355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Станислав Славин » Оружие Победы » Текст книги (страница 10)
Оружие Победы
  • Текст добавлен: 7 октября 2016, 13:08

Текст книги "Оружие Победы"


Автор книги: Станислав Славин



сообщить о нарушении

Текущая страница: 10 (всего у книги 24 страниц)

Грачев и его команда начиная с конца 50-х годов XX века работали над созданием автомобилей специального назначения. В том числе и таких, что предназначались для доставки на стартовые позиции баллистических ракет по любому бездорожью. На стенде, выставленном в СКВ, я насчитал около полусотни таких спецмашин.

Очень часто при разработке транспорта высокой проходимости ставку делают на гусеницы. Испробовали этот вариант и в СКБ. Гусеницы испытывали и металлические, и резиновые, и совсем уж необычные. Представьте себе десятка два полых цилиндров-катков, соединенных эластичной цепью. Катки перемещаются, словно траки гусеницы, и, опираясь на них, машина движется хоть по суше, хоть по воде… Однако, как и в случае с луноходом, испытания показали, что надежность традиционных колес выше.

Испробовали грачевцы и разные варианты приводов и трансмиссий: механические, гидравлические, электрические… Например, мне показали изображение некой «ноги», опирающейся на мотор-колесо. С помощью платформы с таким движителем Королев хотел доставлять ракеты к местам старта. Но с его смертью интерес к проекту угас.

Однако «синюю птицу» для космонавтов конструкторы все же сделали. Название, насколько я понял, обусловлено ее непривычным небесно-синим цветом. И другими необычными вещами. Начать хотя бы с того, что стеклопластиковый кузов опирается на стальную раму, а та на шесть колес, объединенных в три ведущих моста. Передний и задний – управляемые, что дает возможность 9-метровой машине разворачиваться «на пятачке».

Давление в баллонах колес регулируется водителем, что позволяло проходить по самому слабому грунту, 150-сильный мотор и рационально подобранная коробка передач давали возможность брать подъемы до 30 градусов, преодолевать завалы, а независимая торсионная подвеска – смягчать тряску, неизбежную при езде по бездорожью.

В итоге даже без переднего колеса, почти лежа на боку, машина все-таки продолжала двигаться, преодолевая буераки и колдобины. Машина могла уверенно двигаться через барханы, по снежной целине, мелколесью, по дну водоема, пока доставали колеса, а потом плыть.

Началось же все, по словам одного из ветеранов СКБ И.И. Сальникова, с неудачной посадки «Восхода-2». В 1965 году его экипаж в составе Павла Беляева и Алексея Леонова попал в переплет. Мало того что первый выход в открытый космос прошел с осложнениями. При посадке отказала автоматическая система, и Беляеву пришлось сажать корабль вручную. В итоге вместо привычных казахстанских степей – пермская тайга, из которой экипаж вытаскивали двое суток. Да и то эвакуация состояла в том, что космонавтам пришлось встать на лыжи и по глубокому снегу выйти на поляну, откуда их смог забрать вертолет.

Тогда С.П. Королев и обратился к В.А. Грачеву с просьбой сделать машину, которой было бы нипочем любое бездорожье. И Грачев с блеском выполнил столь необычное задание, создал комплекс, аналогов которому нет нигде в мире.

Дело в том, что в рейд «синяя птица» обычно выходит не одна. В составе поисково-спасательного комплекса – три машины. Распределение ролей тут такое.

Пассажирский вариант вместо кузова имеет дополнительную закрытую кабину с кондиционером, рассчитанную на троих (если помните, экипажи на «Восходах» и «Союзах» состояли (и состоят) из трех человек). Причем каждый космонавт при эвакуации может не только сидеть, но и лежать – кто знает заранее, какая ситуация сложится после спуска. По той же причине здесь предусмотрено и медицинское оборудование для оказания первой помощи. А в экипаж машины, кроме водителя, механика, входит еще и врач.

Грузовая несет на себе «пассажира» иного рода – шнековый вездеход и механизм для его выгрузки-погрузки.

Сам «шнекоход» – это и есть третья машина комплекса – настолько необычен, что достоин особого описания. Вместо колес или гусениц у него – два полых цилиндра-поплавка с наваренными сверху спиралями «архимедовых» винтов. При вращении они позволяют двигаться по рыхлому песку, глубокому снегу, засасывающей трясине. Машина уверенно перемещается даже там, где и танки безнадежно садятся на брюхо. Запаса топлива ей хватает на четыре часа хода. Или, считая иначе, по снегу, например, она может пройти около 100 км.

Выйдя по радиопеленгу в нужную точку, «шнекоход» подбирает космонавтов и возвращается. Космонавты переходят в кабину пассажирского вездехода, на грузовой помещался «шнекоход», и вся команда направляется к ближайшему аэродрому.

Надо сказать, что подобного пермскому ЧП больше не было и возможности комплекса, к счастью, ни разу не использовались. Космические системы стали надежнее, прицел при посадке достаточно точным, так что проявить свои ходовые качества не выпал случай. Это, кстати, побудило разработчиков задаться резонным вопросом: «Нельзя ли пристроить специализированный комплекс в народном хозяйстве?»

Пластиковый, не боящийся коррозии корпус как нельзя лучше подходит для мелкосидящего речного судна с двумя гребными винтами. А оно весьма пригодится для организации водолазных работ, перевозки на острова и транспортировки бригад по обслуживанию нефтепромыслов и линий электропередачи в Западной Сибири. Обычно сменные вахты и продовольствие удается забросить лишь по зимнику. Летом – надежда только на вертолет, а поисково-спасательный комплекс позволит наладить регулярное сообщение особенно при нелетной погоде.

…За свою жизнь Виталий Андреевич сконструировал 88 автомобилей. Он был инициатором внедрения системы централизованного регулирования давления воздуха в шинах на массовых автомобилях высокой проходимости. Впервые в мире при изготовлении корпуса вездеходов Грачев применил пластик, что позволяет машине перевозить груз, равный собственному весу – более девяти тонн.

Виталий Андреевич Грачев был звездой первой величины на автомобильном небосклоне не только нашей Родины. Не случайно его имя занесено в символическую десятку лучших автомобильных конструкторов прошедшего столетия, числится в одном ряду с такими знаменитостями, как Генри Форд и Фердинанд Порше…

Своеобразным памятником Грачеву и его коллегам служат сегодняшние боевые машины, созданные их учениками. Возьмем для примера хотя бы одну…

Сколько люди воюют, столько и существует разведка.

Ныне для добычи разведсведений о противнике, местности и т. д. стали применять различные силы, средства и способы, включая космические спутники. Разведка разделилась на стратегическую и тактическую.

К последней относится и войсковая разведка, основными способами деятельности которой являются наблюдение, поиск, засада и разведка боем. В последние десятилетия появилась еще и техническая разведка различных видов: радиационная и химическая, биологическая, радиолокационная…

Разведчикам сегодня не обойтись без чутких и точных, иногда весьма сложных приборов. А значит, им необходима машина, где можно было бы разместить эти специальные устройства.

Так появился особый класс боевых машин – бронированные разведывательно-дозорные машины (БРДМ).

Эти машины должны иметь хорошую проходимость, потому что двигаться им приходится, как правило, без дорог, по неизведанным маршрутам, быть плавающими, обладать высокой надежностью, скоростью и маневренностью, иметь эффективное вооружение. Наконец, в современных условиях машина разведчиков должна быть приспособлена к действиям в зонах радиоактивного, химического и бактериологического заражения, других особых условиях – например, ночью, в горах, в пустыне, по глубокому снегу и при сильном морозе…

Исходя из этих требований конструкторы и создали БРДМ. Она представляет собой двухосную, со всеми ведущими колесами машину высокой проходимости. Для преодоления окопов и траншей она оборудована еще четырьмя дополнительными колесами (по два на каждый борт) с механизмом Для их опускания и подъема.

Корпус машины является несущим, то есть одновременно служит и основанием, на котором монтируются все агрегаты и механизмы. Он сварен из броневых листов, водонепроницаем, и для движения на воде оборудован водометом.

Машина имеет три отделения. Первое из них расположено в передней части корпуса. Здесь размещены двигатель и его системы, рулевой механизм и некоторые другие агрегаты. Карбюраторный мотор мощностью 85–90 л. с., обеспечивает скорость по шоссе до 80 км/ч. По воде машина движется со скоростью 8–9 км/ч.

Вслед за отделением силовой установки в средней части машины располагается отделение управления. Здесь расположены рабочие места водителя и командира, располагаются все органы управления, приборы наблюдения, контрольно-измерительная аппаратура, радиостанция.

В боевом отделении – оно расположено в средней и кормовой частях корпуса – имеются еще три сиденья для экипажа. Здесь же размещен боекомплект, смонтированы водометный движитель, гидроподъемники дополнительных колес, водооткачивающий насос и два бензобака.

Вооружена БРДМ пулеметом СГМБ калибра 7,62 мм. Кроме лобового кронштейна для установки пулемета имеются два боковых, расположенных на правом и левом бортах корпуса. Они используются при необходимости ведения огня с одного из бортов машины. Два автомата Калашникова в чехлах размещены внутри машины и крепятся на левой и правой сторонах рубки.

Для ведения радиационной разведки на машине имеется прибор ДП, датчик которого установлен на моторной перегородке. Прибор химической разведки ПХР-54 используется для групповых и специфических определений отравляющих веществ. Он переносный, может использоваться для работы как внутри, так и вне машины.

Для наблюдения в боевой обстановке в крышках люков перед командиром машины и водителем установлены стеклоблоки. Кроме того, в рубке корпуса имеется шесть лючков, через которые можно наблюдать и стрелять во все стороны.

Водить машину ночью без включения фар позволяет инфракрасный прибор ночного видения, в котором предусмотрен фильтр, позволяющий видеть обстановку даже при свете встречных фар, пожара и т. д.

Машина оборудована системой централизованного регулирования давления в шинах, которая позволяет водителю как на стоянке, так и на ходу машины изменять в зависимости от дорожных условий давление воздуха, что повышает проходимость машины в распутицу или по глубокому снегу. Кроме того, система регулирования давления обеспечивает продолжение движения без замены колеса в случаях пробоя шин.

Водометный движитель БРДМ – реактивного типа. Забор воды осуществляется через приемный патрубок, приваренный к днищу машины и защищенный решеткой; она исключает попадание посторонних предметов в водомет. Для управления машиной на плаву в корпусе за рабочим колесом установлены водяные рули. Предусмотрена и специальная заслонка, обеспечивающая при необходимости движение задним ходом.

Глава 5. «КАТЮША», ЕЕ ПРЕДШЕСТВЕННИКИ И ПОТОМКИ

Первое применение. Днем 14 июля 1941 года на железнодорожном узле Орши сосредоточились крупные подразделения немцев. Одновременно нацисты навели переправу на реке Оршице. Танки, бронетранспортеры, артиллерийские тягачи с пушками, штабные автобусы и передвижные радиостанции – все было готово ринуться в наступление. Но вдруг из-за горизонта вырвались десятки огненных стрел, и через несколько секунд на станции все заволокло огнем и дымом. Тысячи осколков косили солдат вермахта, рвались машины с боеприпасами, плавилась броня танков и транспортеров. Гитлеровцам чудилось, что под ними горит сама земля. Впрочем, забегая вперед, скажем, что так оно и было – ведь в состав зажигательной смеси, которой начинялись снаряды, входил и фосфор…

«Это был кошмар… Не только наши солдаты были охвачены паникой, но и те, кто находился далеко в стороне от нас, спасались бегством! – рассказывали оставшиеся в живых… – Казалось, что стреляли сразу сотни орудий».

И это было не единственное несчастье, постигшее гитлеровцев в тот день. Уже через полтора часа шквал огня обрушился на переправу, наведенную саперами.

В тот же день в журнале боевых действий батареи, которой командовал капитан И.А. Флеров, появились две лаконичные записи: «14.7.41 г. 15 ч. 15 мин. Нанесли удар по фашистским эшелонам на железнодорожном узле Орша, Результаты отличные. Сплошное море огня. 16 ч 45 мин. Залп по переправе фашистских войск через Оршицу. Большие потери врага в живой силе и боевой технике, паника. Все гитлеровцы, уцелевшие на восточном берегу, взяты нашими подразделениями в плен».

И все это сделали расчеты семи пусковых установок БМ-13, которые сначала фронтовики, а потом и весь народ назвал «катюшей». Наверное, по аналогии со строчками известной песни про девушку, которая на берег выходила…

Боевая установка БМ-13 на машине повышенной проходимости.

Поначалу немцы думали, что у русских появилась некая огнеметная автоматическая пушка с электрическим запалом, И устроили за новым оружием натуральную охоту.

Она велась настолько интенсивно, что экипажам «катюш» предписывалось делать с одной боевой позиции один, максимум два залпа и тут же менять дислокацию. Кроме того, каждая машина в обязательном порядке снабжалась самоликвидатором, а расчету предписывалось в случае опасности окружения тут же подрывать установку, даже если это придется делать вместе с собой.

Ни у кого в мире не было во время Второй мировой войны таких реактивных установок, как наши катюши. Однако гвардейские минометы, как их называли в СССР, появились у нас не случайно. Документы, обнаруженные в архивах, свидетельствуют, что разработчики ракетных снарядов на твердом топливе, послуживших основой для создания боевых машин реактивной артиллерии (БМ-8, БМ-13, БМ-31 и др.), опирались не только на идеи К.Э. Циолковского, но и на давние достижения отечественных ракетчиков и артиллеристов.

Один из создателей. Вспомним хотя бы о Георгии Эриковиче Лангемаке – человеке с типичной для того времени биографией. Он происходил из семьи обрусевших немцев. При царе все жители России считались россиянами – и великороссы, и малороссы, и финны, и поляки, и немцы. И надо сказать, что русские немецкого происхождения сделали до Первой мировой войны очень много для России. Так, отец Георгия Эриковича дослужился до чина статского советника по министерству просвещения.

Естественно, он дал прекрасное образование и детям. Георгий, к примеру, кроме русского, прекрасно владел немецким и французским языками. А в 1916 году поступил на филологический факультет Петроградского университета, решив посвятить жизнь изучению японской филологии.

Но судьба распорядилась иначе. Началась Первая мировая война. И в 1916 году, из-за потерь на фронтах офицерского состава, России пришлось использовать то, что она до того тщательно оберегала – студентов. И 12 декабря Георгий Лангемак принял присягу. Но до фронта он не доехал. Пока бывший студент учился военно-морскому делу, произошла Февральская революция, которая освободила от присяги и его, и армию.

Демобилизовавшись в 1918 году, Лангемак решил вернуться к учебе. И поступил на историко-филологический факультет Новороссийского университета. Однако скоро учеба снова прервалась – по офицерской мобилизации он в 1919 году попал теперь уже в Красную Армию.

Лангемака назначили командиром одной из батарей Кронштадтской крепости, затем комендантом форта «Тотлебен», а с 13 января 1921 года – помощником начальника артиллерии Петрокрепости. Он даже вступил в партию, что, впрочем, вышло ему боком.

Серийная пусковая установка БМ-13.

Дело в том, что в 1922 году Георгий Эрихович женился. И мало того, обвенчался в лютеранской церкви. За что тут же был исключен из партийных рядов.

Тем не менее, поскольку в стране остро не хватало толковых людей, в 1923 году Г.Э. Лангемака приняли в Военно-техническую академию. По ее окончании он получил распределение, выражаясь современным языком, на пост начальника артиллерии Черноморского флота. Однако способного специалиста к тому времени заприметил Н.И. Тихомиров, занимавшийся проектированием и строительством первых ракет. И по его личной просьбе командующий Ленинградским военным округом А.И. Корк направил Лангемака на работу в Газодинамическую лабораторию (ГДЛ).

Здесь Лангемак тоже успешно продвигался по службе. В частности, после смерти Н.И. Тихомирова именно он стал начальником 1-го сектора пороховых ракет и продолжил работы своего учителя.

Когда же в результате слияния двух лабораторий – московской и ленинградской – был образован Реактивный научно-исследовательский институт (РНИИ), Лангемак стал начальником ленинградского отделения. А когда все подразделения РНИИ были перебазированы в Москву, в январе 1934 года он был назначен заместителем директора по научной части объединенного PHИИ…

Будучи еще в Ленинграде, Лангемак завел переписку с К.Э. Циолковским. Из нее, в частности, следует, что военный инженер внимательно изучал труды патриарха ракетной техники. В свою очередь, он сообщил Циолковскому, что его идеи постепенно претворяются в жизнь.

В 1934–1937 годах Г.Э. Лангемак – заместитель начальника и главный инженер РНИИ. Начальником института был в то время Иван Терентьевич Клейменов, который в 1928 году закончил Военно-воздушную инженерную академию им. И.Е. Жуковского и в 1932–1933 годах руководил ГДЛ. Его заместителем одно время был Сергей Павлович Королев. Однако в январе 1934 года он ушел с административной работы, и его сменил Георгий Эрихович.

Общее научное руководство работой РНИИ осуществлял Технический совет под председательством Г.Э. Лангемака, и его членами являлись также В.П. Глушко, В.И. Дудаков, С.П. Королев, Ю.А. Победоносцев, М.К. Тихонравов.

Клейменов и Лангемак, а также их подчиненные сосредоточили свои усилия на создании пороховых реактивных снарядов и пусковых установок различного назначения. Еще в 1929–1933 годах Г.Э. Лангемак вместе с Б.С. Петропавловским разработал и провел полигонные испытания прототипов реактивных снарядов для будущих «катюш». В 1937–1938 годах удалось довести до приемлемых кондиций снаряды двух калибров – РС-82 и РС-132. К началу войны в доработанном виде они получили индексы М-8 и М-13 соответственно.

Для стрельбы ими предназначались пусковые станки, монтировавшиеся под крыльями самолетов. Одновременно конструировались опытные образцы многозарядной самоходной пусковой установки для сухопутных войск.

В новых снарядах, разработанных в РНИИ, вместо пироксилин-тротилового пороха применялись шашки из нитроглицеринового пороха, который обладал большей теплотой сгорания и отвечал требованиям крупномасштабного производства.

Однако 2 ноября 1937 года Н.Г. Лангемака арестовали вместе с группой других ведущих специалистов РНИИ. Каждому были предъявлены обвинения одно хлеще другого. Так, Лангемаку припомнили его немецкое происхождение и обвинили в связях с германской разведкой. В итоге 11 января 1938 года Георгии Эрихович Лангемак был приговорен к расстрелу на закрытом заседании выездной сессии Военной коллегии Верховного суда СССР. В тот же день его расстреляли.

Боевая машина БМ-8-24 на шасси танка Т-60.

В 1955 году приговор отменили, а дело Лангемака прекращено «за отсутствием в его действиях состава преступления».

А в 1967 году именем Лангемака был назван кратер на обратной стороне Луны…

В одно время с Лангемаком безвинно погиб и И.Т. Клейменов. Другие специалисты, в том числе С.П. Королев, В.П. Глушко, получили солидные сроки заключения. В общем, ракетостроению был нанесен такой удар, от которого, казалось, уж не оправиться. Тем не менее уже сделанного оказалось достаточно, чтобы оставшиеся на свободе конструкторы смогли довести разработку до серийного производства.

Начиная с 1941 года первые «катюши» – боевые машины полевой реактивной артиллерии БМ-13 – стали поступать на фронт. Затем они все время совершенствовались. В частности, вместо ЗИС-5 их стали базировать на более мощных автомашинах повышенной проходимости – американских «студебеккерах».

В начале 1943 года в конструкторском бюро московского завода «Компрессор» под руководством инженера В.А. Рудницкого была создана единая пусковая установка автомобильного типа БМ-13Н (нормализованная), с которой запускались снаряды улучшенной кучности М-13УК.

И последние свои залпы «катюши» сделали в мае 1945 года уже в самом Берлине. Так, когда на пути наступающих войск встал сильно укрепленный «дом полиции», именно ракетчики из расчета гвардии сержанта Вагазова разнесли этот дом в щепки, вынудив оставшихся в живых тут же сдаться.

Первые ракеты. Долгое время все, что касалось создания «катюши», технических особенностей ее конструкции и боевого применения держалось под грифом «Строго секретно». И из одного издания в другое перекочевывал миф о том, что благодаря такому режиму немцам так и не удалось понять, в чем же суть этого оружия. Лишь сравнительно недавно, когда стали приоткрываться военные архивы, стало очевидно, что секретили «катюшу», скорее всего, совсем по другим мотивам…

«Искусство и таланты тех, которые совершенствуют боевые ракеты, кажется, очень велики, – писал еще в 1858 году известный французский артиллерист генерал Пексан. – Но не потеряны ли зря эти старания и таланты и можно ли надеяться, что это упрямое оружие когда-либо принесет действительную пользу на суше или на море?»

В самом деле, с тех пор как в XVIII веке англичане столкнулись с индийскими ракетными частями, многие одаренные артиллеристы посвятили свою деятельность совершенствованию этого оружия. Англичанин В. Конгрев, русские А, Засядко и К. Константинов сумели усовершенствовать ракеты до такой степени, что в 1820–1850 годах они производились тысячами и начали уж соперничать со ствольной артиллерией в боевых действиях тех лет.

Однако появление новых порохов и стальных нарезных орудий во второй половине XIX века дало такой могучий импульс развитию ствольной артиллерии, что ракеты не выдержали конкуренции. Некогда превосходя пушки по дальнобойности, они быстро утратили это превосходство. Ракеты расходовали больше пороха, чем пушки; а по кучности и меткости стрельбы не шли ни в какое сравнение с нарезными орудиями.

К концу 60-х годов XIX столетия боевые ракеты повсеместно снимаются с вооружения армий, и в течение последующего пятидесятилетия продолжается выпуск лишь сигнальных, спасательных и осветительных ракет.

Между мировыми войнами. Даже Первая мировая война, давшая такой могучий толчок развитию многих видов вооружения, породившая немало новых боевых машин (вспомним хотя бы о танках), не оказала почти никакого влияния на судьбу ракетного оружия. И только в России была сделана еще одна попытка вернуться к ракетам на поле боя.

14 июля 1916 года преподаватель Артиллерийской академии И. Граве получил патент на боевую ракету, «отличающуюся применением взамен форсового состава прессованного цилиндра из желатинизированной нитроклетчатки с примесью стабилизирующих веществ».

Однако, как показали последующие события, замена форсового, то есть движущего, состава из черного пороха бездымным пироксилиновым оказалась гораздо более сложным делом, чем это могло показаться на первый взгляд. И в этом убедился не только сам Граве, пытавшийся проверить свою идею на Шлиссельбургских пороховых заводах, но и два других энтузиаста ракетной техники – В. Артемьев и Н. Тихомиров.

Они начали экспериментировать в 1920 году в Москве. Спустя год в маленькой мастерской на Тихвинской улице была готова первая партия небольших ракет, приводимых в движение бездымным пироксилиновым порохом на летучем растворителе – смеси спирта с эфиром. Эти ракетные двигатели работали неплохо, но все попытки увеличить размеры двигателей кончались неудачей – ракеты взрывались.

Причина взрывов не составляла секрета для исследователей: при сушке пороховых шашек пары растворителя удалялись неравномерно, в шашках возникали трещины, которые приводили к неуправляемому горению и взрывам.

12-зарядная пусковая установка БМ-31-12.

К 1924 году В. Артемьев и Н. Тихомиров решили разработать бездымный порох на нелетучем растворителе – тротиле, который бы сгорал одновременно с основной массой пороховой смеси. Исследователи рассчитывали, что из такого пороха можно будет изготовить толстосводные шашки, пригодные для более крупных ракет.

К этому времени работами энтузиастов заинтересовался комитет по вооружениям, направивший их в Ленинград для работы в пороховом отделе Артиллерийской академии. Здесь в содружестве с опытными специалистами академии к 1927 году был разработан пироксилино-тротиловый бездымный порох. 3 марта 1928 года первый в мире снаряд с ракетным двигателем на бездымном порохе пролетел 1300 м, а в июле того же года была создана в Ленинграде Газодинамическая лаборатория. Ее задачей было создание ракетного оружия для авиации.

Спустя еще два года ее сотрудниками созданы усовершенствованные образцы осколочного РC-82 и осколочно-фугасного РС-132, а к концу 1933 года руководство Газодинамической лаборатории предъявило комиссии Реввоенсовета аж 9 видов реактивных снарядов.

После испытаний и доработок снаряды РС-82 и РС-132 в 1937–1938 годах были приняты на вооружение истребителей И-15, И-16, а также бомбардировщиков СБ. Одновременно была создана самолетная пусковая установка, для которой в 1938 году Ю.А. Победоносцев, И.И. Гвай и А.П. Павленко предложили новую конструкцию направляющих балок с Т-образным пазом. Испытания реактивных снарядов летчиками показали хорошие результаты.

Ориентировка именно на авиацию была не случайной. Только ракетный двигатель позволял даже легкие самолеты вооружить крупнокалиберными снарядами. А снабдив такими двигателями авиабомбы, можно было многократно повысить их пробивную способность брони и бетона. Наконец, реактивные снаряды позволяли самолету наносить удары по вражеским объектам, не входя в зону действия зенитной артиллерии противника.

За пять лет существования Газодинамической лаборатории были испытаны десятки всевозможных реактивных снарядов. Наилучшие результаты показали снаряды калибра 82 и 132 мм. Отработкой именно этих снарядов и занялся поначалу РНИИ.

К 1938 году советские ракетчики создали первую и основную часть боевой машины, наводившей ужас на фашистов, – надежный и могущественный реактивный снаряд.

Далее, летом 1938 года группа инженеров РНИИ под руководством И. Гвая начала проектировать многозарядную реактивную установку для наземных войск и кораблей флота. Однако результаты первых испытаний этих установок трудно было назвать обнадеживающими. Многие военные специалисты, подходившие к оценке реактивной артиллерии с мерками артиллерии ствольной, видели в этих необычных машинах с тонкими планками вместо могучих стволов одни лишь недостатки. Покойный полковник В. Глухов, долгое время работавший в отделе военных изобретений, вспоминал, как восприняли специалисты того времени ракетное оружие:

«И вот ракетчиков спрашивают: мол, как у вас обстоит дело с кучностью стрельбы? Они говорят: в несколько раз хуже, чем у пушек. В зале смех. А как с меткостью? Тоже хуже, чем у пушек. Опять смех. А с расходом пороха? Его надо в несколько раз больше, чем у пушек. Тут уж прямо хохот прокатился по залу…».

К октябрю того же 1938 года конструкторы В.В. Аборенков, В.Н. Галковский, И.И. Гвай, А.П. Павленко и другие предложили многозарядную пусковую установку поперечной схемы для стрельбы снарядами РС-132 с 24 направляющими («флейта»), которая монтировалась на шасси грузового автомобиля ЗИС-5.

В ноябре – декабре опытный образец прошел первые полигонные испытания, в ходе которых выявился существенный недостаток: заряжание можно было производить только «с дула», укладывая снаряды на переднюю часть пусковой, что было неудобно. Кроме того, при стрельбе машина раскачивалась, что вело к дополнительному рассеиванию снарядов.

Но даже когда раскачивание было более-менее устранено, на документальных кадрах того времени хорошо видно, как вразнобой летят ее снаряды даже на начальной стадии полета.

Тогда, чтобы протолкнуть «катюши» на вооружение, А. Костиков, возглавивший работы по ракетным установкам после ареста Клейменова, Лангемака и других, создал теорию «стрельбы по площадям». На испытаниях, демонстрациях и в начале войны все выглядело довольно эффектно – снаряды буквально сжигали все в зоне огня.

Именно это и понравилось наркому обороны К. Ворошилову. Когда в 1939 году ему на полигоне продемонстрировали ракетный залп, нарком пришел в восхищение. И приказал принять систему на вооружение, несмотря на ряд серьезных замечаний.

Боевая машина БМ-8-36.

К июню 1941 года была изготовлена первая опытная партия БМ-13 для всесторонних полигонных испытаний. Но испытывать новое оружие пришлось уже в суровой боевой обстановке лета 1941 года…

Один из свидетелей первого пуска ракет под Оршицей рассказывал, что после первого же залпа солдаты воющих сторон кинулись бежать со всех ног: немцы – на запад, наши – на восток. Между войсками образовалась ничейная зона шириной в несколько километров. Настолько было сильно психологическое воздействие оружия.

Боевая работа. Постепенно становилось понятным, в каких условиях стоит применять новое оружие. Так, уже капитан Флеров, прибыв со своими батареями на Западный фронт, интересовался прежде скоплениями вражеских войск, то есть целями, не предъявлявшими особо высоких требований к кучности и меткости стрельбы.

Зато ошеломляющая мощь огневых налетов, как уже говорилось, деморализующе действовала на вражеские войска. Если наших стали предупреждать об эффекте огневой атаки, и они стали уж понимать что к чему, то вражескую оборону удары БМ-13 порой настолько ошеломляли, что отмечались случаи, когда обезумевшие гитлеровцы бежали от разрывов реактивных снарядов даже в расположение советских войск.

Вот почему так высоко оценивали действия реактивной артиллерии в своих докладах генерал армии Г. Жуков, генерал-полковник артиллерии Н. Воронов, генерал-майор артиллерии И. Камера и другие военачальники.

Получив первые лестные отзывы о своей разработке, конструкторы и производственники стали работать с удвоенной энергией. В считанные дни они завершили разработку новой боевой машины для 82-мм снарядов – БМ-8. Она начала выпускаться в двух вариантах: один – на шасси автомобиля ЗИС-6 с 36 направляющими, другой – на шасси трактора СТЗ или танков Т-40 и Т-60 с 24 направляющими.

Все это позволило Ставке Верховного Главнокомандования уже в августе 1941 года принять решение о формировании 8 полков реактивной артиллерии, которым еще до участия их в боях – так сказать, авансом – присваивалось наименование «гвардейских минометных полков артиллерии Резерва ВГК». Этим подчеркивалось то особое значение, которое придавалось вооружению и воинам реактивной артиллерии.


    Ваша оценка произведения:

Популярные книги за неделю