Текст книги "Тайны пространства и времени"
Автор книги: Виктор Комаров
сообщить о нарушении
Текущая страница: 11 (всего у книги 37 страниц)
Еще в 1976 году, основываясь на теоретических исследованиях, проведенных в Институте прикладной математики имени М. Келдыша АН СССР, ученые высказали предположение о существовании в структуре Вселенной своеобразных «пустот» – областей, свободных от звезд и галактик.
Год спустя это предсказание было подтверждено данными, полученными сотрудниками Тартуской астрофизической обсерватории в Эстонии под руководством Я.Э. Эйнасто. Они обнаружили в созвездии Персея большую область, свободную от галактик. А затем американские астрономы открыли огромную полость, практически свободную от звезд и галактик, с поперечником около 300 миллионов световых лет.
Главная трудность при изучении пространственной структуры Вселенной состоит в том, что все космические объекты, в том числе далекие галактики, проектируются на небесную сферу, заполняя ее более или менее равномерно. Поэтому для того, чтобы составить представление о распределении галактик в пространстве, необходимо узнать расстояния до каждой из них. Но измерение расстояний до отдельных галактик – задача очень сложная. И в широких масштабах она стала решаться лишь в последние годы. Тогда и подтвердилось, что во Вселенной действительно существуют достаточно большие области, внутри которых галактики практически отсутствуют.
Представим себе на минуту, что с нашего земного неба исчезли все звезды и мы невооруженным глазом можем наблюдать далекие галактики. Какие «узоры» образуют они в пространстве?
С помощью электронно-вычислительной техники выяснилось, что галактики распределены в пространстве сверхскоплений не хаотически, а образуют своеобразные «сети» в виде дуг, перемычек и ребер гигантских ячеек, чем-то напоминающих пчелиные соты. Каждая сторона такой ячейки имеет протяженность около 100 миллионов световых лет.
В настоящее время уже известно несколько подобных «пустот», некоторые из них имеют весьма внушительные размеры. Так, американские астрономы обнаружили свободную от звезд и галактик область с поперечником около 300 миллионов световых лет. Они изучили распределение звездных островов вдоль трех близко расположенных прямых линий, направленных в глубины Вселенной. В результате такого зондирования обнаружилось, что по избранным направлениям вплоть до расстояний порядка 500 миллионов световых лет и начиная с расстояний около 800 миллионов световых лет, галактики расположены довольно густо. Но в промежутке между этими «отметками» ни одной галактики зарегистрировать не удалось. Ориентировочный объем открытой учеными полости составляет 1025 кубических световых лет.
На ранней стадии расширения Вселенной вещество представляло собой смесь водорода и гелия, достаточно равномерно распределенную в пространстве. Однако не абсолютно равномерно. В разных точках плотность среды могла несколько различаться. Как показывают расчеты, с течением времени под действием сил тяготения подобные различия должны были возрастать. А на еще более поздней стадии, согласно теоретическим представлениям, развивавшимся Я. Зельдовичем и его сотрудниками, исходное вещество стало стягиваться к стенкам тех самых ячеек, которые мы наблюдаем в современную эпоху.
Следует подчеркнуть, что открытие гигантских космических «пустот» нисколько не противоречит представлениям об однородности Вселенной в больших масштабах. Ведь их размеры не идут ни в какое сравнение с размерами той области пространства, которая охвачена астрономическими наблюдениями.
Для окончательного выяснения пространственной структуры Вселенной наряду с дальнейшей разработкой теории потребуется провести множество исследований и наблюдений, в частности, определить положение в пространстве десятков тысяч далеких галактик, а также разработать методы обнаружения разреженного ионизированного газа.
Если повсеместный характер сетевой структуры сверхскоплений галактик подтвердится дальнейшими исследованиями, то это будет иметь колоссальное значение для понимания особенностей строения и эволюции нашей Вселенной. Дело том, что «сетевая структура» неустойчива! Возможно, именно по этой причине в нашей Вселенной не существует (или почти не существует) объединений более высокого порядка, чем сверхскопления. Да и сами сверхскопления постепенно рассеиваются и, таким образом, представляют собой лишь временную фазу пространственного распределения звездных систем.
Согласно некоторым расчетам, продолжительность того этапа эволюции Вселенной, на протяжении которого сохраняется сетевая структура сверхскоплений, составляет примерно 10 миллиардов лет. Это говорит о том, что мы живем на некотором промежуточном этапе эволюции Вселенной, – этапе не слишком молодом, но и не слишком старом, так что ее пространственная структура еще будет существенным образом изменяться. Этот вывод имеет принципиальное значение.
Хотя внегалактическая астрономия – один из наиболее бурно развивающихся разделов современной науки о Вселенной, но это и одна из самых молодых ее областей. Поэтому нет ничего удивительного в том, что в современной внегалактической астрономии имеется больше нерешенных вопросов, чем в любой другой области науки о Вселенной. И вопросов не только частного, локального характера, но и фундаментальных, от содержания ответов на которые зависит наше понимание основных законов мироздания, свойств и строения того мира, в котором мы живем и частью которого являемся.
На пороге третьего тысячелетия астрономы все еще не могут дать точный ответ на вопрос: из чего состоит наша Вселенная?
Хорошо известно, что галактики состоят из звезд, планет, межзвездного газа и пыли, но… и еще из «чего-то» такого, что никак не удается зарегистрировать никакими приемниками излучения.
Эти таинственные объекты проявляют себя только гравитационными воздействиями на другие космические тела. А так как гравитация непосредственно связана с массами, то таинственные «невидимки» получили название «скрытой массы».
Впервые на проблему существования скрытой массы натолкнулся еще в 1933 году швейцарский астроном Ф. Цвикки. Измеряя скорости движения галактик в скоплении, расположенном в созвездии Волосы Вероники, он обнаружил, что они движутся с очень высокими скоростями. Последующие вычисления показали, что для того, чтобы удержать столь «быстрые» галактики, необходима масса, значительно превосходящая (раз в десять!) общую массу скопления, о котором идет речь. Так возник «парадокс Цвикки», получивший впоследствии подтверждения при изучении других скоплений звездных островов Вселенной.
Дело в том, что в принципе существуют два независимых способа определения массы скоплений галактик. Один из них основан на обнаруженной астрономами зависимости между массами скоплений и скоростями собственных движений звездных островов, которые входят в их состав. Поскольку эти скорости, а также радиусы скоплений можно достаточно точно определить с помощью астрономических наблюдений, то нетрудно вычислить и массы скоплений. Массы, определенные подобным методом, получили название «вириальных» по «имени» одной важной теоремы классической механики.
Другой способ заключается в следующем. Многочисленные исследования показали, что массы скоплений галактик и отдельных звездных систем связаны с их светимостями. Чем выше светимость, тем больше масса. Поэтому считается, что измеряя светимости, можно довольно точно определять как массы отдельных галактик, так и их групп.
Вполне естественно было сопоставить полученные двумя способами результаты между собой. И не менее естественно было ожидать, что поскольку речь идет о массах одних и тех же космических объектов, то эти результаты совпадут.
Однако оказалось, что массы скоплений, определенные по их светимостям, значительно ниже, чем их «вириальные» массы. Добро бы это различие составляло какие-нибудь 510%. Тогда его вполне можно было бы отнести на счет мелких ошибок, допущенных при измерении физических характеристик изучаемых объектов, погрешностей вычислений и тому подобных «побочных обстоятельств». Астрономы нередко так и поступают…
Но в данном случае подобный «спасительный метод» согласования несовпадающих результатов был явно неприменим. Оказалось, что «вириальные» массы превосходят массы, определенные по светимости, в десятки и в сотни раз.
А в 1970-е годы дополнительно выяснилось, что движение галактик в скоплениях вступает и в противоречие с законами небесной механики. Более того, оказалось, что внешние области нашей Галактики обращаются вокруг ее центра так же быстро, как и внутренние! Эту аномалию также можно было бы объяснить наличием скрытой массы. Если допустить, что наша звездная система полностью погружена в огромное массивное невидимое «облако», то все странности, связанные с вращением ее составных частей, вполне закономерны.
Окончательно убедившись в реальном существовании скрытых масс, астрономы не могли не задуматься над тем, что они могут собой представлять. Определенная часть исследователей Вселенной допускает, что «темное вещество» вполне может состоять из обычных космических объектов, которые просто не удается наблюдать из-за огромных космических расстояний. Речь может идти как о планетах и астероидах, так и о не «загоревшихся» или уже остывших звездах, нейтронных звездах и даже черных дырах. В совокупности подобные объекты стали называть английской аббревиатурой МАСНО, что значит – «массивные компактные объекты гало…», то есть объекты, которые могут располагаться в периферийных областях галактик, в том числе и нашего Млечного Пути.
В 1986 году астрофизик Пристонского университета в США Б. Пачински предложил применить для поиска МАСНО-объектов метод так называемых гравитационных линз.
Идея состояла в следующем. Если одно из «темных» массивных тел, обращающихся вокруг центра нашей Галактики, в какой-то момент окажется на пути световых лучей, идущих к Земле от одной из звезд Большого Магелланова Облака, то гравитационное поле этого МАСНО-объекта сработает как «собирающая линза». В результате видимый блеск «линзируемой» звезды на какое-то время значительно возрастет, а затем она возвратится в обычное состояние. В последнее десятилетие подобные исследования проводились рядом научных коллективов, однако полученные результаты пока не дают оснований для окончательных выводов.
В то же время ряд других физиков и астрофизиков занялись поисками пресловутой «скрытой массы» в мире элементарных частиц. В частности, некоторые физики возлагают надежды на еще неизвестные науке (не открытые) тяжелые элементарные частицы с экзотическими свойствами. И хотя они еще не обнаружены, им даже уже присвоили специальное наименование – IMP, что означает – «слабо взаимодействующие массивные частицы».
Высказывались также предположения о существовании еще одной, на этот раз сверхлегкой ненаблюдаемой частицы – «аксиона». По оценкам некоторых исследователей, число таких частиц в каждом кубическом сантиметре пространства достигает невообразимой величины, равной 100 триллионам, так что их суммарный вклад в «скрытую массу» может оказаться весьма существенным.
Аксионы пытались обнаружить в Национальной лаборатории в Ливермоле в США в штате Калифорния с помощью супермощного магнита, но – безуспешно. Как полагают сами исследователи, для получения окончательного ответа относительно существования аксионов понадобится еще не меньше Шлет.
Новые возможности для изучения физической природы «темной массы» появились в последние годы в результате исследований английских астрономов, проведенных в связи с созданием фотографической карты южного неба в дополнение к уже имевшейся карте северного неба, созданной американскими астрономами с помощью 5-метрового телескопа обсерватории на горе Паломар. С этой целью английские ученые установили в Австралии в обсерватории Новый Южный Уэллс крупный телескоп так называемой системы Шмидта с поперечником 1,2 метра.
В числе дополнительных программ, осуществляемых с помощью этого инструмента, была программа исследования изменений, которые происходят на специально выбранном участке неба, равном 35 квадратным градусам, за различные промежутки времени от нескольких часов до многих лет. Руководителем этой программы был астроном Королевской Эдинбургской обсерватории в Шотландии Майк Хоукинс. В этой обсерватории были тщательно исследованы фотопластинки, полученные в Австралии. В результате удалось зафиксировать положения в пространстве, размеры и конфигурации примерно 200 тысяч галактик. Затем эти данные были сопоставлены друг с другом, что позволило получить представление о поведении каждого из наблюдавшихся объектов. И стало очевидно, что значительное число вариаций в их состоянии происходит лишь за достаточно длительные промежутки времени. За некоторыми из подобных объектов удалось проследить не только визуально, но и спектроскопически с помощью англо-австралийского телескопа с поперечником зеркала 3,9 метра. Фотографирование производилось на протяжении 17 лет с 1975 по 1992 год.
И уже в начале наблюдений стало ясно, что типичный период вариаций физического состояния изучаемых объектов составляет от 5 до 10 лет. Если кратковременные вариации продолжительностью менее одного года можно было объяснить нестабильностью тех или иных конкретных объектов, то для длительных вариаций подобное объяснение не подходило. Следовало искать какие-то иные причины этого явления.
Новая многообещающая идея возникла в результате совместного обсуждения упомянутой проблемы Майком Хоукинсом и специалистом по так называемым гравитационным линзам австралийкой Рэчел Вебстер. Физический эффект, на возможность которого они обратили внимание, был предсказан еще Эйнштейном. Согласно общей теории относительности, гравитационные поля должны оказывать влияние на ход световых лучей. Анализ показывает, что если на пути светового потока, идущего от какого-либо космического источника излучения, окажется компактный массивный объект, то его поле тяготения будет действовать подобно оптической линзе. В результате наблюдатель, находящийся на одной прямой линии с этими объектами, обнаружит значительное увеличение светимости источника, например, звезды или квазара.
Сопоставив имеющиеся в его распоряжении многочисленные фактические данные, М. Хоукинс пришел к заключению, что причиной многих вариаций светимости далеких квазаров могут быть именно гравитационные линзы. В частности, было замечено, что у близких квазаров вариации светимости практически не наблюдаются. Например, у самого близкого к нам квазара ЗС 273. Этот факт как раз и свидетельствует в пользу гипотезы гравитационных линз. В самом деле, для близких квазаров или других источников светового излучения, расположенных на сравнительно небольших расстояниях от Земли, пересечение луча зрения, соединяющего наблюдателя и наблюдаемый светящийся космический объект гравитационной линзой, представляет собой крайне редкое явление. Однако в тех случаях, когда объект находится на очень большом расстоянии от земного наблюдателя, вероятность того, что на луче зрения окажется гравитационная линза, значительно возрастает.
Поэтому логично предположить, что неожиданные усиления светимости близких источников, например звезд, вызваны в подавляющем большинстве случаев теми или иными физическими процессами на самой звезде – в частности, вспышками новых или сверхновых. Что же касается далеких квазаров, то их вариативность, по мнению Хоукинса, скорее всего объясняется наличием во Вселенной большого числа невидимых компактных массивных тел, играющих роль гравитационных линз, которые и составляют основную часть темной массы Вселенной.
Но что могут представлять собой эти компактные массивные объекты? Какова их природа? Ответ на этот вопрос имеет чрезвычайно важное космологическое значение. Как известно, будущее нашей Вселенной зависит от величины средней плотности материи. Если эта плотность ниже некоторого «критического» значения – Вселенная будет расширяться неограниченно. В противном же случае расширение со временем сменится сжатием. Согласно существующей теории про нахождения нашей Вселенной, на ранней стадии ее существования могло возникнуть лишь около 5% массы, необходимой для обеспечения критической плотности и состоящей из барионного вещества, то есть тех элементарных частиц, из которых состоят обычные космические объекты – планеты, звезды, туманности, галактики.
Согласно подсчетам Хоукинса, подавляющее большинство гравитационных линз обладает массами, сравнимыми с массой Юпитера. По его предположению, на той стадии эволюции Вселенной, когда кварки перестали существовать в свободном состоянии и вошли в состав атомов, могли сформироваться многочисленные черные дыры, обладающие массами, сравнимыми с массой Юпитера. И они-то и являются теми гравитационными линзами, которые вызывают наблюдаемые вариации светового излучения далеких квазаров. Иными словами, наша Вселенная содержит огромное количество сравнительно небольших черных дыр. И когда мы наблюдаем те или иные объекты, расположенные в отдаленных регионах космоса, мы, как правило, видим их «через» космические гравитационные линзы.
Если все сказанное соответствует реальному положению вещей, то, по-видимому, основную часть «темной массы» Вселенной составляют небольшие черные дыры.
Оригинальный подход к проблеме «скрытой массы» был в свое время предложен академиков Я.Б. Зельдовичем. Он выдвинул «нитевидную модель» крупномасштабной структуры Вселенной, объясняющую, почему галактики заполняют пространство Вселенной неравномерно, концентрируясь к ребрам своеобразных пространственных ячеек, о которых мы уже упоминали. Согласно гипотезе Зельдовича, основы этих ребер составляют сверхплотные нитевидные образования, получившие в современной физике название «струн» или «суперструн» (или «стринги» и «суперстринги»).
Итак, природа «скрытых масс» еще не установлена. Известно только то, что она существует. Между тем вопрос о скрытой массе Вселенной – это в полном смысле слова вопрос о ее будущем! Если масса темного вещества окажется выше некоторого «критического» значения, то в какой-то момент расширение Вселенной прекратится и начнется обратный процесс – сжатие. Если же невидимого вещества не так много, то расширение Вселенной будет продолжаться вечно…
Было время, когда казалось, что космические объекты, составляющие население нашей Вселенной, почти не изменяются с течением времени, постепенно переходя от одного стационарного состояния к другому стационарному состоянию. Однако с появлением новых средств астрономических исследований, позволяющих регистрировать и анализировать информацию, содержащуюся не только в оптическом, но и в других диапазонах космических электромагнитных излучений, картина «спокойной» Вселенной была кардинально пересмотрена. Выяснилось, в частности, что почти все известные нам галактики излучают не только свет, но и радиоволны, и что эти излучения связаны с выделением огромных количеств энергии. В настоящее время не приходится сомневаться в том, что источником этих энергий являются активные физические процессы, протекающие в ядрах этих звездных систем. И, судя по всему, подобные активные нестационарные процессы играют весьма существенную роль в эволюции космических объектов! Эта роль впервые была отмечена выдающимся советским астрофизиком академиком В.А. Амбарцумяном.
В 1960-х годах новые технические возможности позволили астрономам исследовать неизвестные свойства уже известных объектов. В частности, внимание ученых привлекли так называемые голубые звезды. Они были впервые обнаружены и даже сфотографированы 100 лет назад и на этих снимках выглядели так же, как и другие звезды нашей Галактики. Правда, было замечено, что они обладают очень сильным ультрафиолетовым излучением, но это обстоятельство почему-то в то время никого не заинтересовало. И только когда выяснилось, что эти звезды являются еще и радиоисточниками, они стали объектом пристального исследования. Одной из таких звезд, зарегистрированной в каталогах космических радиостанций под номером ЗС 273, заинтересовался американский астроном, голландец по происхождению Мартен Шмидт. Исходя из результатов спектральных наблюдений, он пришел к выводу о том, что объект ЗС 273 должен находиться от Земли на расстоянии порядка нескольких миллиардов световых лет, то есть у границ наблюдаемой области Вселенной. Но это означало, что загадочный объект излучает неправдоподобно большое количество энергии…
Открытие космических объектов, впоследствии получивших название квазаров, явилось одним из самых выдающихся событий в естествознании второй половины XX столетия.
Согласно подсчетам, квазар ЗС 273, обнаруженный первым, излучает примерно в сто раз большую энергию, чем самые гигантские известные нам галактики! Это тем более удивительно, что квазары представляют собой компактные образования – их поперечники достигают всего нескольких световых месяцев, максимум – года.
По-видимому, квазары возникли раньше, чем галактики, а затем каким-то образом «обрастали» звездами и становились ядрами этих звездных систем. Что же касается источников их энергии, то этот вопрос остается открытым. Единственное, что можно утверждать определенно, – то, что это не термоядерные реакции. Такие реакции заведомо не могли бы обеспечить столь высокий выход энергии из столь небольшого объема.