Текст книги "Рассказы о математиках"
Автор книги: Василий Чистяков
Жанры:
Биографии и мемуары
,сообщить о нарушении
Текущая страница: 13 (всего у книги 15 страниц)
Михаил Алексеевич Лаврентьев (Род. в 1900 г.)
Михаил Алексеевич Лаврентьев является одним из инициаторов создания Сибирского отделения Академии наук СССР. Это он вместе с академиком С. А. Христиановичем в 1957 году выступил с идеей создания научного центра в Сибири, призванного наряду с решением чисто научных проблем всемерно способствовать развитию производительных сил восточных районов СССР. Патриотический почин академика поддержала научная общественность, и под Новосибирском был заложен новый центр советской науки и просвещения.
Родился М. А. Лаврентьев в Казани в семье научного работника Алексея Лаврентьевича Лаврентьева, позднее ставшего профессором механики. Годы учебы также прошли в Казани, сначала в средней школе, а по окончании ее – в университете. Университет будущий ученый окончил в 1922 году и сразу же окунулся в научную работу. Местом работы он избрал Научно-исследовательский институт математики и механики Московского университета, куда был зачислен в качестве научного сотрудника второго разряда. В то время большой славой пользовалась школа H. Н. Лузина, известная под шутливым названием «Лузитания». М. А. Лаврентьев был одним из активнейших лузитанцев и под руководством своего учителя выполнил ряд исследований в духе этой школы. А H. Н. Лузин в основном в то время занимался теорией функций действительного переменного и теорией множеств.

М. А. Лаврентьев
Далее Лаврентьев заинтересовался теорией дифференциальных уравнений и теорией вариационного исчисления. В этой области он получил весьма важные результаты. После этого молодой ученый переключился на исследования теории функций комплексного переменного, ставшей его основной специальностью.
Через восемь лет после окончания университета М. А. Лаврентьев становится профессором Московского университета, а еще через два-три года ему присваивается одна за другой две ученые степени – доктора технических наук (1932) и доктора физико-математических наук (1933). Уже сам по себе этот факт свидетельствует о том, что в исследованиях ученого теория и практика находятся в тесном единении. Действительно, разрабатываемые М. А. Лаврентьевым методы по теории функций комплексного переменного находят широкое применение в аэродинамике и гидродинамике, а также в других разделах современной механики. В то время Михаил Алексеевич вел большую теоретическую и экспериментальную работу в лабораториях Центрального аэрогидродинамического института в Москве.
В 1939 году М. А. Лаврентьев избирается действительным членом АН УССР. Так начался для него киевский период деятельности. В столице Украины он руководил Институтом математики и механики АН УССР.
В начале войны ученый вместе с коллективом института эвакуировался в Уфу, но и там, в новых условиях, он не прекращал интенсивной научной деятельности. Много внимания уделялось оказанию эффективной помощи фронту. После разгрома гитлеровских захватчиков Лаврентьев возвратился в Киев, где продолжал свою кипучую деятельность до 1950 года.
В 1946 году М. А. Лаврентьев избирается действительным членом АН СССР, а в 1957 году он становится действительным членом Чехословацкой Академии наук.
В 1946 году за цикл работ по теории функций комплексного переменного, имеющих важное значение в механике и математической физике, М. А. Лаврентьеву присуждается Государственная премия СССР первой степени. Спустя три года он за открытия в области аэрогидродинамики удостаивается вторично Государственной премии.
М. А. Лаврентьев уделяет много внимания проблемам средней школы. Это при его живом участии проводятся олимпиады для школьников и ведется отбор талантливой молодежи в новосибирские вузы. Это он ратует за глубокое изучение математики в средней школе и призывает учащихся дерзать в самостоятельном творчестве. Это он не покладая рук трудится над повышением математической культуры в вузах и научно-исследовательских учреждениях нашей страны.
Михаил Алексеевич выступил за правильное использование научных кадров и предложил не отрывать ученых непроизводительной заседательской суетней от прямых обязанностей готовить молодые научные кадры и внедрять свои открытия в народное хозяйство. Отличать важное от шелухи, писал он, решить, насколько целесообразно заниматься одним в ущерб другому, вовремя подсказать молодому ученому, куда надо направить усилия, могут только люди, обладающие большим опытом. Вот почему, высвобождая время ученых старшего поколения, мы окажем действенную помощь воспитанию молодежи.
М. А. Лаврентьев один из тех ученых, который умеет создавать новые направления в науке, обладает способностью находить талантливых людей и нацеливать их на решение кардинальных научных проблем. По мнению Михаила Алексеевича, сейчас, когда их решение немыслимо в одиночку, когда приходится концентрировать усилия многих институтов, роль ученых-организаторов неизмеримо возросла. Академик М. А. Лаврентьев, как организатор и руководитель крупнейшего научного центра, действительно подобрал нужных высококвалифицированных ученых, сумел объединить и направить их усилия для решения важнейших проблем науки, внедрения полученных результатов в нашу промышленность и сельское хозяйство.
Своим личным примером М. А. Лаврентьев воспитывает у молодого поколения ученых любовь к научной работе, желание без конца трудиться над сложными, еще не решенными проблемами, имеющими огромное значение для нашего народного хозяйства, для построения материальной основы коммунистического общества.
«Я думаю, человек, который хочет стать ученым, должен как можно скорее развивать в себе способность много работать. Надо научиться работать даже во время отдыха.
Итак, воспитание в себе большой работоспособности. К этому я добавил бы еще одно качество, особенно важное для ученого. Абсолютная честность. Человек, склонный искажать факты, приписывать себе не принадлежащие ему идеи, никогда не сможет стать настоящим ученым…»[100]100
М. А. Лаврентьев. Приглашение в науку. «Комсомольская правда», 1963, 17 августа.
[Закрыть]
«Однажды, когда мне было лет десять, друг нашей семьи академик Лузин рассказал мне забавную историю о том, как Сократ открыл Платона, своего лучшего ученика. Николай Николаевич Лузин был настолько хорошим рассказчиком, что отличить, где у него правда, а где вымысел, было невозможно. Слушая его, я живо представлял себе, как Сократ, прогуливаясь, шел по родному городу. Вот он подошел к стройке и вдруг остановился. Ему бросилось в глаза что-то необычное. Все каменщики возводили стены, проделывая одни и те же движения. И только один из них клал камни по-особому. Сократ присмотрелся. Молодой рабочий берег силы. У него все было рассчитано. Там, где другие делали два движения, он обходился одним. И стена у него росла быстрее, и работал он с меньшим напряжением.
Сократ подозвал рабочего, взял его к себе жить. А через несколько лет из рабочего-каменщика получился ученый, философ, имя и идеи которого живы до наших дней.
Николай Николаевич давно умер. Но я часто вспоминаю эту историю, которую впервые услышал от него.
Легенды легендами, а дело делом. Сейчас ученым и педагогам пришлось всерьез столкнуться с проблемой: как определить, есть ли у человека внутренняя тяга к разгадыванию новых для него явлений, к раскрытию больших и малых тайн природы? Когда педагоги станут делать это повсеместно, гораздо легче пойдет обновление школы, повысится и качество обучения»[101]101
М. А. Лаврентьев. Приглашение в науку. «Комсомольская правда», 1963, 17 августа.
[Закрыть].
«Чем раньше молодежь будет приобщаться к науке, тем быстрее и полнее будет отдача. Уже в средней школе надо развивать рвение к науке, к технике, изобретательству, отбирать тех, кто проявляет особый интерес к этому делу. Исключительно благородна роль скромных тружеников средней школы – учителей, которые умеют прививать своим питомцам любовь к тому или иному предмету. Между тем известно, что многие учителя ориентируются на средний уровень знаний.
Часто люди, особенно одаренные в одной области знаний, оказываются малоспособными в других областях. Если обнаруживается ученик с направленным, определенным интересом, учитель призван развить этот интерес. Его усилия должны, конечно, тактично учитывать и преподаватели по другим предметам.
„Нужно, чтобы учителя умело выявляли способности школьника, его тяготение к тому или иному предмету. К сожалению, умение школьника заучить и быстро ответить напамять выдается иногда за высокие способности. И как часто наши педагоги потом убеждаются в своей ошибке!“»[102]102
М. А. Лаврентьев. Молодым – дорогу в науку! «Правда», 1960, 8 октября.
[Закрыть]
Петр Сергеевич Новиков (Род. в 1901 г.)
22 апреля 1957 г. Комитет по Ленинским премиям в области науки и техники при Совете Министров СССР опубликовал первое послевоенное постановление о присуждении Ленинских премий за выдающиеся работы в области науки и техники.
Из математиков Ленинской премии удостоен замечательный ученый нашего времени, действительный член Академии наук СССР Петр Сергеевич Новиков за свой научный труд «Об алгоритмической неразрешимости проблемы тождества слов в теории групп».
Алгоритмом называют единое правило (предписание), позволяющее указать путь решения для любой задачи из серии однотипных задач. Примером алгоритма может служит правило перемножения натуральных чисел. Если человек владеет общим правилом перемножения двух натуральных чисел и может перемножать и складывать однозначные натуральные числа, то он сможет перемножить два любых натуральных числа.

П. С. Новиков
Широко известен алгоритм нахождения общего наибольшего делителя двух натуральных чисел путем последовательного деления (алгоритм Евклида).
Наличие алгоритма позволяет автоматизировать (нередко говорят – механически проводить) различные вычислительные процессы, связанные с решением серии однотипных задач. Если найден алгоритм решения серии однотипных задач, то можно построить машину, способную решить любую из этих задач (алгоритм позволяет составить программу, согласно которой машина будет решать каждую такую задачу). Если алгоритм разработать невозможно, иначе говоря, если он не существует, то построить такого рода машину нельзя. Конечно, это не означает, что для каждой из таких задач не существует свой способ решения, нет только единого метода их решения.
Вопросы, связанные с нахождением (разработкой) или с доказательством несуществования алгоритмов для решения задач, тех или иных серий однотипных задач, называются алгоритмическими проблемами. Алгоритмические проблемы исследуются в одной из отраслей математической логики – в теории алгоритмов, имеющей теперь большое теоретическое и практическое значение (в первую очередь для машинной математики).
Приведенное выше определение алгоритма не является точным; оно чисто описательное. Благодаря этому разработка алгоритмических проблем продолжительное время не могла быть развернута во всей полноте. Если для какого-либо круга задач алгоритм не существовал, отсутствие точного определения алгоритма не позволяло дать этому факту научное доказательство. В 30-е годы точное определение алгоритма было, наконец, разработано. Благодаря этому удалось установить наличие алгоритмически неразрешимых задач как в математической логике, так и в математике (Марков, Пост). Однако относительно некоторых математических алгоритмических проблем долгое время не удавалось выяснить, разрешимы они или нет. К их числу относилась и проблема тождества слов в теории групп, играющей фундаментальную роль в различных разделах математики. В самой теории групп эта алгоритмическая проблема была узловой: от ее решения зависело решение других важных вопросов теории групп.
Группой называют каждое множество элементов любой природы (чисел, движений и т. п.), для которых установлено одно прямое действие, называемое обычно перемножением и подчиняющееся закону ассоциативности, и обратное действие – деление. Каждый элемент группы является произведением элементов некоторого их исходного запаса. Последние называются образующими группы и обозначаются различными символами, например буквами алфавита. Результат перемножения образующих а и Ь записывают с помощью этих же букв, поставленных рядом: ab. Требование ассоциативности означает, что для любых элементов группы α, β, γ
(α · β) γ = α (β · γ).
Образующие группы называются алфавитом, а каждое их произведение – словом. Например, если группа строится из трех образующих а, Ь, с, то такой алфавит позволяет составлять слова а, а-1, а-1Ь, ас, abbc и т. п. Перемножать можно не только отдельные буквы алфавита, но и слова. Так, из двух последних слов можно получить два новых слова; acabbc и abbcac (закона коммутативности ab = ba, вообще говоря, в группах нет).
В группах можно разными способами определить равенство слов. Это определение может состоять из одной или конечной системы равенств между словами. Так, если принять, что в группе (а, Ь, с) слова ab и bc равны: ab = bcb, то в каждом слове на место ab можно подставить bcb и наоборот. Благодаря этому можно утверждать, что слова abc и bcbc равны, или тождественны, между собой. Соотношение ab = bcb и ему подобные называют определяющими соотношениями группы.
Проблема тождества слов была поставлена в 1912 году. Теперь ее формулировали так: пусть дана группа с конечным числом образующих и с конечным числом определяющих соотношений. Требуется построить алгоритм, позволяющий для любых двух слов установить, равны они между собой или нет.
В некоторых частных случаях, например, когда задается только одно определяющее соотношение, эту проблему удалось решить. Однако в общем случае вопрос о существовании алгоритма для решения проблемы тождества слов оставался открытым. В 1955 году П. С. Новиков опубликовал названную выше работу, в которой доказал, что существуют группы, для которых нет алгоритма, решающего проблемы тождества слов. Этот результат позволил ученому установить неразрешимость других алгоритмических проблем теории групп: проблемы сопряженности и проблемы изоморфизма. Следуя идеям П. С. Новикова, некоторые математики (в том числе его ученики) решили ряд других алгоритмических проблем и получили значительные результаты.
Важнейшие результаты П. С. Новикова относятся к области математической логики, к которой его привел детальный анализ трудностей, встретившихся в теории множеств. Занимаясь математической логикой, П. С. Новиков старается выяснить роль и значение логических принципов в современной математике. В этом направлении им получен ряд интересных результатов, в том числе и результаты в вопросах приложения математической логики непосредственно к задачам теории множеств.
Помимо замечательных работ в области математической логики и теории функций, П. С. Новикову принадлежит также работа в области теории Ньютоновского потенциала, имеющая принципиальное значение в современной геофизике.
Иван Георгиевич Петровский (Род. в 1901 г.)
Математический талант Ивана Георгиевича Петровского обнаружился не сразу. Дело в том, что в Севском реальном училище, где он учился, преподавание математики заключалось в формальном прохождении теоретического материала и в решении стандартных задач, не требующих серьезных размышлений. Поэтому будущий ученый математикой не увлекался. И когда наступило время подумать о высшем образовании, молодой Петровский подал заявление не на математическое, а на биологическое отделение Московского университета, питая надежду стать в будущем биологом или химиком. Но случилось так, что вскоре после поступления на первый курс университета ему пришлось временно покинуть Москву.
Оторванный от учебы в университете, Петровский с жаром набросился на книги. Первой прочитанной научной книгой была теория чисел Дирихле. Эта книга, по выражению самого Ивана Георгиевича, «потрясла и навсегда повернула его интересы в сторону математики». Следующей научной книгой, за которую он взялся, была механика H. Е. Жуковского. Но осилить ее Петровский не мог – не хватало математических знаний. Из этого он делает вывод для себя: надо учиться и учиться прежде всего математике!

И. Г. Петровский
Вернувшись в Москву, молодой человек безо всяких колебаний переводится на математическое отделение Московского университета. Шел 1922 год. Учение приходилось сочетать с поисками средств для существования. Так, одно время будущий академик работал дворником в детском саду.
Тем не менее учение шло хорошо. Петровский по-настоящему увлекается математикой. После окончания университета он занимается в аспирантуре под руководством Д. Ф. Егорова, одного из прославленных деятелей отечественной науки.
Вся творческая жизнь И. Г. Петровского связана с Московским университетом – старейшим высшим учебным заведением нашей страны. В этом университете он был студентом и аспирантом, ассистентом и доцентом, профессором и заведующим кафедрой дифференциальных уравнений, деканом математико-механического факультета и, наконец, ректором университета. Этот пост ученый занимает в настоящее время. В 1943 году он избирается членом-корреспондентом Академии наук СССР, а через три года и ее действительным членом. С 1953 года академик Петровский – член президиума Академии наук СССР.
За выдающиеся научные заслуги в области создания общей теории дифференциальных уравнений И. Г. Петровскому в 1946 году присуждается Государственная премия СССР первой степени. Вторично лауреатом Государственной премии Иван Георгиевич стал за прекрасные учебные руководства по дифференциальным уравнениям, написанные им для высших учебных заведений. Эти учебники хорошо зарекомендовали себя, они несколько раз переиздавались у нас и переводились на многие иностранные языки.
Известно, что талантливым людям удается самые сложные теории облекать в доступную и увлекательную форму. Этим даром обладает и академик Петровский. Образцом такой доходчивости и являются его учебные книги: «Лекции по теории обыкновенных дифференциальных уравнений», «Лекции по теории интегральных уравнений» и «Лекции об уравнения с частными производными».
Иван Георгиевич снискал любовь и уважение студентов. Ректор прост в обхождении, умеет выслушать студента и вовремя дать совет ему, а если в этом есть необходимость, и оказать помощь. И. Г. Петровский скуп на обещания. Но если пообещает что-нибудь, то обязательно выполнит. У него, говорят в университете, слово никогда не расходится с делом. Студенты знают это и гордятся своим ректором.
И. Г. Петровский – замечательный педагог. Когда он читает лекцию, то всегда чувствуется необычайная увлеченность своим предметом. Сила логики его рассуждений удивительна. Она увлекает слушателей, заставляет забыть обо всем, что не связано с делом, и думать только о том, что говорит лектор, внимательно прислушиваясь к каждому его слову. Кто слушал Ивана Георгиевича, тот знает, что такое хорошая лекция и как она должна читаться студентам!
В своих лекциях И. Г. Петровский излагает материал, который не всегда найдешь в учебной литературе. Академик имеет привычку насыщать лекцию современным малоизвестным материалом и высказывать свою точку зрения по затрагиваемым в сообщении вопросам.
Несмотря на большую загрузку основной работой, И. Г. Петровский находит время для большой общественной работы. Он депутат Верховного Совета СССР и депутат Московского городского Совета депутатов трудящихся. Но и этого мало. Иван Георгиевич выступает с речами и докладами как член Совета защиты мира, как ректор и профессор университета.
Часто в центральных газетах появляются статьи академика И. Г. Петровского, в которых маститый ученый вносит конкретные предложения, направленные на обеспечение развития науки в нашей стране, рост и подготовку научных кадров.
Ко всему сказанному следует добавить, что ученый много сил и времени уделяет работе в Высшей аттестационной комиссии и издательской деятельности.
«Он [И. Г. Петровский] считает, что нужно стремиться не столько к тому, чтобы как можно раньше получить самостоятельные узко специальные научные результаты, сколько к тому, чтобы овладеть культурой, и притом не только математической, но и общечеловеческой, понимаемой в самом широком смысле. Что касается математической культуры, то она не в том, чтобы прочитать как можно больше работ в той или иной области, а в понимании того, что в этой области является самым важным, в овладении основными идеями и методами, которых в каждой области имеется не так уж много; и очень редко бывает, чтобы культурный математик не сделал в науке ничего существенного. Поэтому Иван Георгиевич никогда не занимался мелкой опекой своих учеников, а старался расширить их кругозор, обращай Их Внимание на актуальные вопросы, и всячески поощряя инициативу в постановке и решении задач. В то же время он стремится к тому, чтобы показать красоту математической мысли в различных отделах математики, не замыкаясь в одной узкой области»[103]103
П. С. Александров, А. Д. Мышкис, О. А. Олейник. Иван Георгиевич Петровский. УМН, т. XVI, вып. 3(99), 1961, стр. 232.
[Закрыть].
«Русские университеты знали многих выдающихся руководителей; на первом месте среди них – великий Лобачевский, девятнадцать лет бывший ректором Казанского университета. И. Г. Петровский вот уже десять лет стоит во главе Московского университета; и мы думаем, что это ректорство запомнится как большое дело выдающегося ученого, положившего немало сил на воспитание молодежи и на развитие реей нашей культуры»[104]104
П. С. Александров, А. Д. Мышкис, О. А. Олейник. Иван Георгиевич Петровский. УМН, т. XVI, вып. 3(99), 1961, стр. 233.
[Закрыть].
«Академик И. Г. Петровский – ректор, руководитель крупнейшего университета и научного центра.
Он надеется быть полезен на этом посту своей alma mater; деканская деятельность помогла ему осознать роль ученого-организатора. Многие и многие работы будут ему обязаны своим появлением. А славою сочтемся, как говорил поэт»[105]105
Лев Кокин. Семинар Петровского. «Огонек», № 22, 1965, стр. 9.
[Закрыть].
«Говорят, нужны особенные способности, чтобы быть хорошим математиком или физиком. По этому поводу мне хочется заметить, что талант, способности в какой-либо области деятельности – это прежде всего способность много, упорно работать, и надо иметь глубокий интерес к делу. Тогда и работать будет легко, тогда и придет успех! Ведь редко бывает, что человек не достигает успеха в науке, если он действительно серьезно ею интересуется»[106]106
И. Г. Петровский. Олимпиада выпускников. «Комсомольская правда», 1963, 2 марта.
[Закрыть].








