355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Виктор Пестриков » Энциклопедия радиолюбителя » Текст книги (страница 19)
Энциклопедия радиолюбителя
  • Текст добавлен: 11 апреля 2017, 00:00

Текст книги "Энциклопедия радиолюбителя"


Автор книги: Виктор Пестриков



сообщить о нарушении

Текущая страница: 19 (всего у книги 30 страниц)

24.3. Усилители звуковой частоты на электронных лампах

Современный уровень радиоэлектроники позволяет создавать усилители звуковой частоты на электронных лампах с такими высокими параметрами, которые соответствуют не только термину Hi-Fi (сокращенно от английского High Fidelity – «высокая верность»), но и другому новоявленному термину Hi-End. В таких конструкциях проблема приближения звучания к естественному звуку решается не только использованием высококачественных электронных компонентов, но и новыми схемными решениями. Эти решения затрагивают всю систему воспроизведения звука: источник сигнала, усилитель, колонки и даже межблочные и акустические кабели. Например, в некоторых конструкциях питание УЗЧ производится от двойного тороидального трансформатора с блоком стабилизации на П-фильтре, выходные трансформаторы наматываются особым образом или делаются двухкатушечными и т. д. Используются даже позолоченные разъемы. Безусловно, эти ламповые усилители стоят очень дорого, тысячи, а то и десятки тысяч долларов. В настоящее время такая аппаратура производится не только за границей, но и у нас в России во многих городах. Иметь ламповый усилитель звуковой частоты стало делом чести каждого меломана.

Решать эту задачу можно по-разному, в частности, если Вы приобрели радиолюбительские навыки в процессе прочтения этой книги, то можно взяться за изготовление одной из конструкций лампового усилителя, приведенного ниже. В связи с этим рассмотрим схемы ламповых усилителей звуковой частоты различной сложности, которые могут использоваться в составе Hi-Fi стереосистем.


24.3.1. Усилитель звуковой частоты на двух электронных лампах

В схеме усилителя звуковой частоты, представленной на рис. 24.8, используется всего две пальчиковые лампы. Усилитель имеет такие основные характеристики: номинальная выходная мощность 5 Вт, коэффициент нелинейных искажений менее 2 %, чувствительность 100 мВ, полоса равномерно усиливаемых частот 50…12000 Гц, сопротивление нагрузки 4…6 Ом. Два таких усилителя могут быть использованы для создания домашней стереофонической системы.


Рис. 24.8. Принципиальная схема усилителя звуковой частоты мощностью 5 Вт на двух электронных лампах

На двойном триоде 6Н2П (VL1) выполнен двухкаскадный усилитель напряжения, а в выходном каскаде используется мощный пентод типа 6П14П (VL2). На вход усилителя можно подать сигнал от CD-проигрывателя или УКВ-тюнера. Сигнал с переменного резистора R1, выполняющего функции регулятора громкости, подается на управляющую сетку триода VL1.1. После усиления сигнал через конденсатор связи С1 и корректирующие цепи подается на управляющую сетку R9, напряжение звуковой частоты через конденсатор С6 и резистор R13 поступает на управляющую сетку пентода VL2, который является усилителем мощности. Электрические колебания низкой частоты большой мощности, возникающие в анодной цепи пентода, с помощью выходного трансформатора Т1 подводятся к громкоговорителю ВА1.

В усилителе имеются плавные регулировки по низшим и высшим частотам. С помощью переменного резистора R5 производится регулировка низших частот, а с помощью переменного резистора R7 – по высшим частотам.

Необходимые начальные отрицательные напряжения смещения на управляющих сетках ламп VL1.1, VL1.2 и VL2 осуществляются резисторами R3, R10, R13, включенными в цепи их катодов.

Питается усилитель от выпрямителя, собранного по обычной мостовой схеме на четырех полупроводниковых диодах VD1…VD4. Напряжение на выпрямитель подается со вторичной обмотки трансформатора Т2, первичная обмотка которого может быть включена в сеть с напряжением 220 В или 127 В. Переключение на требуемое напряжение сети производится перестановкой плавкого предохранителя FU1 в соответствующие гнезда. Нити накала питаются от обмотки III силового трансформатора Т2. Для уменьшения шумов и фона переменного тока на нити накала ламп VL1.1 и VL1.2 предусилителя подается пониженное напряжение питания. С этой целью последовательна с нитью накала лампы VL1 включен резистор R11.

Самодельными деталями УЗЧ являются: шасси, выходной Т1 и силовой Т2 трансформаторы. Хотя, в принципе, можно использовать и трансформаторы промышленного производства, если таковые имеются в распоряжении радиолюбителя. Постоянные резисторы типа МЛТ, соответствующие мощности указанной на схеме. Переменные резисторы R1, R5 и R7 могут быть типа СПЗ-33. Электролитические конденсаторы С7 и С8 типа К50-27, остальные постоянные конденсаторы типа МБГО. Предохранитель FU1 должен быть рассчитан на ток 0,5 А.

Для силового трансформатора Т2 при самостоятельном изготовлении используется сердечник из пластин Ш16 с окном площадью 6 см2 и толщиной набора 32 мм. Обмотка I содержит 2100 витков провода ПЭЛ 0,27 с отводом от 1220 витка, обмотка II – 2400 витков ПЭЛ 0,16, а обмотка III – 65 витков ПЭЛ 0,64. Экранирующая обмотка IV представляет собой плотный ряд витков провода ПЭЛ 0,27…0,31, уложенных между первичной обмоткой I и вторичными обмотками II и III трансформатора. В выходном трансформаторе Т1 может быть использован Ш-образный сердечник с площадью сечения среднего стержня 6…7 см2 и площадью окна не менее 6,5 см2. Его первичная обмотка I имеет 2500 витков провода ПЭЛ 0,16, а вторичная II – 75 витков ПЭЛ 0,8…0,9.

Усилитель монтируется на П-образном металлическом шасси размерами 200x140x45 мм, с учетом рекомендаций, изложенных в разделе 24.2.

На горизонтальной поверхности шасси укреплены ламповые панели, электролитические конденсаторы С7, С8 и два трансформатора Т1 и Т2. На одной боковой стороне шасси укреплены выключатель сети, регуляторы громкости и тембра звука, а другой – соединители для подключения усилителя к источнику звука и сети. Для уменьшения переменного фона важно найти оптимальное расположение силового трансформатора относительно выходного. С этой целью, во время макетирования по компоновке деталей, временно подключают к сети силовой трансформатор и, поворачивая его в разных направлениях, прослушивают наушники, подключенные к первичной обмотке выходного трансформатора, на наводимый в них переменный ток. По минимальному уровню низкого тона в наушниках определяют оптимальное расположение трансформаторов.

При исправных деталях и правильном монтаже при включении усилителя в сеть в громкоговорителе должен прослушиваться ровный шум. При вращении регулятора громкости должно происходить плавное нарастание громкости звучания. При вращении регуляторов тембра должна происходить окраска звука в сторону низких или высоких частот. В случае возникновения неисправности в усилителе следует с помощью вольтметра проконтролировать значения напряжений, указанные на схеме. Допустимое отклонение их значений от указанных на схеме может составлять ±20 %. Качество работы усилителя оценивают при прослушивании музыки различных жанров, от рока до классики.


24.3.2. Усилитель звуковой частоты мощностью 10 Вт

Для получения высококачественного воспроизведения музыкальных произведений как показывает практика необходим усилитель с выходной мощностью около 10 Вт и более. Получить такую мощность от однотактного усилителя звуковой частоты представляет определенные трудности, хотя и возможно. В этом случае более приемлемым является использование двухтактного усилителя звуковой частоты.

Принципиальная схема двухтактного усилителя звуковой частоты с выходной мощностью 10 Вт приведена на рис. 24.9.


Рис. 24.9. Принципиальная схема усилителя звуковой частоты мощностью 10 Вт на четырех электронных лампах

Полоса воспроизводимых частот усилителем составляет 10…12000 Гц, коэффициент нелинейных искажений менее 5 %, чувствительность 100 мВ, потребляемая мощность составляет 60 Вт. Усилитель построен на четырех лампах и состоит из трех каскадов: предварительного каскада усиления, фазоинвертора и выходного каскада. Через регулятор громкости напряжение звуковой частоты от источника сигнала поступает на сетку предварительного каскада усиления, который выполнен на электронной лампе типа 6ЖЗП. На резисторе R4, являющемся нагрузкой лампы VL1, выделяется усиленное напряжение звуковой частоты. Это напряжение через разделительный конденсатор С2 поступает на сетку лампы VL2, которая выполняет роль фазоинвертора. Фазоинвертор служит для получения сдвинутых по фазе на 180° двух равных по величине переменных напряжений, которые необходимы для нормальной работы двухтактного усилителя. Напряжение возбуждения через разделительные конденсаторы С6 и С8 подается на сетки ламп VL3 и VL4 выходного каскада. Напряжение смещения на сетках ламп VL2 и VL3 образуется за счет падения напряжения на резисторе R15, которое зашунтировано электролитическим конденсатором С10. В анодную цепь ламп выходного каскада включен выходной трансформатор Т1, имеющий среднюю точку для подачи на аноды ламп постоянного напряжения. Ко вторичной обмотке трансформатора Т1 подключен громкоговоритель, имеющий сопротивление 4 Ом. Переменный резистор R7 служит для регулировки тембра в области высших частот. Для питания усилителя используется двухполупериодный выпрямитель на полупроводниковых диодах VD1…VD4, включенных по мостовой схеме.

В усилителе используются те же типы конденсаторов и резисторов, что и в предыдущем усилителе. Предохранитель FU1 также рассчитан на ток 0,5 А. Силовой трансформатор Т2 самодельный. Его сердечник набран из пластин Ш30, толщиной набора 40 мм. Обмотки: I содержит 400 витков, а II – 500 витков провода ПЭЛ диаметром 0,41 мм. Обмотка III – 1200 витков ПЭЛ диаметром 0,35 мм, а накальная обмотка VI имеет 30 витков ПЭЛ диаметром 1,0 мм.

Выходной трансформатор Т1 выполнен на сердечнике типа УШ19, толщина набора 25 мм. Его первичная обмотка I имеет 2x1500 витков провода ПЭЛ 0,16 мм, а вторичная II – 50 витков ПЭЛ 01,2 мм.

Детали усилителя монтируются на П-образном шасси размером 250x185x50 мм (рис. 24.10). Шасси изготовляется из листового дюралюминия толщиной 2,5…3 мм. На передней стенке шасси укреплены переменные резисторы R1 и R7, а на задней – входные и выходные соединители. Методика монтажа деталей усилителя и его настройка аналогичны предыдущей конструкции УЗЧ.


Рис. 24.10. Чертеж развертки шасси усилителя звуковой частоты мощностью 10 Вт

24.4. Гибридный усилитель для стереонаушников

В современной электронике уже давно сделан выбор в пользу полупроводниковых приборов, транзисторов и микросхем, но, не взирая на это, есть области, где использование электронных ламп оправдано и дает ощутимый результат. Как известно наиболее высокое качество прослушивания стереофонических передач на стереонаушники можно получить, если пользоваться маломощным усилителем звуковой частоты. Построение таких усилителей является достаточно сложной задачей, так как к их характеристикам предъявляются высокие требования, иногда достаточно противоречивые. Усилители должны иметь широкую полосу рабочих частот, малый уровень собственных шумов на выходе, малые нелинейные искажения при максимальной выходной мощности и большое переходное затухание между каналами.

При увеличении выходной мощности усилителя происходит рост нелинейных искажений, а с расширением полосы пропускания увеличивается уровень шумов на выходе.

Описание схемы

Проведенные исследования показали, что достигнуть малого уровня собственных шумов при широкой полосе рабочих частот стереоусилителя наиболее просто, если его входные каскады выполнить на электронных лампах. При этом оказалось, что этот каскад можно питать пониженным анодным напряжением 12…25 В. В этом случае коэффициент нелинейных искажений во всем рабочем диапазоне частот оказывается минимальным, не превышающим 0,2 %. Ко всему прочему, усилитель, содержащий электронную лампу на входе, имеет высокое входное сопротивление. На рис. 24.11 приведена принципиальная схема лампово-транзисторного усилителя для стереонаушников, который может быть подключен к плейеру, радиоприемнику, проигрывателю виниловых пластинок или CD-проигрывателю. Для работы с усилителем необходимы стереонаушники с сопротивлением по постоянному току 8…16 Ом.

Усилитель имеет такие основные характеристики:

• номинальная выходная мощность каждого канала усилителя… 0,025 Вт;

• чувствительность… около 400 мВт;

• полоса рабочих частот… 20…60000 Гц;

• неравномерность частотной характеристики… не более ±1,5 дБ;

• коэффициент нелинейных искажений… 0,2 %;

• уровень собственных шумов при открытом входе… не более 75 дБ.

Рис. 24.11. Принципиальная схема гибридного УЗЧ для стереонаушников

Стереоусилитель имеет два идентичных канала усиления. На входе каждого усилителя включены вакуумные триоды VL1.1, VL1.2, которые конструктивно находятся в одном баллоне электронной лампы (двойной триод) типа 6Н23П. Каскад на одном таком триоде обеспечивает усиление сигнала примерно в 4 раза. Анодной нагрузкой каждого триода являются резисторы R5 и R7. Подстроечный резистор R6 необходим для выравнивания коэффициента усиления каждого каскада. Постоянные резисторы R4 и R8, включенные в катоды триодов, обеспечивают отрицательную обратную связь и малые нелинейные искажения усилителя. Выходной каскад усилителя выполнен на кремниевых транзисторах VT1 и VT2, которые включены по схеме эмиттерного повторителя.

Использование между каскадами гальванической связи позволило получить высокую стабильность фазовых характеристик усилителя. Стереонаушники ВА1 подключаются к усилителю через разделительные электролитические конденсаторы С4 и С5. Уровень громкости в каждом канале устанавливается сдвоенными резисторами R1 и R2. Для питания усилителя используется самодельный блок питания, собранный по стандартной схеме, представленной на рис. 24.12. Заметим, что нить накала лампы питается постоянным напряжением 6,3 В, а не переменным как обычно, что способствует снижению уровня шумов усилителя.


Рис. 24.12. Принципиальная схема блока питания гибридного УЗЧ для стереонаушников

Детали

Лампу 6Н23П можно заменить на 6Н16Б или 6НЗП. Транзисторы КТ602Б можно заменить на КТ604Б, КТ801А или Б, КТ807 или КТ815 с любым буквенным индексом. Конденсаторы С1 и С2 типа МБМ или БМ, С4 и С5 – К50-6, С3 – К53-1 или К50-6. Постоянные резисторы типа МЛТ. Подстроенный резистор R6 типа СП5-1А или СПЗ-1А, СПЗ-1Б, СП-0,5. Переменные резисторы R1 и R2 типа СПЗ-236 или СПЗ-12а, СП-1 группы В. Транзисторы усилителя VT1 и VT2 желательно установить на радиаторе размерами 80x50 см2.

Для трансформатора Т1 в блоке питания используется магнитопровод УШ 16x24. Обмотка I содержит 2400 витков провода ПЭВ-2 0,13, обмотка II – 270 витков провода ПЭВ-2 0,44, а обмотка III – 68 витков провода ПЭВ-2 0,59. Вместо диодов Д237А можно использовать диоды серий Д7, Д226, Д229 с любым буквенным индексом. Конденсатор С1 типа БМ или МБМ на напряжение не менее 400 В. Электролитические конденсаторы С2…С5 типа К50-6, а резисторы типа МЛТ. Вместо транзистора КТ801А может быть использован транзистор типа КТ807 или подобный. В блоке питания транзистор VT1 устанавливается на радиаторе площадью 50 см2.

Детали усилителя распаиваются на печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм. Рисунок платы и монтаж на ней деталей приведены на рис. 24.13.


Рис. 24.13. Печатная плата (а) и монтаж на ней (б) деталей гибридного УЗЧ для стереонаушников

Собранный из заведомо исправных деталей усилитель начинает сразу работать. Включив усилитель, дают ему прогреться около 5 мин. На вход усилителя, соединенные вместе контакты 1 и 3 и контакт 2 (корпус), подают сигнал от звукового генератора частотой 1000 Гц и амплитудой 0,1 В. Вращая движок резистора R6, добиваются равенства амплитуд усиливаемого сигнала на базах транзисторов VT1 и VT2.

Для контроля амплитуды напряжения можно использовать вольтметр с относительным входным сопротивлением не менее 20 кОм/В, но лучше осциллограф. Если выходная мощность окажется недостаточной, то можно уменьшить немного величину сопротивления резисторов R9 и R10. Качество работы усилителя оценивают на слух, прослушивая различного рода музыкальные произведения.

24.5. Не выбрасывайте старые радиоприемники!

В нашей стране телевизоры и радиоприемники на электронных лампах выпускались вплоть до середины 70-х годов XX века, пока транзисторы не заняли доминирующего положения. К этому моменту почти в каждой квартире имелась какая-нибудь радиоэлектронная аппаратура на лампах. С покупкой новой аппаратуры на полупроводниках старая постепенно становилась ненужной. К тому же она имела большие габариты и занимала больше места в сравнении с новой аппаратурой, что имело немаловажное значение для наших малогабаритных квартир. Аппаратуру на лампах более бережливые люди не выбрасывали, а хранили в квартирах или относили в гаражи или сараи. С позиций сегодняшнего дня можно сказать, что мы понесли невосполнимые потери реликвий истории техники с одной стороны и хороших звуковоспроизводящих устройств с другой стороны. Дело в том, что почти вся радиоаппаратура на лампах имела деревянные корпуса, а некоторые ее экземпляры имели даже отдельные акустические системы. Если в то время была бы такая широкая сеть радиовещательных станций УКВ как сегодня и возможность установки в ламповые приемники простых УКВ-приставок, приемников на микросхемах, то наверное никто не стал бы отказываться от радиоприемника с усилителем звуковой частоты класса Hi-Fi, что в некоторой мере и поспособствовало сохранению реликвий. К сожалению, этого не случилось.

В настоящее время радиоаппаратура ретро еще украшает некоторые наши квартиры. Для тех, кто хочет вдохнуть жизнь в свою старую радиоаппаратуру и стать обладателем усилителя звуковой частоты класса Hi-Fi, предназначен данный раздел.


24.5.1. Эксплуатация старых ламповых радиоприемников на рубеже XXI века

Если ламповый радиоприемник не работает по причине вышедших из строя ламп, которые вы не можете найти, то некоторые типы ламп можно заменить другими типами. В любых ламповых приемниках без всякого ухудшения их работы можно некоторые лампы одного типа заменять лампами другого:

6Ф6 = 6Ф6С, 6Г7С = 6Г7, 6К7 = 6К7С = 6К9М, 6SA7 = 6А10, 6С5 = 6J5 = 6Ж5, 6ПЗ = 6Л6 = 6L6 = 6Л6С, 30П1М = 25П1С = 25L6G, СО-242 = СБ-242, 5Ц4 = 5Ц4С = 5Z4 = 5V4G, ВО-116 = ВО-118, ВО-125 = ВО-202, 30Ц6С = 25Z6G = 30Ц1М.

Практически допустима взаимозаменяемость таких ламп:

6Л6 = 6V6 = 6Ф6, 6К7 = 6Ж7, 6Г7 = 6Р7, 6SK7 = 6SL7, 6SQ7 = 6SR7, 6А8 = 6К8, 2Ж2М = 2К2М, 1А1П = 1А2П, 1К1П = 1К2П, 1Б1П = 1Б2П, 2П1П = 2П2П.

Для ответа на вопрос о работоспособности радиолампы, следует собрать простой тестер по схеме, представленной на рис. 24.14.


Рис. 24.14. Принципиальная схема тестера для проверки работоспособности радиоламп

Тестер помогает быстро определить эмиссию катода, замыкание между электродами и обрыв выводов от электродов ламп и экрана. Об эмиссионной способности катода лампы судят по показаниям микроамперметра РА1, который включен между катодом и первой сеткой. Микроамперметр работает как милливольтметр и измеряет величину потенциала первой сетки. Величина потенциала колеблется в широких пределах от 10 до 500 мВ и зависит от типа ламп, а также качества их катодов.

Показания прибора РА1 сравнивают с эмиссией заведомо хороших, то есть калибровочных ламп. Для калибровки тестера необходимо использовать возможно большее количество ламп и полученные данные следует занести в таблицу.

При проверке диодов и кенотронов микроамперметр РА1 включают тумблером SA7 между катодом и анодом. Все остальные электроды лампы подключаются тумблерами SA3…SA8. При этом показания прибора РА1 должны возрастать, что свидетельствует об отсутствии междуэлектродных замыканий и обрыва выводов. Тестирование взятых из работающей радиоаппаратуры ламп 6П6С и 5Ц4С дало следующие результаты. Например, при проверке лампы 6П6С прибор АВО-5М (пределы 60 и 300 мкА) показывал ток в цепи первой сетки 50 мкА, при подключении второй сетки – 70 мкА, а при подключении анода 90 мкА. При тестировании кенотрона 5Ц4С, прибор «Школьный АВО-63» в цепи первого анода показывал ток 4,9 мА, а при подключении второго анода – 10 мА. Тестером можно проверить также эмиссию кинескопов и осциллографических трубок.

Для изготовления устройства для проверки ламп необходим понижающий трансформатор мощностью 10…20 Вт, микроамперметр на 50…300 мкА и 8 тумблеров. Трансформатор Т1 может быть самодельным с такими параметрами. Обмотки наматываются на сердечник из пластин ШЛ16 толщиной набора 25 мм. Первичная обмотка I содержит 1100 витков провода ПЭЛ 0,35 плюс 800 витков ПЭЛ 0,27, а вторичная обмотка II – соответственно 48 + 12 + 18 + 78 + 84 + 120 витков ПЭЛ 0,12.

Все детали тестера монтируются на металлическом шасси. Для проверки радиоламп с разными цоколями можно к основной панельке, например с 10 гнездами, сделать переходные цоколи, в которые вставлять лампы с иным типом цоколя. А можно сделать иначе, прямо на шасси установить 12 типов ламповых панелек, которые соединены между собой параллельно.

Настройка собранного тестера заключается в подборе резисторов R1 и R2 при регулировке его по показателям наилучших ламп.

Во многих старых приемниках прием должен вестись на наружную антенну. Установить наружную антенну, особенно в городских условиях, по разным причинам бывает затруднительно. Выйти из этого положения можно, если использовать имеющуюся телевизионную антенну типа волновой канал. В этом случае, от одной антенны будут работать телевизор и радиоприемник. Так как телевизионные и радиовещательные диапазоны значительно отличаются по частоте, можно установить простой разделительный фильтр, состоящий из катушки индуктивности и конденсатора (рис. 24.15).


Рис. 24.15. Принципиальная схема подключения лампового радиоприемника к телеантенне для приема средних и длинных волн

Реактивное сопротивление XL катушки индуктивности в таком фильтре для устранения короткого замыкания должно быть высоким в телевизионном диапазоне и небольшим на длинноволновом и средневолновом диапазонах. Если, к примеру, использовать катушку с индуктивностью 5,5 мкГн, то XL на частоте 1 МГц можно вычислить по известной формуле

XL = 2πf·L1

В этом случае, реактивное сопротивление составит 34 Ом, в то время как на частоте 50 МГц – 1,7 кОм.

Реактивное сопротивление XL конденсатора фильтра С1 должно быть малым в теледиапазоне в сравнении с входным сопротивлением телевизора и большим на длинноволновом и средневолновом диапазонах для устранения короткого замыкания на входе приемника. В этом случае подойдет конденсатор С1 с емкостью 200 пФ, его реактивное сопротивление Хс на частоте 50 МГц равно 16 Ом, а на частоте 1 МГц– 800 Ом, исходя из известной формулы

Xc = 1/(2πf·C1)

Обычно телевизоры имеют разделительный конденсатор в цепи антенны примерно такой же емкости, поэтому в этом случае дополнительный конденсатор в фильтре можно не устанавливать.

Соединительный кабель, идущий от фильтра к антенному гнезду приемника, должен быть как можно короче, чтобы его емкость не влияла на настройку приемника. Влияние дополнительной входной емкости зависит от типа связи входной цепи приемника с антенной. Катушка индуктивности антенного фильтра может быть самодельной или промышленного изготовления, например, дроссель типа ДМ-0,1 с соответствующей индуктивностью.


24.5.2. УКВ-тюнеры к ламповым радиоприемникам

В ламповом приемнике прошлых лет почти в каждом есть гнезда для подключения звукоснимателя. К этим гнездам можно подключить самодельный УКВ-тюнер на микросхеме, который питается от отдельной батарейки или от блока питания самого радиоприемника. В итоге получается полноценный УКВ приемник с усилителем звуковой частоты класса Hi-Fi.

Принципиальная схема УКВ-тюнера с использованием микросхемы приведена на рис. 24.16. Тюнер предназначен для приема УКВ-станций в диапазоне 66…74 МГц, его чувствительность составляет 5 мкВ. Для питания тюнера используется два гальванических элемента типа АЗ16.


Рис. 24.16. Принципиальная схема УКВ-тюнера к ламповому радиоприемнику

Радиоприемное устройство собрано на микросхеме К174ХА34 и трех транзисторов. На транзисторе VT2 собран предварительный каскад усиления звуковой частоты, а на транзисторе VT3 – эмиттерный повторитель, необходимый для согласования выхода тюнера со входом лампового УЗЧ. Наличие этих двух каскадов способствует также устранению фона, наводок и частотных искажений, которые могут возникнуть при коммутировании низкочастотного сигнала. На транзисторе VT1 собран генератор стабильного тока, поддерживающий значение тока, проходящего через нагрузку HL1, R1, R2 на уровне 0,5 мА. В тюнере используется электронная настройка на станции с помощью варикапа.

В тюнере используются постоянные резисторы типа МЛТ-0,125, постоянные конденсаторы типа КЛС, КМ, КТ. Переменный резистор R3 типа СПЗ-36 (используются в блоках настройки телевизоров). Для приема радиостанций используется телескопическая антенна. Катушка L1 содержит 10 витков провода ПЭВ-2 00,41…0,44 мм, намотанных на оправке диаметром 3 мм, можно использовать винт М3. Детали устройства собираются на печатной плате из фольгированного текстолита. Плата помещается в пластмассовый корпус, в котором имеется отсек для двух гальванических элементов питания. К корпусу тюнера крепят телескопическую антенну.

Для подключения устройства ко входу УЗЧ лампового приемника используют экранированный провод, имеющий на конце обычную вилку. При отсутствии у радиоприемника специальных гнезд «Звукосниматель» поступают следующим образом. У переменного резистора, выполняющего функции регулятора громкости, находят провод, идущий от усилителя промежуточной частоты, этот провод, не имеющий соединения с корпусом, и отпаивают. На его место припаивают провод, идущий с выхода тюнера. Этот провод желательно, чтобы был в металлической оплетке.

Оплетка припаивается одним концом к минусу тюнера, а другим – к заземленному выводу регулятора громкости. Если у приемника высокочастотная часть работающая и вы его периодически слушаете, то тогда следует поставить переключатель, который бы при необходимости позволял производить подключение тюнера или высокочастотной части приемника к УЗЧ. В противном случае этого делать не нужно.

Тюнер, собранный из исправных деталей, в особой наладке не нуждается и при включении питания готов к работе. Включив ламповый приемник, дают ему прогреться некоторое время. Вставляют вилку тюнера в гнезда приемника для подключения звукоснимателя и включают питание тюнера. Установив средний уровень громкости приемника, вращают ручку настройки тюнера, пытаясь настроиться на какую-нибудь станцию УКВ. Укладка УКВ диапазона производится путем сжатия и раздвигания витков катушки L1. Если при работе тюнера будут наблюдаться звуковые искажения, то необходимо поменять местами концы подключения вилки к гнездам звукоснимателя.

Питать тюнер можно и от силового трансформатора лампового приемника. Наиболее проще для этих целей использовать накальное напряжение ламп, изготовив простой выпрямитель (рис. 24.17).


Рис. 24.17. Принципиальная схема выпрямителя для питания УКВ-тюнера от накальной обмотки лампового радиоприемника

При отсутствии соответствующей микросхемы, тюнер можно выполнить полностью на дискретных элементах. Проще всего приемную часть выполнить на одном транзисторе по схеме сверхрегенератора (рис. 24.18).


Рис. 24.18. Принципиальная схема сверхрегенеративного УКВ-тюнера к ламповому радиоприемнику

Сверхрегенератор выполнен по известной схеме емкостной трехточки. Резисторы R1 и R2 образуют регулируемый делитель напряжения смещения на базе транзистора VT1. От величины смещения зависит ток коллектора транзистора и, соответственно, коэффициент усиления транзистора. Это позволяет регулировать уровень регенерации без изменения положительной обратной связи. Для стабилизации напряжения питания каскада на транзисторе VTI используется стабилитрон VD1.

Если для его питания пользоваться гальваническими элементами, то тогда стабилитрон VD1 из схемы можно исключить. Хотя при этом расход энергии и уменьшится, но увеличится зависимость работы каскада от изменения напряжения источника питания. Для устранения наводок от сети переменного тока на антенну и устранения эффекта изменения настройки входного контура С5, L1 и режима регенератора (за счет вносимых в контур емкостей от окружающих антенну предметов), связь антенны WA1 с контуром выбрана индуктивная.

В сверхрегенеративном тюнере постоянные конденсаторы C1, С4 и С7 должны быть обязательно керамические, остальные – любого типа. Емкости их некритичны. Электролитические конденсаторы любого типа, например, К50-6. Переменный конденсатор С5 желательно взять с воздушным диэлектриком. Пределы изменения его емкости некритичны. Можно, конечно, использовать любой подстроечный керамический конденсатор, но он не удобен при частой настройке на радиостанции. В таком случае, лучше ввести в схему тюнера электронную настройку на варикапе (рис. 24.19).


Рис. 24.19. Принципиальная схема введения электронной настройки в сверхрегенеративный УКВ-тюнер к ламповому радиоприемнику

При замене транзистора VT1 на транзисторы другой серии, например КТ315, необходимо вначале попробовать в работе несколько таких транзисторов, а после выбрать среди них лучший. Для приема радиостанций в FM-диапазоне катушка L1 представляет собой полувиток диаметром 30 мм с линейной частью 20 мм из провода ПЭЛ диаметром 1 мм. Катушка L2, в этом случае, имеет 2…3 витка провода ПЭЛ диаметром 0,7 мм, намотанных на оправке диаметром 15 мм. Катушка L2 располагается внутри полувитка L1. Для приема радиостанций в ЧМ-диапазоне катушка L1 имеет 5 витков провода ПЭЛ диаметром 0,7 мм, намотанных с шагом 1…2 мм на пластмассовом каркасе диаметром 5 мм, рядом наматывается тем же проводом катушка L2. Катушка L2 имеет 2…3 витка.

Детали тюнера монтируются на печатной плате, вырезанной из фольгированного стеклотекстолита толщиной 0,8 мм. Рисунок печатной платы можно вырезать резаком или вытравить в растворе хлорного железа соответствующей концентрации.

Налаживание тюнера заключается в установке пределов регулировки смещения на базе транзистора VT1 путем подбора величины сопротивления резистора R2. Ток коллектора транзистора VT1 должен быть не более 0,5 мА. Изменением емкости подстроечного конденсатора С6 устанавливают положительную обратную связь такой величины, чтобы при средних положениях движка переменного резистора R1 достигался порог генерации. Этот момент фиксируется в динамике как глухой щелчок с последующим шумом. После этого переменным конденсатором С5 можно настраиваться на радиостанции.


    Ваша оценка произведения:

Популярные книги за неделю