412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Вернер Гильде » Зеркальный мир » Текст книги (страница 3)
Зеркальный мир
  • Текст добавлен: 9 октября 2016, 14:34

Текст книги "Зеркальный мир"


Автор книги: Вернер Гильде



сообщить о нарушении

Текущая страница: 3 (всего у книги 12 страниц)

КАК ОТРАЖАЕТ ЗЕРКАЛО?

Конечно, все мы знаем, как отражает зеркало, но, если только потребуется описать это точно, несомненно возникнут трудности. Как правило, мы довольны собой, если что-то представляем себе хотя бы «в принципе». А подробности, которые преподаватели физики объясняли нам на доске с помощью мела и линейки, всякий нормальный школьник и студент стараются забыть, и, чем скорее, тем лучше.

Каждый ребенок, исполненный удивления перед окружающим миром, непременно заинтересуется, каким образом зеркало отражает его. Но взрослые обычно отвечают в подобных случаях: «Не задавай глупых вопросов!» Человек сникает, начинает стесняться, удивление его постепенно затухает, и он старается больше не проявлять его до конца жизни (а жаль!).

Но в этой книге мы будем как можно больше удивляться, памятуя о словах Бертольда Брехта: «Глупых вопросов не бывает, бывают только глупые ответы».

Какой путь от горящего дома до стоянки пожарной команды кратчайший? 'Угол падения', под которым пожарная машина достигнет реки, должен быть равен 'углу отражения', под которым она помчится к месту пожара

Конечно, людей можно разделить на дураков и умных, на больших и маленьких, они разнятся по языку, вероисповеданию, мировоззрению. Можно представить себе и такой способ подразделения:

1)люди, которые никогда не удивляются;

2) люди, которые удивляются, но не задумываются над удивившим их явлением;

3) люди, которые, удивившись, спрашивают «а почему?»;

4) люди, которые, удивившись, обращаются к числу и мере.

В зависимости от условий жизни, традиций, степени образованности встречаются и все возможные «промежуточные» ступени. Мыслители античности и средневековья изумлялись миру и думали о его тайнах. Но им лишь изредка выпадал случай измерить какое-либо явление.

Только в эпоху Возрождения, то есть в XVI в., люди пришли к убеждению, что измерение лучше слепой веры или схоластических рассуждений. Этому способствовали экономические интересы, удовлетворить которые можно было только путем развития естественных наук, путем количественных измерений. (Мы видим, что, по существу, меновая стоимость «измерялась» с помощью денег.) Для XVI в. оптика была ультрасовременной наукой. Из стеклянного шара, наполненного водой, которым пользовались как фокусирующей линзой, возникло увеличительное стекло, а из него микроскоп и подзорная труба. Крупнейшей в те времена морской державе Нидерландам требовались для флота хорошие подзорные трубы, чтобы загодя рассмотреть опасный берег или вовремя уйти от врага. Оптика обеспечивала успех и надежность навигации. Поэтому именно в Нидерландах многие ученые занимались ею. Голландец Виллеброрд, Снелль ван Ройен, именовавший себя Снеллиусом (1580-1626), наблюдал (что, впрочем, видели и многие до него), как тонкий луч света отражается в зеркале. Он просто измерил угол падения и угол отражения луча (чего до него не делал никто) и установил закон: угол падения равен углу отражения.

Для построения зеркального отражения необходимо соблюдать закон: угол падения равен углу отражения

Теперь, задним числом, этот закон кажется нам чем-то само собой разумеющимся. Но в те времена он имел огромное, можно сказать, мировоззренческое значение, которое будило философскую мысль вплоть до XIX в.

Поставим себе следующую математическую задачу: в каком-то домике возник пожар. Вызвана пожарная команда, а воду для тушения приходится брать из реки. В каком месте следует ее набирать, чтобы как можно быстрее подать к горящему дому?

Треугольное зеркало отбрасывает отраженный луч точно в направлении падающего луча

Ответ гласит: место надо выбрать с таким расчетом, чтобы угол подъезда к реке был равен углу отъезда от нее по прямой к горящему дому. В этом случае общая длина отрезков пути будет минимальной. (Такой принцип минимума-максимума прежде рассматривался как проявление «воли господней»).

Закон отражения Снеллиуса объясняет явление зеркального отражения, к этому только следует добавить, почему оно свойственно лишь блестящим и гладким поверхностям. На самом деле шершавые поверхности тоже подчиняются закону отражения. Но вследствие шероховатости они словно состоят из маленьких зеркал, бессистемно направленных во все стороны. Кроме того, материал, который мы рассматриваем как зеркало, должен в очень малой мере поглощать свет и не быть прозрачным. Такими качествами отличаются, к примеру, полированные металлы, спокойная вода над темным дном, некоторые полированные камни и прежде всего помещенное на непрозрачную подложку стекло.

Мачты яхт оснащают уголковыми зеркальными отражателями. Маленькое трехгранное зеркало отражает импульс радара гораздо сильнее, чем корпус судна

Каждой точке предмета соответствует ее отражение в зеркале, и потому в нем наш правый глаз перемещается на левую сторону. Вследствие этого переноса точек предметы, расположенные дальше, в зеркале тоже кажутся уменьшенными в соответствии с законами перспективы. Технически мы можем реконструировать зеркальное изображение так, словно оно расположено за поверхностью стекла. Но это только кажущееся восприятие. Не случайно животные и маленькие дети часто заглядывают за зеркало; они верят, что изображение таится сзади, словно картина, видимая за окном. Факт перестановки левого и правого правильно осознается только взрослыми.

ЗЕРКАЛО С КОНВЕЙЕРА

В одном из греческих мифов повествуется о Нарциссе, который часами лежал на берегу озера, любуясь своим отражением в воде.

Будь Нарцисс человеком состоятельным, он, надо думать, приобрел бы себе зеркало из полированного металла. В те времена довести до зеркального блеска кусок стали или бронзы величиной с ладонь было не так-то просто. К тому же поверхность такого зеркала окислялась и ее приходилось ежедневно чистить. Латинское spectrum в немецком языке превратилось в Spiegel («Шпигель» – зеркало). Из чего можно заключить, что в Германию зеркала принесли римляне.

Только в XI в. появились известные нам зеркала из стекла. Одно из первых упоминаний о них принадлежит французскому менестрелю Вен сану де Бове. По его словам, в таких зеркалах на стекло снизу накладывался свинец. Очевидно, комментировать, в каком контексте менестрель упоминает зеркало, излишне. А в 1773 г. в Нюрнберге уже возник цех зеркальщиков. С этого времени изготовление зеркал становится важной отраслью европейских ремесел.

Венеция была первой страной (в те времена она имела статус самостоятельного государства), которая стала выдавать патенты на изобретения. В 1507 г. братья Данзало дель Галло получили патент на изготовление хрустальных зеркал. Сегодня на рынке антиквариата венецианские зеркала являются драгоценностью. В те времена под стеклянную пластинку подкладывалась тонкая оловянная фольга (олово легко прокатывается на валках). На фольгу выливалась ртуть, которая образовывала с оловом амальгаму. Так как пары ртути очень ядовиты, этот способ давным-давно запрещен и заменен серебрением.

В прямоугольном угловом зеркале (при угле между зеркалами 90°) положения 'правое' и 'левое' сохраняются

С давних пор сохранился прием защиты тонкого металлического слоя лаковым покрытием. Сегодня листовое стекло движется по конвейру, где на его поверхность последовательно наносится из пульверизаторов раствор соли серебра и восстановитель, который осаждает из раствора чистое серебро в тонкодисперсной (коллоидальной) форме; после этого на тонкий слой серебра наносится слой меди, защищающий пленку серебра, и в заключение оба металла покрываются лаком. Конвейерная лента движется со скоростью около 2,5 м/мин. Месячная продукция такого агрегата около 40 000 м 2 зеркала. Если какой-нибудь слишком «сообразительный» читатель вознамерится соскоблить серебро с большого настенного зеркала на украшение жене или приятельнице, то ему нелишне знать, что слой серебра на зеркале столь тонок, что «овчинка выделки не стоит». На 1 м 2 поверхности зеркала осаждается меньше 1 г серебра.

Изготовление стекла считалось прежде большим искусством. Дошел рассказ, что во времена римского императора Тиберия (42 г. до н. э.) некто открыл небьющееся стекло. Тиберий приказал казнить этого человека, чтобы его открытие не привело к обесцениванию стекла. Сегодня изобретатели, работающие в области стеклянной индустрии, могут не опасаться подобной участи. Напротив, все усилия сводятся к тому, чтобы сделать стекло возможно дешевле.

Среди твердых веществ неорганического происхождения (камень, металл) стекло занимает особое место. Строго говоря, отдельные свойства стекла сближают его с жидкостью. Большинство веществ в твердом и жидком состоянии ведут себя по-разному. Проще всего понаблюдать за водой и льдом. Вода находится в капельно-жидком виде. Ровно при 0°С чистая вода начинает кристаллизоваться. Температура затвердения сохраняется нулевой, пока вся вода не превратится в лед. Даже в Заполярье при морозе – 50° С вода подо льдом сохраняет температуру 0°С. Только когда исчезнет вся вода, лед можно охлаждать дальше. Лед как твердое тело имеет кристаллическую структуру. Внутри его маленьких участков, кристаллов, мы обнаруживаем отчетливую симметрию. Эта симметрия распознается на рентгеновских снимках (рентгенограммах).

Угловое зеркало, в котором угол в 90° между зеркалами меняет местами верх и низ

Другое дело стекло. В нем не найти кристаллов. Не существует в нем и резкого перехода при какой-то определенной температуре от жидкого состояния к твердому (или обратно). Расплавленное стекло (стекломасса) в большом интервале температур остается твердым. Если мы примем вязкость воды за 1, то вязкость расплавленного стекла при 1400°С составляет 13 500. Если охладить стекло до 1000°С, оно станет тягучим и в 2 млн. раз более вязким, чем вода. (Например, нагруженная стеклянная трубка или лист со временем прогибаются.) При еще более низкой температуре стекло превращается в жидкость с бесконечно высокой вязкостью.

Главная составляющая стекол – диоксид кремния, или кремнезем, – SiO 2 . В наиболее чистом виде он представлен в природе белым кварцевым песком. Диоксид кремния кристаллизуется при переходе от расплава к твердому состоянию сравнительно постепенно. Кварцевый расплав можно охладить ниже его температуры затвердения, и он при этом не станет твердым. Существует немало и других жидкостей и растворов, которые также можно переохладить. Но только кварц поддается переохлаждению настолько, что теряет способность к образованию кристаллов. Диоксид кремния остается тогда «свободным от кристаллов», то есть «жидкообразным».

Перерабатывать чистый кварц было бы слишком дорого, прежде всего из-за его сравнительно высокой температуры плавления. Потому технические стекла содержат лишь от 50 до 80% диоксида кремния. Для понижения точки плавления в состав таких стекол вводятся добавки оксида натрия, глинозема и извести. Получения определенных свойств достигают добавками еще некоторых химических веществ. Знаменитое свинцовое стекло, которое тщательно шлифуется при изготовлении чаш или ваз, обязано своим блеском присутствию в нем около 18% свинца.

Стекло для зеркал содержит преимущественно дешевые компоненты, снижающие температуру плавления. В больших ваннах (как называют их стекловары), вмещающих более 1000 т стекла, сначала расплавляют легкоплавкие вещества. Расплавленная сода и другие химические вещества растворяют кварц (как вода поваренную соль). Таким простым средством удается перевести диоксид кремния в жидкое состояние уже при температуре около 1000° С (хотя в чистом виде он начинает плавиться лишь при гораздо более высоких температурах). К большой досаде стекловаров из стекломассы выделяются газы. При 1000°С расплав еще слишком вязок для свободного выхода газовых пузырьков. Для дегазации его следует довести до температуры 1400-1600°С. Столь высоких температур достигают в так называемых регенеративных стекловаренных печах, изобретенных в 1856 г. Фридрихом Сименсом. В них отработанные газы подогревают камеры предварительного нагрева, облицованные огнеупорными материалами. Как только эти камеры достаточно раскалятся, в них подают горючие газы и необходимый для их сгорания воздух. Возникающие при горении газы равномерно перемешивают расплавленное стекло, иначе перемешать тысячу тонн вязкого расплава было бы далеко не просто.

Современная стекловаренная печь – это печь непрерывного действия. С одной стороны в нее подаются исходные вещества, которые благодаря легкому наклону пода движутся, постепенно превращаясь в расплавленное стекло, к противоположной стороне (расстояние между стенками печи около 50 м). Там точно отмеренная порция готового стекла поступает на охлаждаемые валки. На всю длину стометрового участка охлаждения тянется стеклянная лента шириной в несколько метров. В конце этого участка машины режут ее на листы нужного формата и размера для зеркал или оконного стекла.

Известна твердость стекла (в немецком языке существует даже выражение «твердый как стекло»). В поэме Пушкина «Евгений Онегин» влюбленная Татьяна вырезает на оконном стекле дорогое имя алмазиком кольца (По-видимому, автор знаком с произведением Пушкина по переводу. В оригинале Татьяна «прелестным пальчиком писала на затуманенном стекле». – Прим, перев). Сегодня «алмазы» для резки стекла делаются из синтетических камней или твердых сплавов. Стекло отличает и изрядная прочность на сжатие. Это его свойство используется при создании витражей, декоративных перегородок. В противоположность этому прочность стекла на растяжение ничтожна. Новинкой являются сегодня стекла повышенной прочности. Наряду с другими областями применения их используют для трубопроводов в химической промышленности. Для зеркала важна и прозрачность. Нормальное стекло пропускает от 70 до 90% видимого света. Прозрачность стекла остается непременным условием при изготовлении хороших зеркал. Для ультрафиолетового света (≈ 10 15 -10 16 Гц) стекло не прозрачно. В первые весенние дни, когда еще холодно, но солнце начинает пригревать, находятся фанатичные любители загара, которые усаживаются у окон, подставив лицо солнечным лучам. Но все их старания тщетны, если в рамы не вставлены специальные стекла, прозрачные для ультрафиолетовых лучей.

Тем, у кого в квартире несколько зеркал, наверное, приходилось замечать, что качество у них различное. Прежде всего, хорошее зеркало не должно иметь свилей, искажающих изображение. Подобные свили возникают вследствие неполного расплавления стекла или неравномерного остывания.

Блеск зеркала можно улучшить как за счет состава стекла, так и путем тщательной обработки поверхности (шлифовки и полировки).

И все-таки это удивительно: как Нарцисс в древности, лежа на берегу озера, любовался своим отражением в воде, так и мы, современные люди, глядимся в зеркала, которые по существу представляют собой «жидкость»!

Однако в дальнейшем производство зеркал скорее всего пойдет по пути использования пластиковой пленки, на которую напыляется тонкий слой металла.

ОТ ТРЕЛЬЯЖА ДО РАДАРА

Должны ли мы считать, что самих себя видим только в «зеркальном отражении» и в лучшем случае лишь на фото и кинопленке можем узнать, как выглядим «на самом деле»?

Конечно нет: достаточно зеркальное изображение вторично отразить в зеркале, чтобы увидеть свое истинное лицо. Нередко в домах еще встречаются так называемые трельяжи. Они имеют одно большое главное зеркало в црнтре и два меньших зеркала по сторонам. Многие думают, что эти боковые зеркала служат лишь для того, чтобы разглядывать локоны за ушами. Но если такое боковое зеркало поставить под прямым углом к среднему, то можно увидеть себя именно в том виде, в каком вас видят окружающие. Зажмурьте левый глаз, и ваше отражение во втором зеркале повторит ваше движение левым глазом. Перед, трельяжем вы можете выбирать, хотите ли вы увидеть себя в зеркальном или в непосредственном изображении.

Угловое зеркало с прямым углом между составляющими его зеркалами отличается еще некоторыми интересными свойствами. Если вы смастерите его из двух маленьких зеркал, то сможете сами убедиться в том, что в таком зеркале с прямоугольным раствором (а сейчас мы говорим только о нем) отраженный луч света всегда параллелен падающему лучу. Это очень важное свойство. Но не единственное! При повороте углового зеркала вокруг оси, соединяющей зеркала (в определенных пределах), отраженный луч не изменит своего направления.

В технике обычно не составляют зеркала, а используют прямоугольную призму, у которой соответствующие грани обеспечивают зеркальный ход лучей.

Прямоугольные призмы, как бы «складывающие» ход луча «гармошкой», сохраняя его необходимую длину, заданную фокусным расстоянием линзы, позволяют уменьшать габариты оптических приборов. В призматических биноклях лучи света при помощи таких приборов обращаются на 180°.

На старинных картинах можно видеть капитанов и полководцев с непомерно длинными подзорными трубами. Благодаря угловым зеркалам старинные подзорные трубы превратились в современные бинокли.

Принцип действия Танагрского театра. Благодаря зеркалам создается впечатление, что на сцене движутся маленькие человечки или предметы, как бы наблюдаемые в перевернутый бинокль

Игрокам в бильярд издавна знакомо действие отражения. Их «зеркала» – это борта игрового поля, а роль луча света исполняют траектории шаров. Ударившись о борт возле угла, шар катится к стороне, расположенной под прямым углом, и, отразившись от нее, движется обратно параллельно направлению первого удара.

Свойство отраженного луча сохранять направление при повороте углового зеркала вокруг оси находит широкое применение в технике. Так, в трехгранном зеркальном уголковом отражателе луч сохраняет постоянное направление, несмотря на весьма сильные качания зеркала. По форме такое зеркало представляет собой кубик с отрезанным уголком. И в этом случае на практике используют не три зеркала, а соответствующую стеклянную призму с зеркальными гранями.

Важной областью применения трехгранного зеркала служит уголковый отражатель (кошачий глаз, катофот) на велосипедах, мотоциклах, сигнальных предохранительных щитах, ограничителях проезжей части улицы. С какой бы стороны ни упал свет на такой отражатель, световой рефлекс всегда сохраняет направление источника света.

Большую роль трехгранные зеркальные уголковые отражатели играют в радиолокационной технике. Самолеты и крупные стальные корабли отражают луч радара. Несмотря на значительное рассеяние его, той небольшой доли отраженных радиоволн, которая возвращается к радару, обычно достаточно для распознания объекта.

Хуже обстоит дело с маленькими суденышками, сигнальными поплавками и пластиковыми парусными яхтами. У небольших предметов отражение слишком слабое. Пластиковые яхты так же «прозрачны» для радиоволн, на которых работает радарная техника, как оконные стекла для солнечного света. Поэтому парусные яхты и сигнальные буйки оснащают металлическими уголковыми отражателями. Длина граней у такого «зеркала» всего около 30 см, но этого довольно, чтобы возвращать достаточно мощное эхо.

Художественные изделия из стекла производят впечатление не только благодаря совершенству формы и тщательной шлифовке, но и благодаря высокому показателю преломления стекла

Вернемся еще раз к угловому зеркалу из двух соединенных зеркал. Качнем его ось вправо или влево – наше изображение тоже наклонится в сторону. Мы можем даже положить его, если поместим ось зеркала горизонтально. Но, наклонив зеркало еще дальше, мы заметим, что изображение «выпрямляется». Конечно, и этому мы поищем объяснение. Оно вполне отвечает теме этой книги.

Угловое зеркало имеет плоскость симметрии, которая делит пополам пространство между обоими зеркалами. При соответствующей форме оно может иметь еще одну плоскость, перпендикулярную зеркалам, но ее мы здесь рассматривать не будем. Нас интересует только плоскость симметрии, проходящая между зеркалами в которой, так сказать, взаимно отражаются оба зеркала.

Каждая плоскость симметрии меняет, как нам уже известно, правое на левое (и наоборот). Но это несколько упрощенное вос-риятие. Если бы плоскость симметрии умела говорить, она бы заявила: «Я не меняю ни правое на левое, ни верх на низ. Я вообше не знаю, что это такое. Я лишь точка за точкой отображаю все, что находится по одну или другую сторону от меня. Если человек своей продольной осью встанет параллельно соей оси, я поменяю ему правую и левую стороны, но если тот же человек своей продольной осью расположится перпендикулярно моей оси (ибо я всегда остаюсь неизменной), то я поменяю то, что люди называют верхом и низом». Как видите, все зависит от точки зрения.

Но в конечном итоге истинно то, что можно измерить и сосчитать. Сегодня мы не видим особого достижения в том, что Снеллиус измерил углы падения и отражения луча. Но мы не должны забывать, что ученые XVI в. подобными открытиями ломали более чем двадцативековую традицию.

Среди секретов телевидения известен трюк с уменьшением исполнителя, который на фоне всей окружающей обстановки «в натуральную величину» выглядит маленькой куколкой. Иногда зритель может видеть актера одновременно в двух масштабах: на переднем плане в обычную величину, а на заднем в уменьшенном.

Тому, кто искушен в фотографии, понятно, как достигается подобный эффект. Сначала снимается уменьшенный вариант, а потом актер играет перед экраном, на который проецируется его уменьшенное изображение.

Известный «чародей» Иохен Цмек в своей увлекательной книге «Волшебный мир магии» (Zmeck J. Wunderwelt Magie. Berlin: Heuchel-Verlag, Kunst und Gesellschaft, 1974) описывает, как подобные чудеса можно делать без фотографии. Когда уменьшенный предмет должен сам собой появиться в пространстве, с помощью вогнутого зеркала его изображение проецируется таким образом, чтобы он казался стоящим на подставке.

Иллюзионист Александр Фюрст строил этот трюк следующим образом. Зритель видел маленькую сцену с сильно уменьшенными артистами. Чтобы спроецировать их в таком виде на экран, Фюрст использовал в своем сооружении угловое зеркало. Именно перед ним двигались артисты. Но зеркало переворачивало их на 180° и ставило тем самым «на голову», и уже это изображение вогнутое зеркало, еще раз перевернув, отбрасывало на маленькую сцену. Непременным условием эффекта была безупречная чистота всех зеркал.

Разумеется, «волшебник» мог демонстрировать не только появление каких-то предметов, но и их молниеносное исчезновение, стоило только произнести магическое «симсалабим» (и, конечно, выключить источник света или отвернуть зеркало). Как прелестен такой Танагрский театр (так называются подобные зрелища), можно убедиться, заглянув в перевернутый бинокль. Уменьшенный, как бы сконцентрированный мир выглядит в нем очень интересно. Принцип действия и призматического бинокля, и Танагрского театра одинаков. Только в одном случае используются линзы, а в другом – вогнутое зеркало.

О ЛЕВШАХ И ПРАВШАХ

Теперь, когда мы знаем, как работают зеркала и как они изготовляются, подумаем еще над тем, что же мы видим в зеркале в нашей повседневной жизни.

Это может превратиться в хобби: анализировать каждый предмет с точки зрения симметрии. Вспомним о том, что если разрезать предмет вдоль его плоскости симметрии и поставить одну из половинок перпендикулярно зеркалу, то в зеркале как бы появится вторая, «отрезанная» половина. Поэтому, говорим ли мы о зеркале или о плоскости симметрии, речь идет, в сущности, о явлениях одного порядка.

В принципе все возможные «волшебные» оптические трюки основаны на «бесшовном» переходе изображения в его зеркальное отражение. Секрет «разрезанной пополам дамы» и прочих подобных фокусов вы можете легко постичь и воспроизвести, пользуясь трельяжем, состоящим из нескольких зеркал. Поверните одно из малых зеркал внутрь настолько, чтобы его хорошо было видно в большом зеркале. Положите руку на край малого зеркала так, чтобы средний палец лег параллельно краю, и вы увидите в зеркале, что ваша рука состоит из двух мизинцев и двух безымянных пальцев. Оттопырьте мизинец, и в зеркале шевельнутся два пальца. Немного фантазии – и этот «номер» можно подготовить для демонстрации на домашнем вечере. Условие успеха здесь, как и в варьете или цирке, состоит в безупречной чистоте зеркала. Хорошее и достаточно большое зеркало (чтобы не было видно его краев) для глаз не заметно.

Ковшики всегда выпускаются с расчетом, что их будут брать правой рукой. Но всякий левша предпочел бы ковшик в 'зеркальном' исполнении

После того как мы мысленно разделим плоскостями симметрии стулья, столы, вазы, людей, животных, дома и деревья, нам, конечно, захочется поискать асимметричные тела.

О винтовых лестницах и винтовой нарезке мы уже упоминали. Пожалуй, следует еще раз уточнить свойство асимметрии: через асимметричный предмет нельзя провести плоскость симметрии (Автор здесь относит к симметричным лишь те тела, которые обладают плоскостями симметрии. В современном учении о симметрии к симметричным телам относят все фигуры, состоящие из равных закономерно повторяющихся частей. В частности, и фигуры с винтовыми линиями, рассматриваемые как бесконечно протяженные системы, обладают винтовыми осями симметрии, то есть считаются симметричными. – Прим. ред). Поэтому его невозможно «правильно» отразить в зеркале. И наоборот: каждая спираль закручивается в зеркале «в другую сторону». Левый виток становится правым. Левая рука превращается в правую. Может быть, отсюда и пошли слова «левша» и «правша»?

Однако здесь может возникнуть возражение: как же у человека, существа, наделенного плоскостью симметрии, могут «поменяться» в зеркале руки или уши?!

Верно!

Для того чтобы разобраться, представьте, что в зеркале видна только рука, без ее владельца. Вы можете сами попробовать, встав боком к зеркалу, поместить перед ним одну руку. Или попросту рассмотрите внимательно ваши перчатки. Они соотносятся друг с другом, как изображение и его зеркальное отражение. А вот если вы разрежете посередине кубик, то не различите половинки! Они совмещаются (мысленно) безо всякого труда.

Поищем дальше, какие еще асимметричные предметы окружают нас. Бывают ли чашки для левшей? Или ножницы для тех, кто режет левой рукой?

У чашки поверхность симметрична: из нее можно пить и справа и слева. Но вот наши деды пользовались особыми чашками для усачей. Сверху такая чашка имела козырек, чтобы гордые усы не окунались в кофе. Отверстие, через которое наполняли чашку и пили, находилось с одной стороны. Такая чашка уже не симметрична. Она делалась либо для левой, либо для правой руки.

Если положить средний палец вдоль края зеркала и пошевелить указательным пальцем, в зеркале возникнет забавное отражение

Ножницы, как правило, делаются для правой руки. Вы сразу аметите это, как только попытаетесь остричь на ней ноготь, в ножницы в левую руку. Ковшики тоже всегда делаются для правой руки. Среди сувенирной мелочи иногда как курьез продаются штопоры для левой руки: ведь левше очень неудобно открывать бутылку нормальным штопором. Асимметричны, конечно, такие предметы, как винт корабля или самолета. Прежде большие гидропланы имели два пропеллера: тянущий и толкающий. Нетрудно представить себе, как они вращались. Или возьмите, например, точилку для карандаша в правую руку, а левой вращайте грифель. Вы сразу заметите, что и здесь проявлена асимметрия.

Наконец, посмотрите на гитары, скрипки и другие струнные инструменты. Они симметричны (если не принимать во внимание толщину струн и расположение колков). Но вся система из скрипки и смычка асимметрична. Любопытно было бы узнать, существуют ли левщи среди скрипачей!

ЧАРЛИ ЧАПЛИН И МОРСКИЕ УЗЛЫ

И у великих людей есть свои проблемы. Весьма важный для общественного деятеля вопрос: куда девать руки? В фильме «Великий диктатор» непревзойденный Чарли Чаплин пытается найти решение этой проблемы, прежде чем показаться народу. Он становится перед зеркалом. Конечно, лучше всего было бы просто сунуть руки в карманы. Но нельзя же ронять свое достоинство! И вот Чаплин перебирает все мыслимые положения. В конце концов он скрещивает руки на груди в позе, по его мнению, наиболее впечатляющей современников.

Рассматривая картины, памятники или парадные портреты, нетрудно заметить, что существует всего несколько эффектных положений рук. Но для нас интерес представляют лишь скрещенные руки. Не поленившись испробовать это, вы обнаружите, что существуют два варианта. Ваша правая рука ложится так, что ее кисть прячется под левым предплечьем. Или наоборот: правая кисть лежит на левом предплечье, а левая прячется под правой рукой.

Прямой морской узел симметричен. Асимметричный 'бабий узел'

Представьте себе, что это не руки, а шнурки для ботинок. Их тоже можно перехлестнуть слева направо или справа налево.

На языке моряков такое простое соединение называется «полуштык». Если вам не верится, что вы связали ваши конечности, узлом, попросите, чтобы вам дали по кончику веревки в каждую из перекрещивающихся рук. Теперь выньте руки из подмышек – на веревке окажется узел «полуштык».

К этой «половине» узла следует, естественно, добавить вторую половину, чтобы получился цельный узел. Но если вы попробуете это сделать, будьте внимательны! Здесь существуют два возможных варианта. Если вы «правильно» положите концы веревки, то получите узел «плоский штык». Стоит вам положить их «неправильно», и у вас выйдет «бабий узел», внушающий отвращение всякому моряку. «Бабий узел» затягивается крепко, и развязать его очень трудно. «Плоский штык» также крепко затягивается, но развязать его весьма просто, стоит только подвигать соответствующие концы навстречу друг другу. Для нас же в обоих случаях имеется еще одно существенное различие: «плоский штык» симметричен, а «бабий узел» асимметричен.

Тросы и канаты бывают свиты справа налево (по букве Z) или слева направо (по букве S). При намотке снастей следует обращать внимание на направление, в котором свита веревка, иначе могут возникнуть петли

Но вернемся еще раз к Чарли Чаплину. Обе перекрещенные руки (или концы веревки) по сути дела воспроизводят витки винта и лишены симметрии. Поэтому переплетающиеся концы и невозможно мысленно перевести один в другой. Они соотносятся как изображение и его зеркальное отражение. И если вы завяжете «полуштык» перед зеркалом, ваше отражение в зеркале завяжет его «наоборот». Для того чтобы после второго перехлеста получился правильный морской узел, он должен завязываться зеркально по отношению к первому.


    Ваша оценка произведения:

Популярные книги за неделю