современным физикам.