Текст книги "Зеркальный мир"
Автор книги: Вернер Гильде
сообщить о нарушении
Текущая страница: 8 (всего у книги 12 страниц)
Заметим, кстати, что для технических целей почти всегда используются не чистые металлы, а их сплавы с другими веществами. Особые свойства, благодаря которым сплавы и находят применение, определяются именно содержанием в них тех или иных компонентов. Чистые металлы применяются лишь в особых случаях. Когда говорят о железе как о техническом материале, то обычно имеют в виду чугун, содержащий около 5% компонентов-примесей. В составе стали присутствует от 0,5 до 30% различных добавок. Некоторые алюминиевые сплавы содержат присадки магния.
Конечно, для всех сплавов построены красивые модели из цветных шариков. Мы тоже можем, мобилизовав собственную фантазию, мысленно разобрать важнейшие варианты. Допустим, атомы двух металлов значительно разнятся по своим радиусам (обратите внимание: металлы не являются химическими соединениями, и потому мы снова говорим об атомах, а не ионах!). Им трудно или даже невозможно построить общую решетку. Такие металлы «нерастворимы» один в другом. К примеру, атомный радиус железа 0,126 нм, свинца – 0,175 нм. Благодаря этому свинец можно плавить в железном сосуде. Даже наши бабушки использовали это свойство свинца при традиционном гадании в канун Нового года.

Сравните симметрию решетки кристалла и рентгенограммы. Обратите внимание на постоянное чередование ионов Nasup+/sup и Сlsup-/sup в структуре кристалла. Решетка из Nasup+/sup -ионов вставлена в решетку из Сlsup-/sup -ионов
Однако большинству металлов свойственна (в определенных пределах) взаимная растворимость. При этом опять-таки возможны два случая. Либо атомные радиусы металлов столь близки, что их атомы могут подменять друг друга, либо же одни атомы настолько малы, что по своей величине подходят к промежуткам между другими, более крупными атомами.
Железо и никель имеют почти одинаковые атомные радиусы и могут свободно замещать друг друга в решетке. Напротив, атом углерода гораздо меньше атома железа. В силу этого при высоких температурах до 0,1% углерода может размещаться в гнездах кристаллической решетки железа. Если 0,1% покажется вам слишком малой величиной, примите во внимание то обстоятельство, что только человеку присуще вести счет на весовые проценты, природа же процентного исчисления «не знает». Она «считает» просто.
Атомная масса железа около 56, углерода – лишь 12. Следуя в своих подсчетах природе, чтобы получить «поштучные проценты», нам придется выраженное в весовых процентах значение умножить приблизительно на 5. Согласно такому расчету, при температурах порядка 700° С каждый двухсотый атом в решетке может принадлежать углероду. Между тем железо имеет особое свойство: оно меняет свою кристаллическую структуру в зависимости от температуры. Выше 906°С устойчива плотнейшая кубическая гранецентрированная упаковка, в которой и находят себе место атомы углерода. Ниже этой температуры железо приобретает кубическую объемно-центрированную решетку, что сопровождается снижением степени использования объема до 68%. Хотя при этом суммарное процентное содержание пустот в решетке возрастает по сравнению с плотнейшей кубической упаковкой, отдельные реально существующие гнезда становятся меньше. Атомы углерода уже не могут разместиться в них и вытесняются из решетки. С этим связаны явления, наблюдаемые при закалке стали.

Кристаллы молибдена растут от края к середине. Обратите внимание, как некоторые кристаллы после непродолжительного роста 'уничтожаются' их соседями. Здесь ничто не напоминает о кубической симметрии кристаллов молибдена. (Увеличение 200 : 1.)
Желая использовать в полной мере такие свойства стали, как твердость и прочность, металлург посредством введения других, легирующих компонентов увеличивает трудности, которые испытывает атом углерода при своем вхождении в кристаллическую решетку железа. Ведь атом не может просто исчезнуть из железа. В сталях, содержащих от 0,05 до 1,0% углерода, превращение железа буквально застигает атомы углерода «врасплох». Им не остается ничего иного, кроме как частично сохраниться в решетке железа в качестве чужеродных тел, вызывая ее деформацию, а тем самым повышение твердости и упрочнение.
Металлург знает при этом, какие следует принять меры (отпуск, отжиг), чтобы деформировать решетку железа ровно настолько, насколько нужно. Однако для того, чтобы разъяснить эти процессы в деталях, потребовалась бы целая книга. Как уже говорилось, для повышения твердости и прочности стали структурные превращения железа – идеальное средство. Но, к сожалению, иначе обстоит дело, когда необходимо повысить пластичность железа. Кубические гранецентрированные решетки с плотнейшей шаровой упаковкой поддаются растяжению проще и легче, чем другие типы кристаллических решеток.
КАК БЫЛА ОТКРЫТА НЕРЖАВЕЮЩАЯ СТАЛЬ
После первой мировой войны фирма Крупна энергично искала пути увеличения прибылей. В лабораториях концерна велись интенсивные исследования, направленные на получение новых видов металлургической продукции. Среди многих сотрудников там работал и молодой металлург д-р Маурер. Однажды, роясь в ящиках стола в поисках каких-то документов, он наткнулся на старые образцы стали. По привычке машинально пробежав глазами номера опытных серий на обертках, он совсем уже было отложил их, как вдруг замер от неожиданной догадки. Образцы были выплавлены давно, но не отвечав тогдашним целям и были заложены в дальний угол стола, где и пребывали в полном забвении. Однако д-р Маурер сразу отметил один факт, мимо которого прошли многие, в чьих руках до того побывали отливки: образцы не заржавели!
В лабораторной атмосфере, богатой парами различных химических соединений, сталь ржавеет очень быстро. Однако эти образцы с номерами V2A сохранили чистую блестящую поверхность, лишенную малейших следов коррозии. Немедленно приступили к дальнейшим исследованиям, которые показали, что путем введения надлежащих добавок хрома и никеля можно стабилизировать плотнейшую кубическую упаковку железа, сделав ее устойчивой и при комнатной температуре.

Кубическая структура металла (сплав свинца, олова и сурьмы) видна благодаря тому, что при затвердевании из расплавленной смеси сначала выделяются богатые сурьмой кубические кристаллы, которые определенное время имеют возможность свободно расти (Увеличение 100 : 1.)
Переход при 906° С от гранецентрированной пространственной решетки, где есть место для-атомов углерода, к объемно-центрированной решетке с худшим использованием объема полностью подавляется, если около 25% атомов железа заместить хромом и никелем.
Так была открыта нержавеющая сталь. А в голове ее первооткрывателя уже роились новые идеи. Впоследствии он внес большой вклад в создание металлургической промышленности ГДР. Когда профессор д-р Эдуард Маурер бывал в хорошем расположении духа (что случалось не слишком часто), он рассказывал, чем для него кончилась эта история: «За то, что я спас Крупна от банкротства, мне заплатили 4 тыс. марок. Вечером, уходя из дома, я прихватил их с собой, а по пути назад остаток сунул кому-то на улице». В то время в Германии началась инфляция, и покупательная способность этих денег была исчезающе мала.

Путем двойникования соединяются в одно целое две атомные структуры с различной ориентировкой кристаллических решеток. Двойники зеркально подобны друг другу
Я привел здесь эту историю прежде всего потому, что она прекрасно иллюстрирует подчиненное положение, которое в бы-в лые времена отводилось ученому в промышленности. Кроме того, она показывает, как полезно «удивляться», и наконец, подводит нас к проблеме зеркального отражения.
Рассматривая нержавеющую сталь под микроскопом, мы увидим кристаллу с поперечными полосами, напоминающими ленты. Как показали исследования, на границе между кристаллом и такой «лентой» позиции атомов соотносятся между собой как прямое и зеркальное изображения. В таких случаях металлографы говорят о двойниковании.

У некоторых минералов двойники образуются при простом механическом давлении
Существует много способов образования двойников у кристаллов. Ряды атомов нарастают в обе стороны от какой-нибудь плоскости или оси в кристалле, находясь между собой в зеркальном соответствии. Реже удается получить двойники некоторых кристаллов давлением. Если нажать на кристалл известкового шпата ножом, то часть кристалла отскочит в позицию зеркального отражения по отношению к другой его части. При этом миллионы атомов и атомных рядов как бы «подчиняются» одному приказу. Они внезапно перескакивают в новое положение. Нас поражает также тот факт, что они попадают при этом точно в позицию зеркального отражения. Казалось бы, проще все-таки представить себе движение, ведущее к более или менее значительным отклонениям от такого (зеркального) положения.

Двойниковый кристалл гипса. Возраст кристалла – около 50 млн. лет
Разумеется, атомы «не знают» ничего ни о зеркалах, ни о зеркальных отражениях. Они всегда приводятся в положения, которым соответствует минимум энергии. (Камень на вершине горы обладает максимумом энергии, а в долине – минимумом, поэтому он катится не вверх, а вни!з по склону.) Такой энергетический минимум обеспечивается только в регулярной решетке. Однако две различные позиции в решетке лишь тогда могут взаимно сочетаться, не вызывая ее искажения, когда они находятся между собой в зеркальном соответствии. Между тем существуют десятки марок сталей, имеющих при комнатной температуре такую же пространственную решетку, какую чистое железо имеет лишь при температуре выше 906° С. В честь металлурга У. Робертса-Остена (1843-1902) железо с этой решеткой называется аустенитом. Стали, характеризующиеся такой упаковкой, получили название «аустенитные стали».

С помощью травления металлографам удается выявить в кристаллах участки различной ориентировки. Там, где на фотографии видны полосы, пересекающие кристалл, присутствуют двойники. (Увеличение 200 : 1.)
Собственно говоря, слово «нержавеющая» сейчас используется только применительно к стальным столовым приборам и предметам домашнего обихода. Аустениты ныне настолько усовершенствованы, что одни из них стали устойчивыми против различных химических веществ, другие выносят воздействие горячих агрессивных газов и паров. Применение аустенитов составило особую отрасль техники. Аустенитная сталь немагнитна и по этому признаку легко отличима от обыкновенных сталей. Это вызывает особый интерес к аустенитной стали как к стратегическому материалу. Так, после вступления ФРГ в НАТО на ее верфях были заложены подводные лодки. Чтобы эти лодки нельзя было обнаружить с помощью радиолокатора и дабы обезопасить их от магнитных мин, корпуса лодок решили изготовить из аустенитной стали. Из соображений секретности металлургам не объяснили, для чего предназначается заказанный им металл. В результате был изготовлен аустенит, неустойчивый против морской воды. Хотя эта сталь и называлась нержавеющей, но под действием морской воды в корпусах лодок стали появляться трещины. Вследствие этого одна из лодок вместе с экипажем и со всем, что на ней находилось, затонула в Северном море, а остальные пришлось пустить на слом.
СОВЕРШЕНСТВО С МЕЛКИМИ ИЗЪЯНАМИ
В ходе наших предыдущих рассуждений о плотнейших шаровых упаковках кому-нибудь, наверное, приходила в голову мысль, что такие упаковки способны возникать не только путем тщательной укладки атомов один к одному, но и случайно. Ради опыта можно было бы взять ящик с шарами, потрясти его хорошенько и потом исследовать структуру упаковки. Такой эксперимент и был проведен. Однако при этом никогда не получалась плотнейшая упаковка шаров с заполнением объема в 74%, обычно плотность упаковки составляла около 60%. Очевидно! что кристаллы приобретают свое строение не случайным образом, здесь существует какая-то закономерность. Не даром кулек с горохом или крупой всегда используется лишь на 50-60% своего объема.
Голландский кристаллограф Фриц Лавес исследовал вопрос о том, какова самая рыхлая (наименее плотная) упаковка атомов, вообще возможная в кристаллах. Она ведь должна быть построена таким образом, чтобы некоторые атомы все же соприкасались между собой, иначе не сможет возникнуть твердое тело. Лавес пришел к решетке с заполнением объема в 5,5%. Однако в природе, по-видимому, таких кристаллов не бывает.
После того как ученые разобрались в строении кристаллов, они взялись за определение их теоретической прочности. Это в принципе очень просто. Между атомами действуют силы связи, величина которых с достаточной точностью устанавливается физикой твердого тела. Из таких частных сил, естественно очень малых, слагаются общие суммарные силы. Пожелай кто-то разорвать кристалл металла, и ему придется преодолеть эти суммарные силы связи.
Из подобных соображений следовало, что прочность металлов на разрыв должна составлять около 10 000 Н/мм2. Однако в действительности металлы имеют прочность, к сожалению, лишь от 100 до 1000 Н/мм2.
Так не значит ли это, что теория сил связи в кристаллах неверна? Несколько поколений исследователей размышляли над этим вопросом. Вычисления и эксперименты подтвердили правильность теории. Однако упаковка кристаллов, увы, не столь безупречна, как в случае с нашими шариками для пинг-понга. И здесь тоже обнаруживается, что, хотя природа в общем и целом построена симметрично, в мелочах она допускает отклонения.
Все наши кристаллы содержат дефекты, или, как говорят кристаллографы, дислокации. Теоретически эти дислокации снижают возможную прочность кристаллов более чем на 90%. В настоящее время мы уже научились выращивать вполне или почти бездефектные кристаллы, прочность которых на порядок выше значений, чем у ранее известных материалов. К сожалению, такие кристаллы очень невелики. Стоит вырастить их более крупными, как вновь появляются дефекты. В технике подобные бездефектные высокопрочные кристаллы металлов или углерода называют нитевидными. Нет сомнения, что в обозримом будущем удастся создать методы изготовления бездефектных материалов больших размеров. Успешные опыты по выращиванию крупных монокристаллов высочайшей частоты проведены в ходе осуществления совместного советско-американского космического проекта «Союз-Аполлон» и позднее на советской орбитальной станции «Салют-5». В этих экспериментах использовались условия невесомости и высокого вакуума, присущие космическому пространству.

Из мелких шариков можно построить решетку, которая, подобно природным кристаллам, содержит дефекты в форме дислокаций. Эти дефекты удивительным образом всегда устраняются сами собой
Тем не менее мы можем констатировать следующее: раз в реальных кристаллах симметрия «вплоть до последнего атома» не выдерживается, нельзя использовать теоретические значения прочности, рассчитанные для идеальных кристаллов. Как только будет решена проблема создания бездефектных материалов в промышленных масштабах, наши мосты, железнодорожные вагоны, краны и самолеты станут гораздо легче.
СПРАВА-ТАМ, ГДЕ БОЛЬШОЙ ПАЛЕЦ
Мы теперь знаем, что «двойники» бывают не только у людей, но и у кристаллов. Специалисты уверяют, и это кажется правдоподобным, что ряды атомов и молекул в двойниковых кристаллах соотносятся между собой так же, как прямое и зеркальное изображения. Мы говорим, следуя традиции: часть кристалла полевого шпата повернута в положение зеркального отражения. Но, конечно, мы могли бы также сказать: часть кристалла полевого шпата повернута от положения зеркального отражения в положение прямого изображения.
Здесь можно возразить, что, прежде чем появится зеркальное изображение, должно существовать прямое. Разумеется, так оно и есть, когда речь идет о зеркале. Но в кристаллах мы имеем дело с зеркальной плоскостью, или плоскостью (зеркального) отражения, то есть с плоскостью симметрии. А плоскость симметрии – это не зеркало из стекла или металла, хотя со словами «зеркало», «зеркальная» в нашем представлении ассоциируется целый ряд явлений, которые мы ожидаем здесь увидеть. В действительности же это чистая условность, вопрос определения или произвольного выбора, какую из частей двойникового кристалла я назову прямым, а какую – зеркальным изображением. Лишь в том случае, когда я сам получаю двойник или когда мне известно, в какой последовательности возникли обе половинки двойника, у меня будет известное право называть исходную (ранее возникшую) его часть прямым изображением. Но если я вижу двойниковый кристалл впервые, то какую его сторону считать зеркальным изображением – дело вкуса.

'Двойники' бывают не только у кристаллов, но и у людей, только в этом случае их называют 'двойняшки'
Мы, европейцы, пишем слева направо и потому в общем случае принимаем левую часть кристалла за исходную. Даже в газетных историях в картинках, где изо рта у персонажей вылетают «речевые пузыри», существует молчаливая договоренность между художником и читателем, что прежде говорит фигура слева, а потом фигура справа. Надо думать, у арабов или других народностей, пишущих справа налево, принят обратный порядок. Теперь представьте себе, что бывают кристаллы, с самого начала растущие «влево», и кристаллы, растущие «вправо». И действительно, уже систематический просмотр 32 классов симметрии дает несколько случаев, когда формы кристаллов как бы отображают их лево– или правосторонний рост. Известный пример такого рода – левый и правый кварц. Нужно очень внимательно присмотреться, чтобы заметить, что обе эти формы кристаллов кварца зеркально подобны одна другой.
Ну и какое же направление роста кристаллов кварца мы назовем правым (то есть приводящим к правым формам)? Конечно, такое определение будет носить сугубо произвольный характер. Обратимся к математике, где все строго подчинено логике. Там различие между координатными системами с правой и левой ориентировкой основывается на «правиле трех пальцев». Математик поднимает большой палец к небу, вытягивает указательный и сгибает средний палец. Если он использует для этого левую руку и направления координатных осей соответствуют положениям пальцев, то вся система координат является правосторонней, если правую или (что то же самое) зеркальное отражение левой, то система координат будет левосторонней. Мы видим, что и здесь левое и правое зависит от определения, которое в свою очередь непосредственно исходит из строения человеческого тела.
Удивительным образом во многих языках понятия «правое как направление» и «правое как истинное» в их словесном выражении совпадают. В немецком rechts – правое направление, а Recht – право, правда. В английском right-right. Француз говорит le droit – право, правда и a droite – направо, справа. В русском языке название известной центральной газеты «Правда» равнозначно понятию «истина», слово «право» соответствует немецкому Recht, а слова «направо», «справа» – немецкому rechts.

Левый и правый кварц соотносятся как прямое и зеркальное изображения
С другой стороны, положение сердца слева правильное, хотя встречаются люди, у которых сердце расположено справа, то есть неправильно. Физик, философ и насмешник Георг Кристоф Лихтенберг (1742-1799) разобрал проблему правого-левого в составленной им инструкции по тушению пожаров в университетском городе Гёттингене. Инструкция гласила: «Если горит какой-то дом, то необходимо прежде всего защитить правую стену дома, стоящего слева, и левую стену дома, стоящего справа. Если же, к примеру, кто-то пожелал бы защитить левую стену дома, стоящего слева, то его правая стена находится вправо от левой стены, а следовательно, – поскольку место пожара располагается справа от левой и от правой стены (так как мы приняли, что дом находится слева от места пожара) – ближе к огню, чем левая, и правая стена дома, не будучи защищена, могла бы сгореть прежде чем огонь достигнет защищенной левой стены. Чтобы запомнить все это, нужно лишь взять себе на заметку: если дом находится справа от огня, то защищать следует его левую сторону, а если слева – то правую».
Легко себе представить, что гёттингенская пожарная команда, руководствуйся она этой инструкцией, дала бы сгореть половине города, прежде чем ее члены пришли наконец к единому мнению насчет левой стены у правого дома.
Для нас не состьавляет никакого труда определить понятие «внизу». Пока человек находится в поле тяготения небесного тела (чаще всего Земли), вниз – значит и в направлении действия силы тяжести. Это – направление, в котором падает камень. К числу эффектных номеров, которые демонстрировали космонавты телезрителям, относится свободное парение тела в космическом корабле. Однако достаточно чувствительные инструменты позволяют и в космическом пространстве установить некое предпочтительное направление, которое указывает «низ».

Возраст этих кристаллов кварца из месторождения Циновец (Циннвальд) – 270 млн. лет
К сожалению, указать боковое направление не столь просто. Может быть, вы придумаете, как? Можно было бы, например, рассуждать таким образом: «Возьму-ка я проволочку и пропущу через нее электрический ток. А над проволочкой пристрою магнитную стрелку. Под действием тока стрелка отклонится. Ее Северный полюс и покажет «направо». Но тут же возникают встречные вопросы, и прежде всего: где у стрелки северный полюс? На этот вопрос вы сможете ответить, лишь указав на стрелку пальцем. Не имея уже известной и заранее обозначенной системы отсчета, определяющей северный полюс стрелки (который «на самом-то деле» является южным полюсом (Так как он притягивается северным магнитным полюсом. Однако обычно принято считать, что на севере располагается южный магнитный полюс, который и притягивает северный конец стрелки компаса. – Прим. перев)), более вразумительный ответ дать невозможно. Точно так же, не указывая пальцем, нельзя (а вернее, нельзя было) определить правое и левое направления.
Разумеется, можно рекомендовать ровно в полдень встать спиной к солнцу, тогда лицом вы будете обращены на север, слева от вас будет запад, справа – восток. Но такая инструкция предполагает, что мы находимся в северной половине земного шара. Для Австралии то же правило должно звучать иначе, поскольку солнце там в полдень находится на севере. А как будет выглядеть это правило на Луне?
Следовательно, правую сторону нельзя определить, не показав на нее и не сказав при этом, что это именно правая сторона. Несколькими строчками выше мы не случайно уточнили в скобках, что «вернее, нельзя было» определить. Дело в том, что физики, к собственному немалому удивлению, нашли способ, как объяснить, не прибегая к прямому показу, где правое, а где левое.

По одному-единственному кристаллу кварца легко догадаться, что он может встречаться в двух формах. Стоит посмотреть на этот кристалл в зеркале, как его передняя треугольная грань окажется в положении, соответствующем другому направлению вращения. На фотографии изображен левый кварц из Гарца
История этого научного открытия опять-таки связана с Нобелевской премией, и снова (аналогично открытию дифракции рентгеновских лучей на кристаллах профессором Максом фон Лауэ) она берет начало в кафе, но на этот раз нью-йоркском. В 1956 г. там встретились два физика-теоретика, китайцы по национальности, живущие в США, – Ли Цзундао и Ян Чжэньнин (Янг). Они беседовали о симметрии в природе. Смысл их разговора (опять же весьма ученого) сводился к тому, что, хотя каждой частице соответствует античастица и каждому направлению – обратное, но в определенной области физики доказательства этого отсутствуют. Янг и Ли обсуждали некоторые эксперименты, с помощью которых, возможно, удалось бы доказать, что в известных случаях природа оказывает предпочтение какому-то одному направлению. Свои соображения они изложили в работе, которая носила название «К вопросу о сохранении четности при слабых взаимодействиях».
Статью прочитала – и, что особенно важно, оценила все ее значение – профессор By Цзяньсюн, тоже физик, тоже китаянка по национальности, проживающая в США. Будучи экспериментатором, г-жа By взялась на опыте доказать теоретические предположения Ли и Янга.

В магнитном поле кобальт-60 (Соsup60/sup) испускает β-излучение преимущественно в одном направлении
В упрощенном изложении она сделала следующее: охладив радиоактивный кобальт до температуры, близкой к абсолютному нулю (-273,16°С), г-жа By приложила к нему сильное магнитное поле. Под его воздействием Р-излучение кобальта удалось разделить на два разнонаправленных пучка. Все шло нормально, но г-жа By решила подсчитать, сколько частиц излучается в одном направлении и сколько в другом. Как и предсказали (в противоположность всем прежним теориям) Ли и Янг, излучение явно предпочитало одно из этих двух направлений. Изменив направления магнитного поля, г-жа By изменила и статистическое распределение частиц Р-излучения кобальта. Так стало возможным определять левое и правое направления, «не указывая их пальцем». Попробуйте повторить опыт г-жи By. Возьмите магнитную стрелку и держите ее над полем, с помощью которого Р-излучение кобальта-60 собирается в пучки. Конец иглы, показывающий направление пучка более интенсивного излучения, мы будем называть северным. Той стороне, в которую она отклоняется от этого направления, отныне присваивается название правой (можно было бы именовать ее и зеленой или еще какой-нибудь – это совершенно безразлично), а противоположная сторона будет левой. Такой опыт можно провести всегда и везде, а тем самым определение правого и левого направлений, равно как и двух дополнительных направлений – вниз и вверх, становится независимым от места и времени.

Координатные системы в математике тоже бывают право– и левосторонними. Большой, указательный и средний пальцы руки всегда могут быть расположены параллельно осям прямоугольной системы координат. Только в одном случае при этом приходится пользоваться левой рукой, в другом – правой
Уже в 1957 г., то есть всего через год после того, как они сделали свое открытие, Ли и Янг получили Нобелевскую премию по физике. Их работа была столь новаторской, пролагающей новые пути в физике, что награда последовала незамедлительно. В большинстве же случаев ученые удостаиваются этого отличия спустя многие годы после появления их работ. Нобелевский комитет осторожно выжидает, какое действие окажет то или иное открытие на развитие науки. Только в порядке исключения премия присуждается через сравнительно короткое время. Впрочем, вопреки тому огромному значению, которое имеют выводы Янга, Ли и г-жи By для физики, а также, несомненно, и для философии, в повседневной жизни по-прежнему приходится показывать пальцем, где правое, а где левое.
ПОРЯДКИ ВЕЛИЧИН МАССЫ И ВРЕМЕНИ

Порядок увеличения массы

Порядок увеличения времени
ПОПУГАЙ-ПРАВША
Это было бы, несомненно, подходящее название для детектива. Но вполне серьезные ученые действительно исследовали вопрос, являются ли попугаи «правшами». По некотором размышлении мы найдем эту проблему отнюдь не столь уж нелепой. Если животные без дрессировки обнаруживают предпочтение в использовании определенных (например, правых) коненностей, то следует принять, что и преимущественная «право-рукость» человека является в известном смысле врожденной, а не благоприобретенной, как иногда утверждают ущемленные в своем самолюбии левши.
Профессор Бернард Гржимек (род. в 1909 г.) изучил поведение различных животных с намерением выяснить, предпочитают ли они использовать для тех или иных целей определенные конечности. Оказалось, что, например, обезьяны не оказывают предпочтения ни одной из обеих своих рук. Они пускают в ход любую переднюю конечность в зависимости от обстановки, как им покажется сподручнее. Но вот некоторые виды попугаев предпочитают опираться на левую ногу, а в правой держать орех, который они долбят клювом. Конечно, тут можно спорить, являются ли эти попугаи правшами или левшами. Один исследователь будет считать, что, раз они стоят на левой ноге, значит, они левши. Другой – как сам профессор Гржимек – сделает вывод, что, раз они пользуются правой ногой для держания ореха, их надо считать правшами. Но на это можно возразить, что у птиц человеческой руке соответствует крыло. Человек-правша чаще пользуется левой ногой. Если же попугай применяет правую ногу, то это соответствует левше среди людей. И здесь мы вновь сталкиваемся с трудностью описать правое и левое, не прибегая к прямому показу, сопровождаемому словами: «Вот так ведет себя левша (у попугаев)».
В основном наблюдения профессора Гржимека касались лошадей. Он установил, что 80% изученных им животных являются правосторонними жеват елями. Лошади в отличие от нас, людей, не пережевывают пищу, опуская и поднимая нижнюю челюсть, а подвергают корм «перемалыванию», то есть боковыми движениями нижней челюсти перетирают зерна овса или стебли сена. При этом лишь у 20% животных движение зубов направлено влево. Проявляя нетерпение, лошади бьют передними копытами. Но только 23% лошадей били попеременно левой или правой ногой. Остальные 77% отдавали предпочтение одной из ног, к тому же чаще били правым передним копытом. Из стойла большая часть лошадей также выходит с правой передней ноги. Поскольку лошади одновременно передвигают диагонально расположенные ноги, это соответствует задней левой.

Частоты электромагнитных колебаниц и область применения
Человек-правша тоже начинает движение с левой ноги. В воинских частях это, как известно, однозначно регламентировано. Поэтому в наших музыкальных маршах ритм движения подчеркивается ударами литавр, приуроченными каждый раз к шагу левой ноги. В книгах по верховой езде пишется, что лошади легче переходят в галоп с левой дноги, чем с правой. Вообще распространено мнение, что лошадь предпочитает бежать справа налево. Наблюдая за искусством вольтижировки, обратите внимание на то, что лошади бегут против часовой стрелки, то есть справа налево. Дрессировка лошадей в цирке также начинается с их пробежки справа налево вокруг всего манежа. Однако профессор Гржимек у 77% изученных лошадей не обнаружил при галопе никакого предпочтительного отношения к левым или правым, передним или задним конечностям. Лишь 6% животных всегда переходили в галоп с правой ноги, а 17% – с левой.
По-видимому, мнение, будто лошади предпочитают, чтобы их поднимали в галоп с левой ноги, сложилось у наездников на том основании, что, посылая лошадь в галоп, они оказывают ей «помощь» левым шенкелем и правой рукой, иными словами, пользуются теми конечностями, которые предпочитают «правши».







