Текст книги "Рассказы о математиках"
Автор книги: Василий Чистяков
Жанры:
Биографии и мемуары
,сообщить о нарушении
Текущая страница: 4 (всего у книги 15 страниц)
Пьер Ферма (1601–1665)
Почти у каждого человека есть свое излюбленное занятие. В свободное от основной работы время одни занимаются коллекционированием, другие посещают книжные магазины и «вылавливают» по своему вкусу книги, а некоторые любят что-либо мастерить. Бывает и так, что математик увлекается художественной литературой и пишет стихи и, наоборот, поэт-профессионал время от времени занимается математикой. Так, Софья Ковалевская писала математические трактаты и находила время для стихов, а М. Ю. Лермонтов в минуты отдохновения от поэтических трудов занимался решением математических задач и составлял «математические шутки».
У французского юриста Пьера Ферма было свое «хобби». В часы отдыха от бесконечных судебных заседаний он любил решать математические задачи. И чем труднее была задача, тем настойчивее Ферма добивался ее решения. И каждый раз, когда получался нужный результат, он испытывал большое удовлетворение.

Пьер Ферма
В математике Ферма был гениальным самоучкой. Чтобы решать трудные математические задачи, надо много знать. И юрист изыскивал время для изучения математических трактатов. На полях читаемых книг он делал свои пометки и тут же формулировал пришедшие на ум задачи и теоремы. Так, читая «Арифметику» древнегреческого ученого Диофанта Александрийского, на полях против того места, где рассматривается неопределенное уравнение x2+y2=z2, Ферма написал: «Между тем совершенно невозможно разложить полный куб на сумму кубов, четвертую степень – на сумму четвертых степеней, вообще какую-либо степень – на сумму двух степеней с тем же показателем. Я нашел удивительное доказательство этого предложения, но здесь слишком мало места, чтобы его поместить».
Так родилась «большая», или «великая», теорема Ферма: уравнение xn+yn = zn, где n – число целое и положительное, большее 2, не имеет решений в целых числах.
До сих пор остается загадкой, каким доказательством владел Ферма и владел ли? Дело в том, что, несмотря на все усилия крупнейших математиков, «великая» теорема Ферма в общем виде еще до сих пор не доказана и не опровергнута, хотя для отдельных n она доказана совершенно строго.
Так, для n=3 и n=4 теорема доказана петербургским академиком Эйлером (1707–1873), для n=5 – геттингенским математиком Дирихле (1805–1859). Профессор Берлинского университета Кумер (1810–1893) в результате новых разработанных методов довел решение до n=100. Наконец, в настоящее время американские математики, воспользовавшись методом Кумера, при помощи электронно-вычислительных машин доказали, что утверждение Ферма справедливо для всех п от 3 до 10 000 включительно.
Интересно заметить, что простота и легкость формулировки «великой» теоремы Ферма, доступная любому ученику средней школы, привели к тому, что появилось много желающих решить эту проблему. Интерес к проблеме Ферма подогревался еще и тем, что дармштадтский математик П. Вольфскель после своей смерти оставил Геттингенскому обществу наук капитал в 100 тысяч марок для передачи тому, кто решит эту теорему.
О последствиях, вызванных обещанной премией, хорошо сказал профессор Геттингенского университета Вальтер Литцман. «Раньше, – пишет он, – каждый более или менее известный математик, а в особенности редакторы математических журналов, время от времени получали „решения“ задачи о квадратуре круга или трисекции угла, хотя невозможность решения этих задач с помощью циркуля и линейки давно строго доказана. Теперь место этих задач заняла теорема Ферма, причем здесь служила приманкой не только слава, но и звонкая монета»[14]14
В. Литцман. Теорема Пифагора. М., 1960, стр. 102.
[Закрыть].
Характерно, что поток «решений» теоремы Ферма, как указывает тот же Литцман, шел преимущественно от лиц, непосредственно не занимавшихся математикой (гимназистов, студентов, инженеров, людей свободных профессий). Они не представляли всей серьезности проблемы и не подозревали, какой квалификации она требует от исследователя. Однако позднее эти люди заметно потеряли интерес к теореме Ферма, в особенности после инфляции, обесценившей обещанную сумму.
С именем Ферма связано также его знаменитое предложение, известное в современной литературе под названием «малой» теоремы Ферма. Читается эта теорема так: если целое число п не делится на простое число р, то пр – 1—1 делится на число р.
Эта теорема приводится во всех руководствах по теории чисел и доказывается различными способами.
Ферма принадлежит также попытка найти формулу простых чисел. Так, он ошибочно считал, что такой формулой является

Действительно, при п = 0, 1, 2, 3, 4 р=3, 5, 17, 257, 65 837, т. е. р является простым числом. Однако через сто лет Эйлер показал, что уже при п = 5 р = 4 294 967 297. В этом случае р не является простым числом, так как оно делится на 641.
На других оригинальных теоремах и задачах Ферма по теории чисел останавливаться не будем. Но и этого вполне достаточно, чтобы сделать вывод, что Ферма внес большой вклад в теорию чисел и является одним из ее создателей.
Ферма наряду с Декартом явился основоположником аналитической геометрии, при этом надо заметить, что в этой области Ферма ранее Декарта, к тому же в более систематической форме, изложил метод координат, вывел уравнение прямой и кривых второго порядка, а также наметил пути доказательства, что все кривые второго порядка являются коническими сечениями.
Большие заслуги принадлежат Ферма в области математического анализа, где он дал общий закон дифференцирования степени и применил его к дифференцированию дробных степеней, вывел общее правило для отыскания максимумов и минимумов, распространил формулу интегрирования степени на случай дробных и отрицательных показателей.
Ферма был и физиком. В области физики он, например, сформулировал так называемый «принцип Ферма»-основной принцип геометрической оптики, согласно которому световой луч распространяется по такому пути, для которого время прохождения луча минимально (или максимально) по сравнению с любым другим возможным путем.
Из этого принципа Ферма выводятся широко известные законы отражения и преломления света.
В Тулузе, где Ферма занимался адвокатурой, он стал советником парламента (суда) и в этой должности прожил всю жизнь. Говорят, что из-за вечной занятости он даже ни разу не был в Париже. Однако по вопросам математики, которой он занимался от случая к случаю, Ферма вел обширную переписку со многими европейскими учеными. Так, он переписывался с Паскалем, Декартом, английским математиком Валлисом и многими другими.
Большинство научных работ Ферма появилось в печати после его смерти, они были опубликованы сыном ученого под общим названием «Различные сочинения» (1679). Открытые им прямолинейные координаты и их приложения Ферма изложил в небольшом сочинении «Введение в теорию плоских и пространственных мест» (написано около 1636 года и опубликовано вместе с другими работами в 1679 году).
Ферма вполне отдавал себе отчет в том, что его новая геометрическая теория потребует большой доработки и дальнейшего усовершенствования метода. Вот почему он считает уместным в упомянутой выше работе заметить: «И все же мы не раскаиваемся в написании этого преждевременного и не вполне зрелого сочинения. Действительно, для науки представляет некоторый интерес не утаивать от последующих поколений еще неоформившиеся плоды разума; и благодаря новым открытиям науки первоначально грубые и простые идеи как укрепляются, так и множатся. И в интересах самих изучающих составить себе полное представление как о сокровенных путях разума, так и о самопроизвольно развивающемся искусстве»[15]15
Цит. по кн.: K. А. Рыбников. История математики. М., 1960, стр. 138.
[Закрыть].
И действительно, ученые последующих поколений подхватили идеи Ферма. Эйлер был одним из тех, кто придал аналитической геометрии облик, близкий к современному. Сам термин «аналитическая геометрия» появился в конце XVIII века и исходил от французского математика Лакруа (1764–1848).
Блез Паскаль (1623–1662)
Блез Паскаль, будущий «чудо-математик», родился в городе Клермоне в семье любителя математики Этьена Паскаля. Когда ребенку исполнилось восемь лет, отец с семьей переехал в Париж, бывший в то время центром математической мысли Франции. С некоторыми учеными Парижа Этьен Паскаль завел короткое знакомство и имел привычку приглашать их домой для задушевных бесед.
В доме Этьена Паскаля часто разгорались споры по различным животрепещущим вопросам, в том числе и по математике. Нередко свидетелем этих жарких дискуссий был юный Блез Паскаль. Он прислушивался к этим спорам, и они рано пробудили в нем повышенный интерес к науке и стремление в знаниях превзойти даже взрослых.
Казалось, его любопытству не было границ. Он буквально замучил отца всевозможными вопросами, на которые требовал обстоятельных ответов. Отец отвечал сыну на все вопросы, кроме математических. Здесь отец был себе на уме. Он не торопился с математическим образованием сына. Во-первых, в сыне он хотел видеть будущего знатока древних языков, во-вторых, ранние занятия математикой, по его мнению, могут отрицательно сказаться на слабом здоровье сына. Короче говоря, Этьен Паскаль оберегал сына от преждевременных, как ему казалось, занятий математикой и каждый раз переводил разговор на другую тему, если сын пытался заговорить о математике.

Блез Паскаль
Однажды мальчик спросил отца:
– Скажи, папа, что это за наука такая геометрия?
Чтобы поскорей отделаться от неприятного вопроса, Этьен Паскаль ответил:
– Это средство чертить правильные фигуры и находить существующие между ними отношения.
Сын попробовал задать еще несколько вопросов на эту тему, но отец отмахнулся от него:
– Тебе еще рано все это знать. Подрастешь – узнаешь…
Тогда двенадцатилетний Блез решил сам узнать все, что так старательно скрывал от него отец.
Юный Паскаль был часто предоставлен самому себе: его мать умерла, когда ему было всего три года, а отец, занятый работой, мало вникал в занятия сына. Наедине Блез Паскаль думал о геометрии. Прочитать в книге об этой науке он не мог, так как все книги по математике отец запер в шкафу, а ключ взял себе.
Тогда Блез решил сам изобрести эту науку.
Он целыми днями вычерчивал геометрические фигуры собственного изобретения, стремясь своим детским умом постигнуть свойства этих фигур. Среди придуманных фигур были треугольники, параллелограммы, круги, пирамиды и т. д. Не зная установившейся в науке терминологии, Паскаль для своих фигур придумывал названия сам. Так, прямую он назвал «палкой», круг – «колесом», окружность – «кольцом», параллелограмм – «длинным квадратом» и т. д. За неимением бумаги фигуры вычерчивались прямо на полу детской комнаты углем или мелом.
Созерцая эти фигуры, Блез нашел для них некоторые свойства, которые он постарался доказать на основании других свойств, принятых без доказательства. Так у юного изобретателя появились «теоремы» и «аксиомы», хотя этих слов он не знал. Таким путем Блез дошел до теоремы о сумме внутренних углов треугольника, сформулировав и доказав ее своим способом.
Велико было изумление отца, когда он случайно застал сына за запретным занятием. Отец вошел в детскую, когда Блез нарисовал одну из своих фигур и путем рассуждений доказывал некоторые ее свойства.
Застигнутый врасплох, сын подробно рассказал отцу, как он без помощи книг и учителей, руководствуясь исключительно своими соображениями и смекалкой, «сам для себя» открыл геометрию «палок и колес». Пораженный математическим дарованием сына, Этьен Паскаль пошел к одному из своих ученых друзей и рассказал о случившемся.
– Я плачу от радости, – заявил Этьен Паскаль. – Мой сын будет великим математиком! И это я открыл сегодня.
Далее Паскаль-отец рассказал своему другу все, что он узнал о занятиях сына. Больше того, он повел своего друга к себе домой и воочию познакомил с результатами математического творчества ребенка. Гость был удивлен не менее Этьена Паскаля и заявил, что такой талант надо всемерно развивать и немедленно предоставить в его распоряжение математические книги.
С тех пор отец стал руководить математическим образованием сына. Он тут же передал ему «Начала» Евклида для самостоятельного изучения. Мальчик с жадностью набросился на эту книгу и прочитал ее, как захватывающее художественное произведение, ни разу не попросив никакого объяснения. Затем отец дал сыну еще несколько математических сочинений, и сын «проглотил» их с той же легкостью и интересом. Вскоре юный математик стал принимать деятельное участие в спорах по математике в кругу ученых, которые время от времени собирались в доме отца.
Дух исследования пробудился в юном Паскале довольно рано. Уже в 10 лет он написал сочинение под громким названием «Трактат о звуке», в основу которого положил свои наблюдения и эксперименты.
Шестнадцатилетний Блез Паскаль написал трактат о конических сечениях, в котором доказал знаменитую «теорему Паскаля», ставшую одной из основных теорем проективной геометрии. Уже одной этой теоремы было бы вполне достаточно, чтобы имя Паскаля стало известно всему миру. Но Блез Паскаль имеет еще и другие весьма важные открытия и изобретения, о которых будет рассказано несколько ниже.
Блез Паскаль наблюдал, какую большую вычислительную работу выполнял отец, когда находился на финансовой службе в Руане. Вот тогда у восемнадцатилетнего молодого человека и зародилась мысль облегчить труд финансовых работников. Он задумал изобрести счетную машину, которая бы механически выполняла все арифметические действия, причем делала бы это быстро и безошибочно.
Свой замысел Паскаль частично претворил в жизнь. В 1641 году он изобрел счетную суммирующую машину, выполняющую сложение и вычитание чисел. Счетная машина Паскаля в усовершенствованном виде иногда используется и в настоящее время.
На 31-м году своей жизни Паскаль чуть не погиб. Он, как говорят, был на волосок от смерти и считал чудом, что остался в живых. Дело происходило так. Однажды Паскаль отправился на праздник в Нельи. Поехал он туда в карете, запряженной четырьмя лошадьми. На пути лошади испугались и, закусив удила, пустились во весь дух. Стремглав вбежали они на мост через Сену и на его середине шарахнулись в сторону перил. К несчастью, верхние перила были сняты по случаю ремонта. Первые две лошади рухнули в реку. При ударе о нижние перила постромки порвались, и это спасло остальных лошадей и карету. Подбежавшие люди обнаружили в карете Паскаля. Он был в глубоком обмороке.
Этот случай оказал сильное влияние на дальнейшую жизнь Паскаля. Его охватила духовная тоска и уныние. «Все суета сует, – размышлял Паскаль. – Я думал открыть вечные законы, тогда как не знаю, что произойдет завтра…»
Болезненным настроением Паскаля быстро воспользовалась католическая церковь. Под воздействием церковных служителей Паскаль в расцвете сил совсем перестал заниматься наукой и предался бесплодным мистическим изысканиям. В угоду католической церкви он добровольно отказался от своих честолюбивых помыслов, дал клятву никогда не жениться и прожил остальную жизнь в послушании и смирении.
Паскаль оказался верен своему обещанию. После памятного случая он прожил еще 8 лет, но в области науки уже ничего не сделал. Служители католической церкви торжествовали. Религия мстила науке за то, что она подрывала ее корни. Так католическая религия загубила великого ученого, который под ее прямым воздействием стал «живым трупом» в науке. Умер Блез Паскаль в возрасте 39 лет.
Паскаль один из первых сформулировал принцип полной математической индукции и дал свой способ для образования коэффициентов бинома при помощи «арифметического треугольника» (треугольника Паскаля).
Ученый составил трактат, посвященный изучению основных свойств циклоиды, т. е. плоской кривой, которую описывает точка окружности, катящейся без скольжения по неподвижной прямой.
Паскаль открыл основной закон гидростатики (закон Паскаля), согласно которому давление, производимое внешними силами на поверхности, передается жидкостью одинаково во всех направлениях.
Закон Паскаля имеет большое значение в современной технике. На нем, например, основана работа гидравлического пресса, применяемого в прессовальном деле и штамповке.
Паскаль заложил первые кирпичи в основание такой науки, как теория вероятностей, дающей количественную оценку случайным событиям, т. е. событиям, которые могут «быть или не быть».
В трактате «О характере делимости чисел» Паскаль нашел общий признак делимости. Наконец, он дал оригинальный метод решения задач на вычисление площадей и объемов, что явилось существенным шагом в развитии анализа бесконечно малых.
Исаак Ньютон (1643–1727)
Исаак Ньютон, будущий великий математик и физик, родился хилым ребенком. При рождении имел такой невзрачный вид, что окружающие думали, что он протянет всего несколько часов. Две женщины, посланные в город за лекарствами, не торопились возвращаться, полагая, что пока они придут обратно, новорожденного не будет в живых. Каково же было их удивление, когда, возвратившись, они увидели ребенка живым и издающим внушительные крики!
Отец Ньютона умер еще до рождения ребенка, и вся забота о нем выпала на долю матери. Недосыпая ночей, она думала о том, как уберечь сына от гибели и поправить его здоровье.
Мать решила, что чистый сельский воздух и хорошее питание, как живительный бальзам, должны подействовать на его здоровье. Она содержала небольшую ферму и мечтала сделать из своего сына фермера, так как, по ее мнению, для всякой другой профессии он по слабости здоровья не годился.

Исаак Ньютон
Действительно, как и полагала мать, сельский воздух, деревенские игры и забавы благотворно повлияли на укрепление организма Ньютона. В детстве он получил хорошую физическую закалку.
Забегая вперед, нужно сказать, что Ньютон прожил до глубокой старости (умер 85 лет). Он не знал очков и за всю жизнь у него не выпало ни одного зуба. Умер он от каменной болезни, признаки которой обнаружил за три недели до смерти.
Мать, воспитывая свое дитя, думала больше о его физическом здоровье, чем об умственном развитии. На 12-м году жизни она отдала ребенка в частное городское училище (пансион) Кларка – грантемского аптекаря. Ньютон не обнаружил особой любви к наукам и учился довольно посредственно. Перелом в учебе в лучшую сторону произошел в конце двухлетнего пребывания в пансионе. Этому способствовал следующий любопытный случай.
Как-то на перемене один из учеников ударил Ньютона по животу. Удар был настолько силен, что Ньютон чуть не потерял сознания. Острая боль пронзила все тело. Глаза на мгновение перестали видеть. Обливаясь потом, он кое-как превозмог страшную боль.
Обидчик не на шутку испугался. Но, видя, что Ньютон через некоторое время оправился от удара, открыто торжествовал победу и смеялся над потерпевшим. Как хотелось отомстить обидчику в эту минуту! Но этого сделать Ньютон не мог, так как был значительно слабее противника.
Долго думал обиженный Ньютон и, наконец, нашел весьма оригинальный способ мщения. Его недруг превосходил Ньютона не только в физической силе, он был первым учеником класса. И вот ради мести Ньютон решил немедленно начать хорошо учиться, обогнать своего соперника по учебе и, став первым учеником класса, навсегда отнять у него пальму первенства.
Свой план Ньютон выполнил как нельзя лучше. Оказывается, он обладал исключительными способностями. Он без большого труда стал первым учеником в классе и по умственному развитию оказался выше всех своих товарищей на целую голову. В дальнейшем по успеваемости с ним уже никто не мог состязаться. Прошло всего несколько месяцев, а учитель уже при всех учениках во всеуслышание хвалил юного Ньютона, как образцового ученика, с которого всем надо брать пример.
Пятнадцатый и шестнадцатый годы своей жизни Ньютон провел у матери на ферме. Мать не смогла привить своему сыну вкус к занятиям сельским хозяйством, не смогла сделать его своим помощником по управлению фермой. Чтобы как-то приобщить молодого Ньютона к хозяйству, она посылала его со старым работником в город на базар. Нужно было продать кое-что из продуктов, кое-что купить для своих нужд. Но и к этим поручениям Ньютон относился безучастно. Не доезжая до города, он просил работника выполнить, что приказывала мать, а сам, заранее обзаведясь книгой, садился у дороги под дерево или под первый попавшийся плетень и принимался за чтение. Чтение для него в то время было страстью. На обратном пути работник забирал юношу и привозил его как ни в чем не бывало домой.
В часы отдыха между чтением книг Ньютон выкраивал время для своих невинных забав. Уединившись, он любил что-нибудь мастерить. Один раз он приготовил водяные часы, другой раз сконструировал весьма оригинальную ветряную мельницу. В эту последнюю модель была посажена мышь, которая выполняла роль мельника.
Однажды ночью Ньютон запустил змея собственного изготовления, снабженного светящимися фонарями. Жители соседних деревень, не зная, в чем дело, думали и гадали, что это может быть, и решили, что это, наверное, кометы.
Равнодушие Ньютона к хозяйственным нуждам фермы не могло остаться незамеченным. Мать, конечно, не могла не видеть, что сын ее увлекается книгами. Однажды Ньютон настолько увлекся чтением, что не заметил, как сзади к нему неслышно подошел дядя и поинтересовался, чем так сильно увлечен его племянник. Взяв книгу, он с удивлением увидел, что тот изучал трактат по механике и из него решал какую-то замысловатую задачу. И это в шестнадцать лет!..
Обнаружив в юноше большой талант к науке, дядя немедленно обратился к его матери с просьбой отправить молодого Ньютона опять в грантемскую школу с тем, чтобы, окончив ее, он мог поступить в университет.
Семнадцати лет от роду Ньютон поступил учиться в Кембриджский университет. Здесь он с жадностью изучал сочинения древних ученых, в частности «Начала» Евклида. Затем он перешел к изучению исследований крупнейших ученых нового времени. Его внимание привлекли геометрия Декарта, арифметика Валлиса и математические сочинения Кеплера. Чтение этих трактатов у него не было механическим. Усваивал он их критически, глубоко осмысливая прочитанное. Прочитанному он, как правило, противопоставлял свою точку зрения и незаконченные мысли автора доводил до «логического конца».
Уже в студенческие годы Ньютон зарекомендовал себя пытливым, упорным и настойчивым исследователем. Так, будучи студентом, Ньютон доказал теорему о биноме. (Он доказал эту теорему не только для натурального, но и для дробного и отрицательного показателя.) С тех пор формула бинома стала называться «биномом Ньютона». Студентом же он вплотную подошел к проблеме всемирного тяготения. Позднее этой проблеме он посвятил целый трактат «Математические начала натуральной философии». Этот капитальный труд прославил автора на весь мир и сделал его «великим из великих» ученых. Окончил университет Ньютон со степенью магистра.
Величайшей заслугой Ньютона в области математики является создание им (независимо от Лейбница) метода дифференциального и интегрального исчисления, названного им «методом флюксий». Основной труд Ньютона по этим вопросам носит название «Метод флюксий и бесконечных рядов с приложением его к геометрии кривых». Эта работа была закончена около 1671 года, а опубликована в.1736 году, когда уже Ньютона не было в живых.
Ньютону принадлежат важнейшие труды по теории рядов, по алгебре, аналитической геометрии и проективной геометрии.
Ньютон внес замечательный вклад не только в математику, но и в физику, и в астрономию.
Несмотря на свои величайшие заслуги перед наукой, Ньютон был удивительно скромным человеком. О себе он говорил так: «Не знаю, каким я кажусь людям. Самому же себе я кажусь ребенком, который играет на берегу моря и радуется, когда ему удается отыскать гладкий камушек или красивую раковину не совсем обыкновенного вида, в то время как необозримый океан истин лежит передо мною неисследованным»[16]16
Цит. по кн.: Даннеман. История естествознания, т. II. М.·-Л., 1935, стр. 230.
[Закрыть].
По описанию современников, Ньютон был мужчиной среднего роста, весьма солидной полноты. Согласно традиции того времени, голову покрывал париком. У него были умные, живые глаза.
Ньютон вел уединенный образ жизни. Погруженный в глубокие размышления, часто не замечал окружающих и был весьма рассеян. Иногда по утрам, вставая с постели, вдруг задумывался и в таком положении, как зачарованный, мог просидеть долгие часы, пока кто-нибудь не выводил его из этого состояния. Увлекшись работой, совершенно забывал о еде.
Что касается рассеянности, то тут дело доходило до анекдотов. Так, однажды он самым серьезным образом уверовал, что обедал, хотя не брал в рот и маковой росинки и был сильно голоден. Вот как один из биографов Ньютона описывает этот случай. Как-то к Ньютону пришел близкий друг с благим намерением пообедать имеете. В последнюю минуту, когда жареная курица была подана на стол, Ньютон отлучился в свой кабинет и застрял там, увлекшись очередной работой, забыв о своем друге и о предстоящей еде. Прождав Ньютона довольно долго и совершенно напрасно, друг расправился с курицей один, а обглоданные кости сложил на блюдо и покрыл их серебряным колпаком. Вскоре после этого явился и сам Ньютон и громко объявил, что ему очень хочется есть. Но, сев за стол и обнаружив на блюде одни обглоданные кости, с изумлением, ничего не подозревая, воскликнул: «Интересно, оказывается, я уже пообедал. Вот ведь как можно ошибиться!»
Когда друзья, преклоняясь перед его гением, спрашивали Ньютона, каким образом он открыл законы тяготения, он отвечал: «Непрерывным размышлением о них». При этом свой метод исследований он объяснял следующим образом: «Я постоянно обращаю внимание на предмет моих изысканий и жду, пока дело начинает медленно разъясняться, мало-помалу, пока не станет вполне и всецело ясно»[17]17
Цит. по кн.: Луи Фигье. Светила науки от древности до наших дней, т. III. Спб. – М., 1873, стр. 253.
[Закрыть].
Свой век Ньютон прожил холостяком. Биографы полагают, что о женитьбе ему некогда было подумать.
Интенсивная научная работа Ньютона падает на первые 45 лет его жизни. В остальные 40 лет наблюдается значительный спад его творческой деятельности. В этот период Ньютон в основном занимался изданием ранее написанных научных трудов (в 1704 году вышла «Оптика», в 1713 году – второе издание «Начал»). Это очень странно для гениального человека. В том возрасте, в каком Ньютон перестал творить, казалось, ум его должен был достичь полной зрелости и силы.
Знаменитый французский ученый Жан Батист Био, много сделавший по изучению трудов Ньютона, полагает, что умственные способности Ньютона пострадали от следующего несчастного случая. Однажды вечером Ньютон отлучился из дому и по рассеянности оставил на письменном столе зажженную свечу. Во время его отсутствия любимая собака ученого, по кличке Даймонд, вспрыгнула на стол и опрокинула свечу. Все рукописи, лежавшие на столе, сгорели. Нетрудно себе представить, как велико было горе Ньютона, когда, возвратившись домой, он обнаружил от своих долголетних трудов один только пепел.
Астрономические открытия Ньютона нанесли сокрушительный удар по авторитету церкви и обнаружили полную несостоятельность церковных догматов. В своем капитальном труде «Математические начала натуральной философии» (1687) он доказал, что движение небесных тел происходит строго по закону всемирного тяготения, носящему универсальный (всеобщий) характер.
В свете закона всемирного тяготения звучит сказкой, например, утверждение библии о том, что Иисус Навин якобы остановил на время Солнце, чтобы при дневном свете закончить сражение с аммонитянами. Закон всемирного тяготения, одинаково справедливый на Земле и на небе, положил конец религиозным басням о коренном различии «небесного» и «земного». С выводами Ньютона никак не согласуются религиозные мифы о хождении Христа по поверхности воды, о его вознесении «во плоти» и другие несуразности. «Математические начала натуральной философии» полностью развенчали геоцентризм как опору религиозного мировоззрения.
Против астрономических открытий Ньютона богословы всех мастей развернули яростную борьбу. И они временно добились своего. Под их воздействием во многих университетах Европы вплоть до XIX века было запрещено преподавание небесной механики Ньютона и его гелиоцентризма на основе закона всемирного тяготения.
Однако сам Ньютон не был атеистом. Уподобляя Вселенную большому «часовому механизму», он пришел к выводу, что этот механизм раз и навсегда когда-то заведен «богом» и им же был дан «первый толчок», в результате чего механизм «сработал» и только после этого все небесные тела пришли в вечное движение.
Еще при жизни Ньютон вкусил сладость величайшей славы. Он был почетным членом многих научных обществ и академий. Последние 23 года своей жизни был президентом Королевского лондонского общества. Королева Анна даровала ему титул рыцаря и возвела в дворянское достоинство. Весь мир преклонялся перед его гением. Казалось, ничего не оставалось желать Ньютону. «Он был в таком почете, – говорит Фонтенель, – что смерть не могла принести ему новых почестей, он достиг своего апофеоза»[18]18
Цит. по кн.: Луи Фигье. Светила науки от древности до наших дней, т. III. Спб. – М., 1873, стр. 249–250.
[Закрыть].
Погребен Ньютон в английском национальном пантеоне в Вестминстерском аббатстве, месте упокоения всех великих людей Англии. При погребении ему были оказаны почести, какие обычно воздавались только членам королевского двора.
На могильном памятнике имеется латинская надпись: «Здесь покоится сэр Исаак Ньютон, который почти божественной силой своего ума впервые объяснил с помощью своего математического метода движения и формы планет, пути комет, приливы и отливы океана. Он первый исследовал разнообразие световых лучей и проистекающие отсюда особенности цветов, каких до того никто не подозревал… Пусть смертные радуются тому, что в их среде жило такое украшение рода человеческого».
В память о великом из великих ученых на стене комнаты, в которой родился Ньютон, укреплена мраморная доска с надписью:
«Природа и ее законы были покрыты
мраком;
И сказал бог: „Да будет Ньютон!“
И все стало светло».
В Кембридже, по преданию, известна комната, в которой жил Ньютон. В этом же городе, в Trinity College, показывают глобус Ньютона, сделанные им солнечные часы и компас, локон его серебристых волос, который хранится под стеклянным колпаком.








