412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Вернер Гильде » Зеркальный мир » Текст книги (страница 2)
Зеркальный мир
  • Текст добавлен: 9 октября 2016, 14:34

Текст книги "Зеркальный мир"


Автор книги: Вернер Гильде



сообщить о нарушении

Текущая страница: 2 (всего у книги 12 страниц)

Конгруэнтными называются плоские фигуры, которые мы воспринимаем как равные и которые можно совместить друг с другом путем сдвига в плоскости или поворота в пространстве.

КОНГРУЭНТНОСТЬ ТРЕУГОЛЬНИКОВ

Конгруэнтность – свойство геометрических плоских фигур совпадать между собой по величине и по форме.

Тождественно-конгруэнтными являются фигуры, которые можно совместить друг с другом путем поворота и(или) сдвига.

Зеркально-конгруэнтными являются фигуры, для совмещения которых необходима дополнительно операция зеркального отражения.

Существует четыре признака конгруэнтности треугольников. Треугольники конгруэнтны, если:

1) три стороны одного треугольника равны трем сторонам другого (S, S, S);

2) две стороны и заключенный между ними внутренний угол одного треугольника равны двум сторонам и заключенному между ними внутреннему углу другого треугольника (S, W, S);

3) две стороны и противолежащий большей из них внутренний угол одного треугольника равны двум сторонам и противолежащему большей из них углу другого треугольника (S, S, W);

4) сторона и оба прилежащих к ней внутренних угла одного треугольника равны стороне и обоим прилежащим к ней внутренним углам другого треугольниками (W, S, W).

ПОДОБИЕ

Совпадение плоских фигур по форме, но не по величине называется подобием.

Каждому углу одной из фигур соответствует равновеликий угол подобной фигуры.

В подобных фигурах соответственные отрезки пропорциональны.

Путем сдвига, поворота и (или) зеркального отражения можно привести две подобные фигуры в положение гомотетии. В этом положении соответственные стороны обеих фигур параллельны между собой.

ОСЕВАЯ СИММЕТРИЯ

Пусть плоскость разделена прямой s на две полуплоскости. Если теперь повернуть одну полуплоскость вокруг прямой 5 на 180°, то все точки этой полуплоскости совместятся с точками другой полуплоскости.

Прямая s называется осью симметрии.

Осевая симметрия

Ввиду того что точки на перевернутой полуплоскости находятся в зеркальном положении по отношению к их первоначальному положению, это переворачивание называют также зеркальным отражением. Если нанести на одну полуплоскость линии, указывающие какие-то направления вращения, то после зеркального отражения это направление изменится на противоположное. Следовательно, одна операция зеркального отражения создает зеркально-конгруэнтные фигуры. Две такие операции приводят к тождественно-конгруэнтным фигурам. Они соответствуют сдвигу, или повороту.

РАДИАЛЬНАЯ СИММЕТРИЯ

Радиально-симметричные фигуры могут быть совмещены друг с другом путем вращения вокруг точки S. Эта точка называется центром симметрии.

При вращении соответственные точки фигур совмещаются. Направление вращения не меняется. Фигура, отраженная таким способом, является тождественно-конгруэнтной.

Радиальная симметрия

Последующие операции вращения никак не повлияют на тождественность фигур. При угле поворота, равном 180°, говорят о центральной симметрии.

ТРЮК С КУБИКАМИ

Педагоги утверждают, что игра с кубиками развивает пространственное воображение. И вот родители покупают своим отпрыскам ящики с яркими кубиками, оклеенными фрагментами картинок из популярных сказок. Сложив эти кубики нужным образом, вы увидите Красную Шапочку с Серым Волком или Белоснежку с семью гномами.

На самом деле такого рода кубики и головоломки развивают пространственное воображение не только у детей, но и у всех – от мала до велика. Иногда нам доводится складывать куб из различной формы чурбачков.

При ближайшем рассмотрении этих отдельных элементов оказывается, что по меньшей мере два из них имеют одинаковые форму и размеры, но относятся друг к другу как левая и правая перчатки. Создатели головоломок такого рода, очевидно, надеются, что играющие не сразу уловят это различие. Если припомнить, сколько раз мы путали правые и левые перчатки, придется признать, что такие надежды не лишены основания.

Совместить эти элементы практически невозможно. Следует заметить, что, употребляя здесь (или где-то ниже) выражение «практически возможно», мы имеем в виду осуществление подобного задания на практике.

В машинном отделении корабля двигатели имеют симметричное расположение

Но ведь существуют еще и математические или физические методы, позволяющие совмещать элементы хотя бы теоретически или по внешним признакам, – это и явится предметом дальнейшего рассмотрения. И поскольку здесь говорилось о совмещении одного элемента с другим, следует особо отметить одно важное обстоятельство. Во Флатландии можно было бы совместить плоские фигуры, вынув их из плоскости и повернув в пространстве. В Лайнландии точно так же понадобилось бы всего одним измерением больше: один поворот в плоскости, и отрезки становятся совместимыми.

Но пространственные постройки мы можем повернуть только в пространстве! А поскольку четвертое измерение, несмотря на все рассуждения Гаусса, для нас закрыто, трудно даже вообразить, как практически (!) можно развернуть наши «кирпичики» где-то, помимо трехмерного пространства, чтобы они совместились друг с другом!

В повседневной жизни нам очень часто приходится решать подобные головоломки (я подчеркиваю: именно решать практически, а не играть!), например при упаковке различных предметов. Или, к примеру, представьте себе радиаторы центрального отопления. У одних из них вентиль для регулировки находится слева, у других – справа. Каким образом соединить несколько радиаторов в одну батарею?

Холодильники, кухонные плиты и другие предметы домашнего обихода обычно исполняются с право– и левосторонним расположением ручек, ключей, кранов. Фантастическая возможность поворота подобных предметов в четвертом измерении очень порадовала бы всех, кто имеет дело с их перевозкой и установкой.

ЗАГЛЯНИТЕ В СЛОВАРЬ!

В начале книги мы назвали человека существом симметричным. В дальнейшем же термин «симметрия» больше не употреблялся. Однако вы уже, наверное, заметили, что во всех случаях, когда отрезки прямой, плоские фигуры или пространственные тела были подобными, но без дополнительных действий совместить их было нельзя, «практически» нельзя, мы встречались с явлением симметрии. Эти элементы соответствовали друг другу, как картина и ее зеркальное отражение. Как левая и правая рука. Если мы возьмем на себя труд заглянуть в «Словарь иностранных слов», то обнаружим, что под симметрией понимается «соразмерность, полное соответствие в расположении частей целого относительно средней линии, центра... такое расположение точек относительно точки (центра симметрии), прямой (оси симметрии) или плоскости (плоскости симметрии), при котором каждые две соответствующие точки, лежащие на одной прямой, проходящей через центр симметрии, на одном перпендикуляре к оси или плоскости симметрии, находятся от них на одинаковом расстоянии...» (Словарь иностранных слов: Изд. 7-е, переработанное. -М.; Русский язык 1980, с. 465)

И это еще не все, как часто бывает с иностранными словами, значений у слова «симметрия» существует множество. В том-то и состоит преимущество подобных выражений, что их можно использовать в случае, когда не хотят дать однозначное определение или просто не знают четкого различия между двумя предметами.

При всей прихотливости формы цветок орхидеи симметричен

Термин «соразмерный» мы применяем по отношению к человеку, картине или какому-либо предмету, когда мелкие несоответствия не позволяют употребить слово «симметричный».

Раз уж мы роемся в справочниках, давайте заглянем в Энциклопедический словарь (Советский энциклопедический словарь – М.: Советская энциклопедия, 1980, с. 1219-1220). Мы обнаружим здесь шесть статей, начинающихся со слова «симметрия». Кроме того, это слово встречается во множестве других статей.

В математике слово «симметрия» имеет не меньше семи значений (среди них симметричные полиномы, симметрические матрицы). В логике существуют симметричные отношения. Важную роль играет симметрия в кристаллографии (кое-что об этом вы еще прочтете в этой книге). Интересно интерпретируется понятие симметрии в биологии. Там описывается шесть различных видов симметрии. Мы узнаем, например, что гребневики дисимметричны, а цветки львиного зева отличаются билатеральной симметрией. Мы обнаружим, что симметрия существует в музыке и хореографии (в танце). Она зависит здесь от чередования тактов. Оказывается, многие народные песни и танцы построены симметрично.

Цветы кальцеолярии симметричны. Ось симметрии проходит вдоль стебля

Итак, надо договориться, о какой именно симметрии пойдет у нас речь. Независимо от характера рассматриваемых предметов основной интерес для нас будет представлять зеркальная симметрия – симметрия левого и правого. Мы увидим, что это кажущееся ограничение уведет нас далеко в мир науки и техники и позволит время от времени подвергать испытанию способности нашего мозга (так как именно он запрограммирован на симметрию).

ИГРА В ТОЧКИ И ЛИНИИ

Мы еще не ушли от Лайнландии и Флатландии. И на то есть особая причина. Если даже там и нет обитателей, то сами-то прямые и плоскости вполне реальны!

Поразмыслим, как обстоит с симметрией на прямой. С помощью двух спичек мы можем очень просто представить себе два возможных случая. (Некоторые стороны этой ситуации мы уже рассмотрели раньше.) Спички могут лежать головками в одну сторону. Тогда они легко совмещаются. Или же головками (или кончиками) друг к другу. В этом случае на прямой существует точка, в которой зеркало можно поставить таким образом, что наступит кажущееся совмещение спички со своим отражением. Другими словами, на прямой существует центр симметрии. Нам придется представить, что зеркало уместилось в одной точке и в нем отражается половинный отрезок прямой. В математических рассуждениях это вполне возможно.

Плоские фигуры 'отражаются' в осях симметрии

При построениях на плоскости наше зеркало может по-прежнему оставаться точкой, а может быть и прямой. Наверное, правильнее сказать в обратном порядке: зеркалом будет служить прямая или точка. Ведь если где-то есть прямая, то на ней возможен точечный центр симметрии.

Зеркальные отражения половинок плоскостей выглядят так же, как и реальные плоскости: путем поворота плоскости вокруг прямой – зеркала – ее можно совместить с отражением, отсюда и возникло выражение «ось симметрии».

Круг имеет бесконечное множество осей симметрии. 'Лист клевера' – только одну

Итак, мы знаем теперь, что представляют собой центр симметрии и ось симметрии, а также то, что какой-то предмет (возьмем это нейтральное слово) является симметричным, если одна его половина соотносится с другой, как изображение и его зеркальное отражение.

У круга имеется бесконечное множество осей симметрии, и все они проходят через общий центр симметрии. У других фигур число осей симметрии конечно, но все равно все оси (две их или больше) проходят через центр симметрии. Это значит, что мы можем развернуть фигуру на какой-то определенный угол (максимально на 180°) и она снова ляжет точно на то же место, что и до вращения.

Продолжим свои рассуждения о зеркальной симметрии. Легко установить, что каждая симметричная плоская фигура может быть с помощью зеркала совмещена сама с собой. Достойно удивления, что такие сложные фигуры, как пятиконечная звезда или равносторонний пятиугольник, тоже симметричны. Как это вытекает из числа осей, они отличаются именно высокой симметрией. И наоборот: не так просто понять, почему такая, казалось бы, правильная фигура, как косоугольный параллелограмм, несимметрична. Сначала представляется, что параллельно одной из его сторон могла бы проходить ось симметрии. Но стоит мысленно попробовать воспользоваться ею, как сразу убеждаешься, что это не так. Несимметрична и спираль.

Как ни странно, такая 'симметричная' с виду фигура, как параллелограмм, не имеет не только осей симметрии, но и зеркальной симметрии вообще

В то время как симметричные фигуры полностью соответствуют своему отражению, несимметричные отличны от него: из спирали, закручивающейся справа налево, в зеркале получится спираль, закручивающаяся слева направо. Это свойство нередко используется в массовых играх и соревнованиях, проводимых телевидением. Играющим предлагается, глядя в зеркало, нарисовать какую-либо несимметричную фигуру, например спираль. А потом еще раз нарисовать «точно такую же» спираль, но уже без зеркала. Сравнение обоих рисунков показывает, что спирали получились разные: одна закручивается слева направо, другая – справа налево.

Но то, что здесь выглядит шуткой, в практической жизни доставляет массу сложностей не только детям, но и взрослым. Нередко дети пишут некоторые буквы «навыворот». Латинское N выглядит у них как И, вместо S и Z получается S и Z. Если мы внимательно посмотрим на буквы латинского алфавита (а это ведь тоже, в сущности, плоские фигуры!), то увидим среди них симметричные и несимметричные. У таких букв, как N, S, Z, нет ни одной оси симметрии (равно как и у F, G, J, L, Р, Q и R). Но N, S и Z особенно легко пишутся «наоборот» (Они обладают центром симметрии. – Прим. ред). У остальных прописных букв есть как минимум по одной оси симметрии. Буквы А, М, Т, U, V, W и Y можно разделить пополам про дольной, осью симметрии. Буквы В, С, D, Е, I, К – поперечной осью симметрии. У букв Н, О и X имеется по две взаимно перпендикулярные оси симметрии.

Буквы в трех верхних рядах асимметричны. У остальных букв имеется по меньшей мере одна ось симметрии

Если вы поместите буквы перед зеркалом, расположив его параллельно строке, то заметите, что те из них, у которых ось симметрии проходит горизонтально, можно прочесть и в зеркале. А вот те, у которых ось расположена вертикально или отсутствует вовсе, становятся «нечитабельными».

И в природе, и в архитектуре оси симметрии служат опорными элементами или элементами стиля. Раковина

Вопрос, почему буквы с продольной осью ведут себя иначе, чем с поперечной, довольно интересен. Возможно, и вы задумаетесь над ним. Причину этого явления мы еще обсудим в дальнейшем.

И в природе, и в архитектуре оси симметрии служат опорными элементами или элементами стиля. Морской еж

Встречаются дети, которые пишут левой рукой, и все буквы получаются у них в зеркальном, отраженном, виде. «Зеркальным шрифтом» написаны дневники Леонардо да Винчи. Вероятно, не существует веского основания, заставляющего нас писать буквы именно так, как это делаем мы. Вряд ли зеркальным шрифтом труднее овладеть, чем нашим обычным.

И в природе, и в архитектуре оси симметрии служат опорными элементами или элементами стиля. Гавана

Правописание от этого не стало бы проще, а некоторые слова, как, например, ОТТО, вообще не изменились бы. Существуют языки, в которых начертание знаков опирается на наличие симметрии. Так, в китайской письменности иероглиф розначает именно истинную середину.

И в природе, и в архитектуре оси симметрии служат опорными элементами или элементами стиля. Дворец и парк Сан-Суси

В архитектуре оси симметрии используются как средства выражения архитектурного замысла. В технике оси симметрии наиболее четко обозначаются там, где требуется оценить отклонение от нулевого положения, например на руле грузовика или на штурвале корабля.

НАШ МИР В ЗЕРКАЛЕ

Из Лайнландии мы вынесли представление о центре симметрии, а из Флатландии – об оси симметрии. В трехмерном мире пространственных тел, где мы с вами живем, соответственно существуют плоскости симметрии. «Зеркало» всегда имеет на одно измерение меньше, чем мир, который оно отражает. При взгляде на круглые тела сразу видно, что они имеют плоскости симметрии, но вот сколько именно – решить не всегда просто.

Поставим перед зеркалом шар и начнем его медленно вращать: изображение в зеркале никак не будет отличаться от оригинала, конечно в том случае, если шар не имеет каких-либо отличительных признаков на своей поверхности. Шарик для пинг-понга обнаруживает бессчетное множество плоскостей симметрии. Возьмем нож, отрежем половину шара и поместим ее перед зеркалом. Зеркальное отражение вновь дополнит эту половинку до целого шарика.

Симметричные тела имеют одну или несколько плоскостей симметрии. Шар или тело, основанием которого служит полусфера или круг, имеет бесконечное множество плоскостей симметрии

Но если мы возьмем глобус и рассмотрим его симметрию, учитывая нанесенные на нем географические контуры, то мы не отыщем ни одной плоскости симметрии.

Во Флатландии фигурой с бесчисленным множеством осей симметрии был круг. Поэтому нас не должно удивлять, что в, пространстве аналогичные свойства присущи шару. Но если круг является единственным в своем роде, то в трехмерном мире имеется целый ряд тел, обладающих бесконечным множеством плоскостей симметрии: прямой цилиндр с кругом в основании, конус с круговым или полусферическим основанием, шар или сегмент шара. Или возьмем примеры из жизни: сигарета, сигара, стакан, конусообразный фунтик с мороженым, кусочек проволоки, труба.

Если мы повнимательней присмотримся к этим телам, то заметим, что все они так или иначе состоят из круга, через бесконечное множество осей симметрии которого проходит бесчисленное множество плоскостей симметрии. Большинство таких тел (их называют телами вращения) имеют, конечно, и центр симметрии (центр круга), через который проходит по меньшей мере одна ось симметрии.

Из правильных конгруэнтных плоских фигур можно построить пять Платоновых тел

Отчетливо видна, например, ось у конуса фунтика с мороженым. Она проходит от середины круга (торчит из мороженого!) до острого конца конуса-фунтика. Совокупность элементов симметрии какого-либо тела мы воспринимаем как своего рода меру симметрии. Шар, без сомнения, в отношении симметрии является непревзойденным воплощением совершенства, идеалом. Древние греки воспринимали его как наиболее совершенное тело, а круг, естественно, как наиболее совершенную плоскую фигуру.

В целом эти представления вполне приемлемы и по сей день. Далее греческие философы делали вывод о том, что Вселенная, несомненно, должна быть построена по образцу математического идеала. Из этого заключения проистекали ошибки, о последствиях которых мы еще расскажем. Ясно, что у древних греков еще не было фунтиков с мороженым! Иначе бы такой прозаический предмет, имеющий бесчисленное множество плоскостей симметрии, мог бы нарушить их стройную систему.

Если для сравнения мы рассмотрим куб, то увидим, что он имеет девять плоскостей симметрии. Три из них делят его грани пополам, а шесть проходят через вершины. По сравнению с шаром это, конечно, маловато.

А имеются ли тела, занимающие по числу пло.скостей промежуточное положение между шаром и кубом? Без сомнения – да. Стоит только вспомнить, что круг, в сущности, как бы состоит из многоугольников. Мы проходили это в школе при вычислении числа π. Если над каждым n-угольником мы воздвигнем n-угольную пирамиду, то сможем провести через нее n плоскостей симметрии.

Куб располагает девятью плоскостями симметрии

Можно было бы придумать 32-гранную сигару, которая имела бы соответствующую симметрию!

Но если мы тем не менее воспринимаем куб как более симметричный предмет, чем пресловутый фунтик с мороженым, то это связано со строением поверхности. У шара поверхность всего одна. У куба их шесть – по числу граней, и каждая грань представлена квадратом. Фунтик с мороженым состоит из двух поверхностей: круга и конусообразной оболочки.

Более двух тысячелетий (вероятно, благодаря непосредственному восприятию) традиционно отдается предпочтение «соразмерным» геометрическим телам. Греческий философ Платон (427-347 до н. э.) открыл, что из правильных конгруэнтных плоских фигур можно построить только пять объемных тел.

Из четырех правильных (равносторонних) треугольников получается тетраэдр (четырехгранник). Из восьми правильных треугольников можно построить октаэдр (восьмигранник) и, наконец, из двадцати правильных треугольников – икосаэдр. И только из четырех, восьми или двадцати одинаковых треугольников можно получить объемное геометрическое тело. Из квадратов можно составить только одну объемную фигуру – гексаэдр (шестигранник), а из равносторонних пятиугольников – додекаэдр (двенадцатигранник).

А что в нашем трехмерном мире полностью лишено зеркальной симметрии?

Если во Флатландии это была плоская спираль, то в нашем мире таковыми, безусловно, будут винтовая лестница или спиральный бур. Кроме того, существуют еще тысячи асимметричных вещей и предметов в окружающей нас жизни и технике. Как правило, винт имеет правую резьбу. Но иногда встречается и левая. Так, для большей безопасности баллоны с пропаном снабжены левой резьбой, чтобы к ним нельзя было привинтить вентиль-редуктор, предназначенный, например, для баллона с другим газом. В повседневной жизни это означает, что в кемпинге, прежде чем готовить на походной плитке, надо всегда попробовать, в какую сторону отвинчивается баллон.

Между шаром и кубом, с одной стороны, и винтовой лестницей, с другой, существует еще масса степеней симметрии. От куба можно постепенно отнимать плоскости симметрии, оси и центр, пока мы не придем к состоянию полной асимметрии.

Почти у конца этого ряда симметрии стоим, мы, люди, с всего единственной плоскостью симметрии, разделяющей наше тело на левую и правую половины. Степень симметрии у нас такая же, как, например, у обычного полевого шпата (минерала, образующего вместе со слюдой и кварцем гнейс или гранит).

ПЯТЬ ПЛАТОНОВЫХ ТЕЛ

Для правильных многогранников справедливы следующие утверждения:

1. В любом многограннике (в том числе и правильном) сумма всех углов между ребрами, сходящимися в одной вершине, всегда меньше 360°.

2. По теореме Эйлера для выпуклых многогранников

e+ƒ-k=2,

где е – число вершин, ƒ – число граней и k – число ребер.

Гранями правильных многогранников могут быть лишь следующие правильные многоугольники:

3, 4 или 5 равносторонних треугольников с углом 60°. Шесть таких треугольников дают уже 60° Х 6 = 360° и, следовательно, не могут ограничивать многогранный угол.

Три квадрата (90° X 3 = 270°), 3 правильных пятиугольника (108° X 3 = 324°), 3 правильных шестиугольника (120° X 3 = 360°) ограничивают многогранный угол.

Из теоремы Эйлера и формы граней следует, что существует только 5 правильных многогранников:

< border="1"> Таблица пяти правильных многогранников Формы граней Число Платоновы тела граней в одной вершине вершин граней ребер Равносторонние треугольники 3 4 4 6 Тетраэдр То же 4 6 8 12 Октаэдр То же 5 12 20 30 Икосаэдр Квадраты 3 8 6 12 Гексаэдр (куб) Правильные пятикгольники 3 20 12 20 Пентагон-додекаэдр

(Любая грань Пентагон-додекаэдра представляет собой пятиугольную фигуру, у которой четыре стороны равны между собой, но отличны от пятой. – Прим. перев)


    Ваша оценка произведения:

Популярные книги за неделю